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Universality classes and fluctuations in
disordered systems

By J. B. PENDRY, A. MaAcKiNNON AND P. J. ROBERTS

The Blackett Laboratory, Imperial College of Science, Technology and Medicine,
Prince Consort Road, London SW7 2BZ, UK.

Waves transmitted through disordered media show increasing fluctuations with
thickness of material so that averages of different properties of the wavefield have
very different scaling with thickness traversed. We have been able to classify these
properties according to a scheme that is independent of the nature of the medium,
such that members of a class have a universal scaling independent of the nature of
the medium. We apply this result to trace(T, T 'Y where T}, is the amplitude
transmission matrix. The eigenfunctions of T} T, define a set of channels through
which the current flows, and the eigenvalues are the corresponding transmission
coefficients. We prove that these coefficients are either ~ 0 or ~ 1. As L increases
more channels are shut down. This is the maximal fluctuation theorem : fluctuations
cannot be greater than this. We expect that our classification scheme will prove of
further value in proving theorems about limiting distributions. We show by
numerical simulations that our theorem holds good for a wide variety of systems, in
one, two and three dimensions.

1. Introduction

Disordered media scatter waves incident upon them, and induce in the scattered
wavefield a degree of disorder which is far more extreme than the physical disorder
of the medium itself. The fluctuations are brought about by multiple scattering of the
wavefield and its ability to interfere constructively or destructively with itself. The
most extreme instances are found in the absence of absorption, when multiple
scattering can have free rein.

As a specific example we consider the system shown in figure 1 in which waves are
incident on a slab of disordered material of finite thickness in one direction, but
effectively infinite in the other directions. We shall assume that the slab is
statistically homogeneous. The waves can be either transmitted through or reflected
from the slab. Statistics in the transmission coefficient pose particular challenges: as
the thickness, L, of the slab is increased fluctuations in the transmission coefficient,
far from settling down to some ‘average’ value, become more extreme. The question
is what can we say about the limiting scattering properties of a thick slab of
material ? As far as we are aware this question has only been addressed for special
cases. The results we derive here apply in very general circumstances.

With increasing thickness, L, physically observable quantities typically scale
exponentially with L, but other limiting behaviour, such as a power law, is possible.
Sometimes physically distinet quantities can have the same asymptotic behaviour:
we first proved this for one-dimensional systems, but later observed from numerical
simulations that our results seemed to have a wider validity. Finally we were able to
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Figure 1. A slab of medium, thickness L, scatters waves.
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Figure 2. Conductance of a silicon metal oxide field effect transistor measured at 50 mK.

Figure 3. Spectral intensity fluctuations for microwaves passing through a 140 cm length of tube
filled with half-inch diameter polystyrene balls.

prove that in many cases this coincidence of the asymptotic behaviour follows from
general considerations of the mathematical structure, and does not depend on the
degree or nature of the disorder, nor even on the dimensionality. Hence our title
universality classes: quantities are placed in a class according to their asymptotic
scaling, and our claim is that the classification is universal, independent of degree of
disorder, and of dimensionality.

The problem we address has many specific realizations. Perhaps the most well
known is that of electrons in disordered semiconductors. At low temperatures
electron energy loss due to phonon scattering is greatly reduced, and extreme
fluctuations in conductance have been observed, see figure 2. However many other
instances are known, such as the case of transmission of microwaves through a tube
packed with a random array of disordered dielectric spheres, see figure 3. In fact any
experiment that has waves interacting with disorder must address the question of
fluctuations: they will always be intense and will usually affect the experiment in
some crucial aspect. A better understanding of these fundamental physical systems
is needed and we hope that this paper will prove a useful step in that direction.

