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Abstract, We present results for the conductivity of lateral-surface superattices with no
magnetic field. For smooth potentials the results show three regimes: tunnelling between isolated
states at low energies; strong scattering at intermediate energies; and weak scatiering once the
Fermi energy is above the top of the potential. A hard-wall potential is used to investigate
the strong-scattering regime. At low energies the average conductivity is propottional to the
energy, and we present a simple model which explains the average band structure in terms of
the probability of reflection of a classical particle by a unit cell.

1. Introduction-

Experiments on lateral-surface superlattices [1,2) are approaching the point where effects
due to interactions between the period of the lattice, the Fermi wavelength, and the magnetic
length should be apparent. So far experiments on superlattices with periods of around
300 nm have shown mostly semi-classical effects [3] from the interaction of the periods
of the cyclotron radius and the superlattice potential with both one-dimensional potentials
[4-8] and two-dimensional potentials [9-12], although some effects have required the effect
of the density of states on the scattering time to be taken into account [13-15].

For smaller periods it is hoped that purely quantum mechanical.effects, seen in single
systems such as point contacts [ 16, 17], should be apparent. In particular, a periodic potentlal
is expected to introduce band gaps, and lower the conductivity [18).

‘We have recently described a technique for calculating the conductivity of lateral-surface
superlattices with general potentials, and with magnetic fields [19]. We present results in this
paper for systems with no magnetic field. For realistic, smooth, potentials the conductivity
shows a rapid transition from strong to weak scattering as the Fermi energy rises above the
maximum of the potential. Results are then shown for a hard-wall potential to investigate
the strong scattering regime, where the conductivity is reduced from the conductivity with
no superlattice potential. We explain the magnitude of the conductivity in terms of the
average band structure estimated from the statistics of classical paths within a single unit
cell. :

2. Single-electron model

We adopt the simplest model for conductivity of the electrons at the interface of a
GaAs/AlGaAs heterostructure, and assume a fixed periodic potential and scattering time.
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We calculate the bulk longitudinal conductivity using the formula given by Degani and
Leburton [18]:

27 af
Opx = %%:%:Zﬂ:vi (—"B_E—) (1)

where 7 is the transport scattering time, v, is the group velocity of the mode in the x
direction, A is the area of the system, and f is the Fermi-Dirac distribution function. We
assume in this paper a value of T = 38 ps, equivalent to a mobility of 100 m® V~! s~'.
Note that the only effect of v within this formula is to scale the conductivity.

We have discussed in a previous paper [19] the assumptions which we are making in
using this model, and shown how one can efficiently evaluate the conductivity and density
of states using a recursive Green-function technique.

3. Results

Since the electrons are separated from the gates, the short-range components of the
potential are damped [20] and a potential with only a few Fourier components is adequate.
We therefore use a smooth potential

V(x, ) = 1 Vaar[cos@mx/a) + cos(2ry/a) — 0.5 cos(2mx /a) cos(xy/a) + 2.5] (2)

as considered recently by Smoliner et @/ [21]. Other smooth potentials give similar resulis.
The amplitude of the potential can be up to of the order of 10 meV, and comparable with
the Fermi energy, There are two important scales to the potential: Viagae such that for
Fermi energies below Va4 particles are classicaily trapped; and the maximum height of
the potential V.. Figure 1 shows the conductivity for different values of Vi, for a lattice
period of 100 nm. The results show a rapid transition to weak scattering as the Fermi energy
is increased,

This general behaviour is what we would expect semi-classically: that is, for point
particles following Newton’s equation of motion between scaitering events. Below Viagde
the conductivity is classically zero. Quantum mechanics alters the classical picture below
Veaddle DY quantizing the states in an isolated dot, which are then broadened by funnelling to
form bands. The results show however that the conductivity due to the nmnnelling is small.
Note that our results will not be physically accurate in this limit, since disorder will localize
states in the narrow bands. For a recent review of localization effects see the book by Ulloa
et al [22].

For large energies the potential will only weakly scatter particles within a time r, and
the conductivity will be determined by the cut-off time 7. Since v  /E — V we expect

o x {E-V). (3)

We have also calculated the semi-classical conductivity by evalvating D = {x?) /2t for
classical paths with energy £ and a mean time 7, and assuming the density of states of the
unperturbed electron gas. Figure 2 shows the simple estimate of equation (3), together with
the quantum-mechanical and semi-classical results, The quantum-mechanical and semi-
classical results for the conductivity are similar, and are given approximately by the simple
estimate, The agreement between these results implies that we are looking at short times
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Figure 1. Conductivity for smooth potental with

100 nm lattice period and different values of pe tk—peak
potential Vinax. The origin of the conductivily lias been
shifted for clarity. The inset shows the formi of the
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Figure 2, Comparison of conductivity for a smooth
potential {curve Q) with the semi-classical conductivity
(cuve C) and with a simple estimate of o = ogp({l —
{V)/E) (curve 8). Vipax = 15 meV and @ = 100 nm.

potential, The small peak at Er =~ 9 meV is a quantum-

mechanical feature: classically particles are unable to
move between different unit cells at this energy.

compared with the time-scale on which the chaotic classical motion in the periodic potential
produces diffusion {23], whereas the quantum-mechanical motion gives a constant group
velocity. (The conductivity is smaller than equation (3) predicts because strictly we should

1
, since the time to travel a given

distance is given by the integral alcng the path of 1/v. For Fermi energies above the
maximum of the potential we expec' the classical motion to show diffusion rather than
anomalous diffusion [23] so that for lerge v the conductivity is determined classically by the
periodic potential, whereas quantum riechanically the conductivity increases proportionally
to T unless another scattering mechanism is introduced.)