Statistical distributions are characterized by their moments. For example in a one-
dimensional system the distribution of transmitted intensities, P(|7T?), is specified by
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Fluctuations in disordered systems 69

T*>. Therefore averages of various quantities, particularly of powers of those
quantities, play a central role in the statistics. We shall use M(L) to denote an
average quantity for a system of length L. We shall prove that the Ms can be assigned
to one of a set of universality classes. The number of possible classes is infinite. Label
the pth member of the Sth universality class as M. Then our result states that
averages that are members of the same universality class have the same asymptotic
dependence on the length, L, of the system:

lim M, o/M,s=C3,, (1)
L+
where (5 is a constant independent of L.
A specific example of the theorem is given by a one-dimensional system. In one-
dimensional systems the reflection coefficient and its moments, {|[R[*" ), all belong to
the same universality class. Using the relationship,

|71+ |R* = 1, (2)
which holds in the absence of absorption, the implication is that all the moments of
|T1* belong to the same universality class. In fact in an earlier paper (Kirkman &
Pendry 1984a) explicit values were calculated for the ratios,

lim TPV /<ITL = Cy

L->oc
= [N —) I*(1)/T*HN) I*(3), (3)

in agreement with the general theorem which we shall prove below. This result is a
surprising one because {|7}|*) decreases exponentially with L. It has some remarkable
implications for the distribution P(|7}|?): suppose for a moment that the constants
'y =1. This would imply that the distribution was completely bimodal: only
|T,|*> =1 and |T}|> = 0 are consistent with this result. Compared with exp (—L),
it is certainly true that C'y = 1 so that either,

1T =1, (4)
or, |77)? ~ 0. (%)

As I increases the exponential decrease of {|7}|*> comes about by the sharply
reduced incidence of the |7} |* & 1 specimens.

In §2 we define the transfer matrix, the main tool of our proof, and show how it
can be generalized by taking direct products which can then be factored according
to the irreducible representations of the symmetric group. In §3 we give the proof of
our theorem, and discuss the difficulties presented when the generalized transfer
matrices have continuous spectra. In §4 we give numerical demonstrations of the
theorem in one, two, and three dimensions. Section 5 examines an unusual case
where translational symmetry of the distribution function of disorder in the medium
defines a universality class.

2. The generalized transfer matrix

Our approach is based on transfer matrix theory in conjunction with the
application of group theory. The methodology can be summarized as follows: our
slab of disordered material is notionally divided into statistically independent slices,
see figure 4. For the nth slice we have transmission and reflection coefficients ¢, and
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n=1 n=L
Figure 4. Decomposition of a slab into L slices. Scattering from a thin slice is easy to calculate.

r, which in two and three dimensions will be matrices. The whole slab has
transmission and reflection coefficients 7}, and R, . For each of these slices we define

a transfer matrix, - =1
x - ( @) —(6)r (6)
to\me) T ) )

which has the property that,

L
X,(T}, TR Ry) = T1 X, (£, 6,75, 77), (7)
n=1
\ _( () —(T)'R;,
where XL‘(RZ(Tz)*] T;—RyT;)'Ry) )

Notice that X, has the same functional dependence on the scattering properties of
the slab, as X, does on the scattering properties of the nth slice. Equation (7) we shall
refer to as the fundamental theorem. Given the scattering properties of individual
slices it offers an elegant and compact expression for the scattering properties of the
slab of L slices.

In a random system equation (7) also offers the possibility of taking averages
because, provided only that the slices are statistically independent,

X = 11 <X,.), 9)

which gives the average of any element of X. The taking of proper averages is one of
the most complex issues in statistical mechanics, yet here we have an elegant and
straightforward prescription. It is to the fundamental theorem and its ability to
solve the averaging problem that our results owe their generality.

Unfortunately many of the averages which interest us do not appear as elements
of X. It was to circumvent this difficulty that we generalized the transfer matrix in
a series of papers. We begin by constructing the direct product of X with itself,

X®2=X®X, (10)
which consists of all the pairwise products of the elements of X. In general,
XN =XRXR®X " ®X. (11)

The new matrix X®¥ contains all Nth order integer powers of elements of X and, most
important of all, obeys the fundamental theorem,

L
Xg = 1 X8, (12)

n=1
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Fluctuations in disordered systems 71

We have shown how to generalize the transfer matrix further to non-integer,
negative, or complex values of N (Kirkman & Pendry 19846 ; Barnes & Pendry 1991).

It is not immediately obvious, but in the process of generalizing the transfer
matrix we have introduced a symmetry into the problem. In equation (11) we are
taking the direct product of N identical matrices, and therefore we can permute the
matrices without affecting the results. This permutation symmetry implies a
factorization of the product: X®¥ must factorize into irreducible subspaces in a
manner dictated by the symmetric group. We can draw a physical analogy with a
many particle system described by a hamiltonian. Once the symmetry of the
particles under exchange has been specified, bosonic, or fermionic, we must project
the hamiltonian onto the subspace of appropriate symmetry. Likewise our
generalized transfer matrix can be projected onto symmetric or antisymmetric
subspaces. In fact there is a wider choice of subspaces, and any symmetry described
by a Young tableau (Littlewood 1950 ; Hammermesh 1962) can be identified with the
appropriate subspace of X®V. In our theory we go even further and talk of the
permutation of N objects where N can be a complex number!

It is these symmetrized subspaces that define the universality classes for us. They
are hermetically sealed compartments in the sense that the symmetrically reduced
XN is given solely in terms of the symmetrically reduced X®V for the individual
slices,

L
Xgo = 11 Xg.Y, (13)
n=1
where the subscript S labels the subspace.

One further symmetry may appear in two- or three-dimensional systems. If the
disorder is statistically homogeneous within each of the slices, then an equivalent of
Bloch’s theorem exists. To state the theorem, let us first describe the scattering by
a slice in a plane wave representation, so that the transmission and reflection
matrices have subscripts as follows,

Losks sk (14)

where k labels the wavevector. If the slices were not disordered, and were
translationally invariant parallel to the slice, then Bloch’s theorem would be obeyed.
Denote by a tilde quantities for a translationally invariant system,

Lo = Lok akk’v (15)
sk = Prosiek Onie

and in this case,

Xn;kk’ = XNn;kkakk" (16)

However, even if the slices are not translationally invariant, but only so on average,
then the average of X will retain this property,

<Xn;kk’> = <Xn;kk> akk" (17)

That is to say, the generalized Xs also obey a form of Bloch’s theorem. Their
subscripts comprise arrays of ks, one k for each component of the direct product,

<XI%Z/:{2"'kN;k;k(2"'k}V> = 0,
unless k,+k,+ - +ky=ki+ky+ - +kjy. (18)
Proc. R. Soc. Lond. A (1992)



72 J. B. Pendry, A. MacKinnon and P. J. Roberts

Hence the generalized transfer matrices have a further factorization into subspaces
labelled by the total momentum,

g=k,+k,+ - +ky. (19)

3. Universality classes: the general theorem

Let us suppose that the quantity M, (L) can be expressed as the ijth element of
a generalized transfer matrix,

MpS(L) = (X?iv)zj> (20)
and that another quantity M,, (L) can be expressed as the /j'th element of the same
matrix,

My s(L) = (X§L)iy- (21)
We wish to prove that the ratio of these quantities tends to a constant with
increasing L ; see equation (1).

First we make use of equation (13) to expand the quantities in terms of the
eigenvectors of XgN,

L
) = X520, = (11 X8
)

n=1

= e il sy <slpy, (22)

where |s) and {s| are respectively right and left eigenvectors of XgY, and e, is the
corresponding eigenvalue. The nature of the eigenvalue spectrum is crucial, and
varies according to which particular X% we are concerned with. In general the
matrix has infinite dimensions and therefore an infinite number of eigenvalues. In
many instances the eigenvalues are constrained by unitarity to have,

o) < 1 (23)

and in all cases we have encountered the spectrum is bounded by a maximum
modulus,
les] < 1€s maxl- (24)

The main factor differentiating the classes is whether the spectrum is discrete or
continuous in the immediate vicinity of the maximum modulus. A different proof is
required in each of these cases:

(@) Case 1: eigenvalue spectrum discrete
In this case the theorem follows in a simple and obvious manner from (22):

. ey (sl
tim ML) /ML) = lim o 5 51775

_ Chmax Ci| smax) (smax |5
ooy 7| smaxy (smax >

=5y, (25)

where,
_ <i]smax) {smax|j)

oS =
(| smax) {smax|j )’

Y’
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Evidently, in the case of discrete eigenvalues, the ratio approaches its asymptotic
value as,

lim M, (L) /M (L) = O3+ const. (€mmax—1/Cmax)™ (27)