Quantum mechanically we can understand the high-energy regime in a nearly-free-
electron picture, where reflection at band edges reduces the group velocity, Within first-
order perturbation theory, we expect the periodic potential to open a band-gap proportional
to V; at the band edges. Since we expect V) to fall off with £, and since k & \/EE: so that
band-gaps are mote widely spaced in energy at higher energies, the conductivity will be
little affected by the potential for Ep 3> Wy, Whilst some features are apparent even at
relatively high energies, their size is inuch smaller than the amplitude of the potential.

be considering the average velocity {v) = ( fpam 1 /v)

3.1. Effect of lattice period and thermal broadening

Classically the conductivity shounld, nzglecting any effects from the finite scattering time t,
be independent of the periodicity for a fixed potential amplitude. Quantum mechanically,
as the lattice spacing is increased, the Brillouin zone becomes smaller, and the features due
to interference effects are moved closer together in energy; likewise the features at a given
energy correspond to higher orders in perturbation theory, and so are weaker. Figure 3 shows
the conductivity for a fixed amplitud: of potential, and different lattice periods displaying
these features.

As the temperature is increasedthe fine structure will be obscured by thermal
broadening. Figure 4 shows the effec of increasing the temperature for a period of 100 nm
and with V5 = 5 meV.
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Figure 3, Conductivity for a smooth potential with
10 meV peak-peak potential and different lattice
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Figure 4. Conductivity for a smooth potential with
10 meV peak-peak potential and a lattice pericd of

periods. The origin of the conductivity has been shified
for clarity.

100 nm for different temperatures.

4. Antidot lattice

Band effects are most apparent in the range Viaage < £ < Vipax. We therefore also consider
a hard-wall antidot potential [2], where all energies are in this range. Figure 5 shows the
conductivity for an antidot lattice with the dot radius 0.25 times the lattice period. Note
that the mean conductivity is smaller than with a smooth potential.

Conrguctvity { mmho )

Figure 5. Conductivity for an antidot iattice with antidot radius

Rp = 0.252. Shown are the prediction of equation (15), (straight
0 . L '5 2p line); and the quantum resuit with Im¢E) >~ 0. a = 200 nm, The inset
shows the form of the potential.
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We now show how the average conductivity of the antidot lattice can be understood.
The results show an initial, roughly linear portion for low energies, and a slower increase in
the conductivity for higher energies. In the remainder of this section, we form an estimate
of the slope for low energies from a simple path-integral picture, and argue qualitatively
why the conductivity rises less rapidly at higher energies.

We have shown in a previous paper [19] how the the formula for the conductivity
(equation (1)) can be written as an integral over &, of the group velocity,

Oux ocdefdk, > va!(—aig). )
modes
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Figure 6. Band structure of an antidot lattice calculated from the eigenvalues of the transfer
matrix [19] for (@) 0 meV < EF < 5 meV and () 5 meV < Ef < 10 meV with Rp/a = 0.25
and g = 200 am. The real part of &, is shown for all modes with 1log(|k/al) | < 1.

(The single group velocity is left after one group velocity has cancelled with a one-
dimensional density of states.) Descriptions of electron transport in terms of classical paths
have been used to describe transport in junctions [24-26] and to describe fluctuations in the
conductivity due to quantum-mechanical interference in cavities [27-29] and we now show
how the average group velocity can be found in terms of classical paths.

Let us take a single value of k,, and form the § matrix for a single unit cell of the
potential, with periodic boundary conditions in the y direction:

( Wio eft on left ) =5 (lpto vight on Ieft) (5)
‘["to right an right ‘I’zo left on right
where Wi righr on gt €tC represent the complete set of waves travelling in the directions

indicated. To estimate the conductivity, we need to find the eigenvalues of the corresponding
transfer matrix T such that

Wio right on right § __ | lIJto right on left
( Vi et om g ) ©

to left on right Wio left on left

The simplest situation, which suffices to form an estimate for low energies, is to assume
that there is just a single propagating mode, and that we can neglect interactions with states
almost localized in one cell, and other propagating modes. The band structure in figure 6
confirms that there is little interaction between propagating modes for low energies, but
shows strong interactions between modes at higher energies.
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The S matrix for a single mode has the general form