L-—>w

(b) Case 2: eigenvalue spectrum continuous

As in Case 1 we express the ratio in terms of the eigenvectors,

o JdegeE Gl sl

Lim M (L)/M_, (L .
g MW M) = 0 7 ek <15y G517y (28)
If it so happens that
lim <i|s){s|j> = const., (29)

€s>€smax

then the proof stands as in Case 1. In general this will not be the case. It might happen
that,

lim {i|s)<s|j> = Dy(€smax—€s)?, (30)

€s>€smax

where D is a constant, so that,

lim [de,ei|sy{s|j> = lim |degelDy(e

Lo Lo

e,)*r

smax ~ Us

— oL
= €smax

Dy (a,) Lm0, (31)
where I' is the usual gamma function. In this case we obtain,

elnax Dy T (o

—a,—1
smax p)L »

ehnax Dy Tlay,) Lot

‘s max

lim M, g(L) /M, 5(L) =

L->00

_ DyT(«,)

— L—a +at,
DT b (32)

and our theorem is not obeyed. However, there is a weaker form of the theorem
which is,

log M, (L)
log M, (L)

o B D5
L~ Lsmax + IOg (D,ZS; F(Otp,) L_"‘p'_l)

=1. (33)

lim

L—>00

Yet for many instances of a continuous eigenvalue spectrum the strong form of the
theorem still holds. For a proof it is necessary to delve into details of the
eigenvectors. Let us assume that, although the matrix X§ has infinite dimensions,
the ijth element corresponds to finite ¢ and j. Since the spectrum has been assumed
continuous, the eigenvectors have components extending to infinity and their
normalization must be infinite. Our proof will show that although the normalization
is singular, the singularity is the same for all elements corresponding to finite 4 and
7, so that,

lim  (ils) sl /<0 sy <slj D = Oy (34)

€s>€smax

Proc. R. Soc. Lond. A (1992)



74 J. B. Pendry, A. MacKinnon and P. J. Roberts
We start from the eigenvalue equation,
(XSn —es D) sy =0, (35)

and solve for the un-normalized elements of the right eigenvector, 4,{j|s), by
gaussian elimination first setting,

A 1]s) =1. (36)

Barring any accidental degeneracies this procedure will produce finite values for all
finite-order elements of 4, {j|s). Similarly we can calculate the un-normalized left
eigenvectors, 4% {s|j>, and these will again be finite for all finite order elements. We
calculate 4, by the normalization requirement,

ALy s> = 14,0% (37)
j=1

and, since the summation extends to infinity, 4, will in general be singular at the
spectrum limit. Hence we can rewrite equation (28),

ML) [ de e A AL L) G5l )
b My s(L) gy [ ey T A 85 <s175]

We have already proved that the factors in square brackets are non-singular for finite
¢ and j,

(38)

i LG G s

€s>€smax IAS|2 </L/ | 8> <8 |.]/> N Pp> (39)
therefore lim MpS(L)/Mp'S(L) = Cgp’ﬂ (40)
L->o0

which is the result we desired.
In the case of a continuous spectrum our previous estimate for the approach to the

limit breaks down because,
e

max—l/emax = 17 (41)
but, under the assumption that |4,*><{i|s) {s|j) is an analytic function of e, in the
vicinity of e ,., we obtain,

lim M, (L)/M,, (L) = C5 4 const. /L. (42)

L->o0

In the next section we give an example of this slow approach to the asymptote.

4. An example in one-dimension: maximal fluctuations

One of the most powerful applications of the theorem proved in the last section
relates the moments of the transmission coefficient. We have shown in an earlier
paper (Pendry & Barnes 1989) that the generalized transfer matrix for a one-
dimensional system in the limit of N = 0 becomes

1 0O o0
— t+)2

X®N=O — Tn ( n
o ()’

(43)

Proc. R. Soc. Lond. A (1992)
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Figure 5

Figure 6
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Figure 5. Moments of |7}|*> calculated by averaging over 9259648 one-dimensional samples of

various lengths. The system had a bandwidth of 4, the energy for these calculations was £ = 1, and
the disorder of site energies was uniform with a width of 1. (a) {|7}*), (b) {|T.I*), (c) {|T,)**>.

Figure 6. Ratios of the moments of |77|? for a 1D system ; see figure 5 for details of the simulations.
The theoretical predictions are denoted by ‘ 4+’ symbols. Note the slow approach to the asymptotic
value, approximately as 1/L, indicating a continuous spectrum of eigenvalues. (a) <|7,|*>/<|T.I*>,

(®) T /AT

In the left-hand column of X&N=° we find all positive integer powers of 7. By taking
the cross product of X&N=0 with its own complex conjugate we obtain a new transfer
matrix, some elements of which are shown below,

1 0 0
R —2 +1a
X, = (xgy-o @ xgy-oye = | I 1 (44

|(r)l*

Hence we can express any power of the transmitted intensity as a linear combination
of elements of X, :

~

|t;L|2 = 1_|7“;|2 = 1_(Xn)2,1’
tal* = 1 =221l = 1=2(X,)0 1+ (X,)3 1, (45)
G2 = =M = 1=M (X)), 4

We are now in a position to apply our theorem which states in this instance that

lim {|T*5 /<ITL)*) = CM), (46)
L
where M is a constant independent of L.
This result is confirmed by a detailed theory (Kirkman & Pendry 1984 a) which can
give specific values to the C(M)’s, as was explained in §1. A numerical demonstration
of this result was made by Pendry et al. (1990) for a disordered one-dimensional

system and their data are displayed in figures 5 and 6. For this system the averaged
transmitted intensity varies from |7]* = 1 for L = 0 to |T]* = 5 x 107° for L = 1000.

Proc. R. Soc. Lond. A (1992)



76 J. B. Pendry, A. MacKinnon and P. J. Roberts

Table 1. Comparison of values of C(M) = {|T1*™)/{|T\?) as predicted by theory, and as calculated in
a stmulation

cw) C(M)
M (theory) (simulation)
1 1.0 1.0
2 0.250 0.269
3 0.141 0.146
4 0.098 0.101
5 0.075 0.083
6 0.061 0.065

Despite this huge dynamic range the ratios of the moments tend to constants as we
predict. The detailed analytic theory is also shown and is in excellent agreement with
the simulations. The values of the constants obtained by extrapolating to L = oo are
given in table 1.

We can apply our maximal fluctuation theorem to estimate the sample size needed
to estimate an accurate average of |T]%. According to this theorem the average will
be dominated by a few samples which happen to have |7|> ~ 1. The average number
of such samples in an ensemble of size N, is

Neam <ITT, (47)

therefore to obtain 5% accuracy in our estimate of {|7]*) we require,
0.05 2 1/v/ (e | T1?). (48)

In this instance the smallest values of {|7|*) =~ 5x 107° so we require,
N ~ 107, (49)

This is the number of samples we have used and detailed inspection of figure 5
confirms that the fluctuations in our estimates remain good to the smallest values of
{|T1*) where they become just detectable at the 5% level.

However, the important message for this paper is that the ratios do indeed tend
to constants.

Another point to be made is that X, is a transfer matrix with a continuous
spectrum in the vicinity of e ., giving valuable confirmation of the more difficult of
the two proofs we gave above. The continuous nature of the spectrum is evident in
the smooth power law approach to the constant value.

5. Maximal fluctuations in two and three dimensions

For some time it has been apparent to use that the maximal fluctuations discussed
in the previous section were a universal phenomenon, extending to two- and three-
dimensional systems, and observable in localized or conducting systems. The method
of universality classes provides a means of establishing these results on a firm
theoretical basis. We shall present the theoretical proof first, then the numerical
simulations.

The transmission matrix, 7;, of a disordered system gives rise to a dimensionless

conductance,
G, =trace T, TT. (50)

Proc. R. Soc. Lond. A (1992)
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The matrix T, T} has dimensions

D=1L, (51)

in two dimensions, or
D=L,xL, (562)

in three dimensions, and its eigenvectors define a set of channels through which the
current flows. The eigenvalues, A, define the micro-conductance for each of these
channels. They are constrained by unitarity to be real and,

0<A<L. (53)

It is with the statistics of these micro-conductances that we are concerned in this
section: P(A), as defined by the moments,

1 D
f PQ)AMdA = D1 3 (AM)
j=1

0

= D7 trace {(T,, TT)M>. (54)

Note the position of the brackets on the right-hand side of this equation.