S= (it " ) exp(ig) (7}

roit

where ¢, 7, and ¢ can be chosen to be real, because of the unitarity condition sst = 1,
and the syminetry of the unit cell which allows us to choose the phases of the two diagonal
clements to be equal without loss of generality. We obtain an estimate of the parameters of
this S matrix by considering all the classical paths starting on face A, and ending on either
face A or B; in the perpendicular direction we impose periodic boundary conditions with
paths crossing the boundary being assigned an extra phase exp(ik,). The wave function
leaving the cell is approximated by

‘,b' o ZCXP (ik!palh + d)pa(h) (8)
paths

where l,yn i the Jength of the path, & is the wavenumber at the given energy, and ¢
includes the contribution to the phase from the Maslov indices {30] and from the phase
associated with k,. A more formal estimate of the S matrix along the lines of the formalism
described by Jalabert et al [27] would consider the paths weighted by the wavefunction of the
mode considered. A simple average of all paths has however been successful in describing
fluctuations in cavities [27], and we use it here for simplicity. For higher Fermi energies,
where there are many different modes to consider, the approximation of considering a single
mode in the S matrix is inappropriate anyway.

If fap is the fraction of paths which start on face A and leave by face B, and

Jfaa = 1 — fap the fraction of paths which leave by face A, then estimates for r and
t are

(r?) = 1= {t%} = fan. ©)
Since the classical paths are independent of the Fermi energy,
(3t /AE) = {8r/3E})=0. (10)

In order to determine the average properties of the band structure, we do not need the
absolute value of the phase ¢, but only (3¢/8E) . The appropriate estimate is

(3¢ /OE) = {I) dk/E (n

where | = (Ipam) . The average over paths is taken over both reflected and transmitted paths,
which gives the correct answer in the limit of zero, or total reflection. The estimate is not
quite trivially obvious because the phase of the reflected and transmitted waves, which one
might think to be independent, are constrained by the fact that S must be unitary for the
flux to be conserved for any combination of input waves.

Given the § matrix for one unit cell, we now deduce the band structure. Rearranging,
we find

T=(I/[texp(i¢)] ir/t ) (12)

—ir/t 1/1t explig)]



Conductivity of 2D superlattices 6080

which has eigenvalues

A = exp(ik,) = cosgp/t £ Jcos? /1> — 1 - (13)

so that we have an estimate for the group velocity,

vy = (1/RYIE/3ke = ({o) / (1)) (VT — cos? ¢/ sin $)/2E /m, (14)

where #; is the average path length with no antidots present. The conductivity is then
proportional to the number of open modes, multiplied by the average group velocity. The
number of propagating modes is approximately the number of open modes in one of the
constrictions between the antidots, which is proportional to ~/E, so we recover the simple
result that the conductivity is proportional to the energy.

Table 1. Factors reducing group velocity in antidot lattice. The dot radius is given as a fraction
of the [attice period. All other figures are relative to the empty lattice. fpang is the fraction of
energies in a band, rather than a band gap; froup is the reduction in group velocity within one
band because of the opening of band gaps; and (vg) is the average group velocity including the
effect of the increased path length, and the probability a given energy is in a band gap.

Dot radius ~ Path length (:2) Soand Saroup (vg) aloy

6.15 1.33 080 0.70 0.78 041 028
0.25 1.61 0.72 065 0.73 030 014
0.35 2.05 065 0.60 0.68 020 006

We have performed this estimate numerically for the shapes described, with the results
shown in table 1, and in figure 5. The conductivity is reduced relative to a system with a flat
potential by a number of effects: reflection introduces band gaps, reducing the probability
that a given mode is conducting by a factor fhand, and reducing the group velocity within
a band by a factor fyoup: the average path length between cells is increased because of
paths which are scattered several times by the antidots within a unit cell, reducing the group
velocity by a factor {Ip} / {{}, and the number of modes which can propagate with high
probability though the narrow constrictions is reduced by a factor 1 —2Rp/a. Our estimate
for & is then

0 = 00 foand Saroup (1 — 2Rp/a) (o} / ¢} (15)

where oy is the conductivity with no antidots present. The results show that this extremely
simple estimate provides a reasonable estimate for the conductivity. For higher energies the
conductivity increases less rapidly than this estimate would suggest because the independent
mode assumption breaks down. -

5. Summary

We have presented results for the conductivity of lateral-surface superlattices for a fixed
relaxation time showing the effect of realistic potentials on the band conductivity.

For a soft potential the conductivity has a simple form with three regimes, For Fermi
energies below the saddle point of the potential, where classically the electrons would be
localized, the conductivity is determined by tunnelling, and we expect electron interaction
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and localization effects to be important. For Fermi energies above the saddle point of the
potential, but below the maximum of the potential, electrons are strongly scattered, and band
structure effects are visible, At energies above the maximum of the potential, electrons are
both classically and quantum mechanically only weakly scattered, little structure is visible
in the conductivity, and the conductivity is close to the value with no periodic potential,

For a hard-wall potential, where the Fermi energy is always below the maximum of the
potential, the conduciivity is strongly reduced below the value with no superlattice potential.
This reduction in conductivity is explained by a simple picture for the parameters of the
band structure in terms of paths within a single unit cell.
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