We shall prove that these moments are all members of the same universality class
and therefore their ratios tend to constants as L —oco.

We emphasize that maximal fluctuations in the micro-channels constitute a
distinct phenomenon from the ‘universal conductance fluctuations’ discussed by
Imry (1986), Al'tschuler (1985), and Lee & Stone (1985) which have to do with the
fluctuations in the macroscopic (or sometimes mesoscopic) conductance, G, as

defined by,

Mo
Mo

{(trace T, T1)?) =

J

A4 (55)

17

Again the positioning of the brackets is crucial. Universal conductance fluctuations
are concerned with correlations between micro-channels; maximal fluctuations
describe the statistics of a single micro-channel. Despite the name, universal
conductance fluctuation theory is specific to delocalized systems which can be
treated in perturbation theory. In one dimension, and in localized systems, the
correlations between micro-channels change and a different sort of fluctuation is
observed. In contrast the theorems on maximal fluctuations we prove here are
obeyed in all dimensions in both localized and delocalized systems.
As in the one-dimensional case, T; and R, are related by (see, for example, Pendry
1990),
T,T;+R, R} =1, (56)

except that in two and three dimensions this becomes a matrix equation. Thus any
power of the matrix T, T} can be expressed as a sum of powers of R, R} . It has been
shown (Pendry 1990; Barnes & Pendry 1991) that there is a two- and three-
dimensional equivalent of the transfer matrix containing |r,|*” (equation (44)),

X, = (XEV) ® (XGN-0)*

1 0 0
—n —% + 3 + Q)4
_ ¥ ®rn tn®tn ®‘tn ®tn (57)

- —% - —%

Proc. R. Soc. Lond. A (1992)
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In this expression r, and ¢, are matrices. Thus the quantities that interest us are
contained in a long vector occupying the first column of X, and therefore belong to
the same universality class. Hence the two- and three-dimensional form of our
theorem states that,

trace (T, T1)™> /trace {T, T} ) = C(M). (58)
By implication, from (54),

1 1
f P)AM d/\/f PA)AdA = CWM), (59)
0 0

and hence the conductances in the micro-channels exhibit the characteristic maximal
fluctuations. In a two- or three-dimensional specimen of large cross section (large D),
there will be very many micro-channels, of which a fraction,

Ncond/D ~ GL’ /D (60)

will be highly conducting with transmission coefficient A ~ 1, and the rest will be
essentially in an insulating state.

It is worth relating these microscopic numbers to macroscopic variables. A cube,
side 1 cm, of disordered material has typically as many micro-channels as there
atoms in the cross section : roughly 10'¢ in this case and, typically, resistance between
two faces of the cube might be 1 Q. Our theorem states that conductance arises from
N,ynqa micro-channels each with the maximum conductance of

e*/h =~ 3.87Tx107° Q7L (61)

Thus out of the immense total number of micro-channels, 10'%, only 2.5 x 10* are
actually responsible for the current!

6. Method of simulation

In the previous sections we have used the transfer matrix as a powerful analytical
tool for investigation of scattering from disordered media. It is also in fact the basis
of very successful numerical algorithms for the study of the metal-insulator
transition and similar phenomena (MacKinnon & Kramer 1981, 1983). We now
discuss an adaptation of this algorithm to the present problem and show some
numerical results.

The calculations were based on the usual Anderson hamiltonian,

H =3¢l Gl +VElD (62)
i ij

where is run over sites on a square or cubic lattice and the js are restricted to the
nearest neighbours of 7. In all the calculations the ¢;s are independent random
variables uniformly distributed in the range —iW < ¢, < 3W. For convenience the
units are chosen such that the constant off-diagonal element V is unity.

The hamiltonian (62) may be rewritten in transfer matrix form by dividing the
system into slices along one direction,

Apir| _ E_Hn —1 a, — a,
|: an :| B |: I 0 ][anl] B Xﬂ I:anl]’ (63)
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where H, is the hamiltonian of the nth isolated slice and a,, is a vector representing
the wave function on the sites of the nth slice.

To calculate the transmission matrix ¢, from the transfer matrix X,, we first note
that the left-handed eigenvectors of X, are related to the right-handed ones by,

Ut = UL, (64)

where L is a 2D x 2D diagonal matrix with 1 in its top half and —1 in the bottom
half. If we define U, as the 2D x D matrix whose columns form the complete set of
right-handed eigenvectors corresponding to wave travelling to the right and
normalized using (64) to unit current, then the transmission matrix corresponding to

X, may be defined as,
T'=U;L- X, U, (65)

This is, of course, identical to the definition in (6) above. We now have the basis of
an algorithm for the calculation of T-1.

1. Choose a complete set of waves travelling to the right and generate U,.

2. Multiply this by the X,,s to generate Y, = X, U,, which corresponds to the first
column of (6).

3. Project out T;! by multiplying by Uy L.

Unfortunately, in practice, it is not possible to calculate T} in this way. T is so
dominated by its largest eigenvalues that the smaller eigenvalues tend to be lost due
to the finite accuracy of any numerical process. It is just these eigenvalues which are
required in the calculation of T} itself. To overcome this difficulty the algorithm must
be modified.

Consider the quantity Y, defined by multiplying Y from the right by the inverse

of the top half of Y,
4 I ] [ IIlL:l -
Y, =|., |= Y, 1 66

L [ Y2L YZL [ lL] ( )

where the subscripts 1 and 2 refer to the top and bottom halves of the 2D x D matrix.
The transmission matrix T;, can be recovered by solving the equation,

TIUGLY,] = [Y, ] (67)

Using (66) and (67) the unstable form of the algorithm can be modified as follows:

1. Every few iterations multiply Y from the right by the inverse of its top half.
This is required every 10 to 14 iterations depending on the word length of the
computer.

2. Store the product of the Y;'s separately.

3. Calculate T by solving (67).

Having calculated T it is a trivial matter to calculate trace (TT)™.

7. Results of simulations

The simulations were performed for a range of parameters and system sizes in one,
two and three dimensions. The theorem was particularly thoroughly tested in one
dimension where the results in figures 5 were averaged over almost 107 realizations
of the disordered system. The agreement between theory and the simulations is
particularly impressive in this case.

In two and three dimensions we have concentrated on the (quasi) extended régime.
Figure 7 shows trace (TT")M /trace TT' for W = 3.0 and square samples ranging in
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Figure 7. trace (TT")™ /trace TT' against inverse length for squares of size 4 < L < 256
and £ = 1.0 and W = 3.0 averaged over 128 samples.

size from L =4 to L =256, and averaged over 128 samples. In this range the
localization length (MacKinnon & Kramer 1983) is estimated to be of order 10*. The
data clearly tend towards finite values with increasing L. It is also particularly
noticeable that the various lines for different M are parallel, implying an M-
independent approach to the asymptotic value. It should be pointed out that,
strictly speaking, the data are not in the asymptotic régime, in the sense that our
systems are still orders of magnitude smaller than the localization length. The data
presented here are characteristic of mesoscopic and weakly localized rather than
strongly localized systems.

In three dimensions (figures 8 and 9) the data are plotted for cubes of size 4 <
L < 20 and disorder W = 10 and W = 16.5. The metal-insulator transition occurs at
W =16.5 (MacKinnon & Kramer 1983). Again there is a clear tendency towards
finite asymptotic values and M-independent approach to these values. Notice that
the gradient of the lines is now negative.

8. Universality classes defined by translational symmetry: an example in
two dimensions

In many instances disordered samples retain some translational symmetry in the
sense that the distribution of disorder is translationally invariant. We can use this
symmetry to factorize the averaged transfer matrices and obtain new universality
classes characterized by a wavevector g. As an illustration of this residual of Bloch’s
theorem we consider the following quantities formed from the transmission matrix,

Tr(q,M) = trace [TT (TT")™], (68)
where the matrix T} is defined by
(T;)kk’ = Tlt+qk’+q' (69)

Such quantities are a direct generalization of the trace[(TT )], and reduce to this
form when ¢ is set to zero. The T7(q,M), for M = 0,1,2,...,can all be expressed in
terms of elements of the same transfer matrix, and therefore translational invariance

Proc. R. Soc. Lond. A (1992)



Fluctuations in disordered systems 81

Figure 8 Figure 9
201612 8 4 1612 8 4
0.6 ¢ M=2 06

0.4 04

'\\. A
a
0.2 0.2 Al

v

M=8 v‘\\
L::\i
M=8 1

0 005 010 015 020 025 0 0.05 010 015 020 025
1/length 1/length

ratio

v 4, A
v/d4/ A | ] | ]
v/ 4

A/
ratio
| ]
-

Figure 8. trace (TT") /trace TT" against inverse length for cubes of size 4 <L <20 and £ =1.0
and W = 10.0 averaged over 128 samples.

Figure 9. trace (TT")" /trace TT" against inverse length of cubes of size4 <L < 16and & = 1.0 and
W = 16.5 averaged over 128 samples.

of the averaged system implies that the 7'r(q, M) separate into classes labelled by q.

It is thus expected that for a given g the ratios tend to constant values in the long-
length limit,

. (Tr(q, M))

lim ——— = C(M, q). 70

L—>w <Tr(q? 0)> ( )

The transmission matrix was calculated for a given member of the ensemble as a

function of length L. From this, TT" and TT] are explicitly calculated. The

eigenvectors and eigenvalues of the hermitian TT' are then found. Writing,

TT"=S'ES, (71)
the T'r(q, M) for width = 0,1,...,7 are calculated as,
Tr(q,M) = trace (STT} S* EM]. (72)

An ensemble average is then performed. Because of the extra ‘degree of freedom’
associated with the imaginary part of the 7T(q,M), these quantities fluctuate far
more than the trace[(TT ™). This means that the sample sizes for which converged
averages can be calculated are limited to being small. A two-dimensional system of
width 7 was chosen, and stable averages obtained up to a length of about 20. The
other parameters were chosen to be:

energy, I = 1.0,
width of distribution, W = 3.0,
g-value, ¢ = ¢ = 1: fluctuations increase with q.

An average over 500000 samples was performed. Figure 10 shows the real part of
Tr(q,M) against length for M = 0.2, and 7. Figure 11 displays the real part of the
ratios for M = 0, 1,...,7 against length. Figure 12 shows the same data as a function
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Figure 10. T'r(q, M) as defined in the text. The average was taken over 500000 samples for a two-
dimensional system of width 7, £ = 1, ¢ = 1, and the disorder of site energies was uniform with a

width of 3. —{ — M=7; — M=2; —— M =0.
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Figure 11. For a fixed g, all the 7'r(q, M) should belong to the same universality class, according to
our theory, which implies that their ratios tend to a constant with increasing length of system, L.
Figure 12. The same as for figure 11, except that the coordinate is now 1/L. The prediction is that
plots should be linear in this variable near the origin.

of 1/L. The imaginary parts were found to be at least two orders of magnitude
smaller. The oscillatory nature of the 7'r(q, M) as a function of length is of course due
to the non-zero q: the oscillation frequency increases with |g| (for |g| < ) and is energy
dependent. The evolution of the T'r(q,M) might be described by the form,

jeXP (—ay L) exp [iK, — Ky y,) L]doy, (73)

which is consistent with the above observations.
Examining figure 12 we see that the ratios are all clearly heading towards limiting
values with increasing length, confirming the prediction that the 7'r(q, M) all belong

to the same universality class.
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9. Conclusions

Waves transmitted through disordered media present major challenges to theorists
trying to describe their statistics. We have introduced a new concept into the debate :
that of universality classes. Each member of a universality class has the same
asymptotic dependence on length of the medium and the classification can be made
on very general considerations without knowing details of the medium’s structure.
Hence the use of the word universality. We hope that this concept will be of value in
proving very general theorems about fluctuations, and in this paper we have applied
it to proving the existence of maximal fluctuations in the transmission coefficients
through disordered media: basically the transmission channels are either completely
transparent, or completely cut off. This surprising result was confirmed by a variety
of simulations in one, two and three dimensions.
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