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Abstract. We caiculate the density of states and band conductivity of a two-dimensionai electron
gas with a periodically modulated magnetic field. We consider the case of sirips where the
magnetic field is alternately going up and down with zero mean. We find characteristic features
in the density of states and the conductivity at low energies as the electrons are only able to
drift parallel to the strips of magnetic ficld. As the energy is increased, and the electrons start
to be able to drift perpendicular to the strips there are pronounced band-structure effects in the
conductivity.

1. Introduction

The possibility of applying a spatially varying magnetic field to a two-dimensional electron
gas (2DEG) has been considered recently by several authors [1-5]. Experiments with a
magnetic field regularty modulated by strips of magnetic material, or of superconductor are
expected to be practical. In this paper we analyse the conduction for one particular case:
a magnetic field modulated periodically in one direction, with zero mean field. Unlike
previous work this constitutes a form of strong modulation, since the variation of the field
is large compared with its average, although, depending on the parameters, the cyclotron
energy associated with the magnetic field may be small compared with the Fermi energy.
In section 2 we describe the Hamiltonian, and how, since the momentum parallel to
the strips is conserved, the motion perpendicular to the strips is described by a simple one-
dimensional Hamiltonian. In section 3 we discuss the classical motion of the electrons, and
show how at low energies all the orbits drift parallel to the strips of the potential, whereas
at higher energies the electrons can drift in any direction., In section 4 we present the
results of a quantum mechanical calculation of the band conductivity, The perpendicular
momentum dependent potential results in much stronger band effects being visible than for
an electrostatic potential with the same effective potential for zero perpendicular momentum.

2. Effective potential
We consider a 2DEG with a magnetic field perpendicular to the sample of B =

Bycos(Zrrxfa). In practice there will also be components of the magnetic field paraliel
to the 2DEG. The system can be described by the Hamiltonian

H=-(p—eAy )
2m
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where A = (aBo/2m){(0, sin(2xx /a), 0). The Hamiltonian is translationally invariant in the
y direction, so that the momentum perpendicular to the modulation, py, is conserved, and
the motion in the x direction is described by the one-dimensional Hamiltonian

1 a 2\ \2
H(x px) P; 2m (Py - '2‘;930 sin (T)) \ (2)

The effective potential seen by an electron is shown in figure 1 for different values of
the perpendicular momentum p,. By way of contrast, recall what happens for a system in
a uniform magnetic field: A = Bp(0, y,0) and the effective potential is a parabola, the
position of the parabola’s minimum depending on p,. Here instead, with a zero mean field,
the effective potential is periodic in x, and increasing the magnitude of p, increases both
the modulation and the mean value of the potential.
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Figure 1. Effective potential as a function of position X and perpendicular momenturn py.
A is in units of the lattice periods, with the maximum of magnitude of the magnetic feld at
X =0, 0.5 etc. p, is in units of 2 By/2x and the potential is in units of the threshold energy,
(1/2m) (aeBo/2)? . (2) Magnetic Hamiltonian, equation (2); (b) electrostatic Hamiltonian with
same potential for py = 0.

3. Classical motion

Given the one-dimensional Hamiltonian in equation (2), the motion in the x direction is
trivial; if the electron has a small momentum it oscillates in one of the minima; if it
has a large enough momentum it travels with a steady mean velocity in the x direction.
Figure 2 shows the possible motions for one particular origin. (Note that the dynamics

are integrable becanse of the symmetry, and all the trajectories are periodic, modulo any
uniform transiation.)

The potential implies that there is a threshold energy,

2
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Figure 2. Paths of electron injected from a single
point with the same speed, but with different initiat
directions. The dotted lines indicate the lines of zero
magnetic field. The cyclotron radivs at the points
with the highest magnetic field is haif the periodicity
of the modulation.

below which there is no conduction perpendicular to the stripes, except by way of inelastic
scattering, or scattering by impurities. Below this energy the only trajectories that exist are
those where the electron drifts parallel to the stripes.

We have calculated numerically the conductivity perpendicular and parallel to the strips
assuming a scattering time of 38 ps, equivalent to a mobility of the unmodulated 2DEG
of 100m? V~! s~', We have calculated the diffusion constant from individual trajectories
of duration 38 ps as D,, = (sz)/ (2r), where Ax is the distance covered by the path
in the x direction, and similarly for motion in the other direction. Doing this we neglect
correlations between different paths, and any effect from the distribution of path Iengths.
Since w, >» 1/t for the magnetic fields considered and the paths consist of straight lines
with an oscillation superimposed we do not expect either of these simplifications to be
significant. Since there is no net magnetic field in this problem there is no Hall resistance,
Dy, = 0, For large magnetic fields such that the typical cyclotron radius of an electron is
small compared with the lattice period there will be an enhancement to the conductivity
parallel to the stripes because in this limit there are spatially separated regions where all
the electrons drift in the same direction. '

Figures 3 and 4 show the calculated conductivity parailel and perpendicular to the strip.
We see that the conductivity parallel to the strips is only weakly affected by the presence
of the magnetic field modulation. The conductivity perpendicular to the strips is greatly
reduced. The threshold energy for drifting trajectories is marked on the figures. Below this
energy the conduction perpendicular to strips arises from the scattering conductivity due to
the oscillation of the electron about its mean trajectory.

4. Quantum mechanics

We now turn to what we would expect quantum-mechanically. For a given perpendicular
wavevector the electron sees a periodic potential, given by equation (2), with Fourier
components at &, = 2/a and also because of the A% term at &, = 4x/a. The size of
the term at k, = 27/a is seen to be proportional to ky. This term vanishes for k)r =0 so
that the potential has half the periodicity at that point.
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Figure 3. Conductivity parallel to the strips for two different magnetic fields. The solid line is
the resujt of the quantum mechanical calculation of the band conductivity, the dashed line is the
result of classical calculation. The dotted lines mark the threshold energy for drifting motion
perpendicular io the strips for the two fields.

40

Conductivity ( mmho }
N (0]
& [=]

-
(=]

10

4 6
Fermi Energy ( meV )

Figure 4. Conductivity perpendicular to the strips for two different magnetic fields. The solid
line is the result of the quantum mechanical calcufation of the band conductivity, the dashed
line is the result of the classical calcuiation. The conductivity has been smoothed by the Fermi
function for T = 0.3 K to remove the spurious oscillations associated with the finite number of
k points used for the catculation. The dotted lines mark the threshold energy for drifting motion
perpendicular to the strips for the two fietds.

We have used the model and numerical techniques described in previous papers [6-8]
to calculate the band conductivity and the density of states in this system. We have used the
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same parameters as for the classical calculation, with the addition of a quantum scattering
time of Ty = 6.5 ps for the density of states calculation.

Figure 3 shows the band conductivity parallel to the strips. The quantum mechanical
behaviour is similar to the classical behaviour. The small systematic deviation at large
energies is a consequence of the finite discretization used: the Hamiltonian for one unit cell
was discretized on a 40 x 40 grid. For the weaker magnetic field shown the conductivity
parallel to the strips shows little structure, except at the lowest energies. At the higher
magnetic field we see more structure, which is associated with one-dimensional quantization.
At low energies the electrons are confined to strips along the lines of zero magnetic field,
and are only weakly coupled to adjacent strips by tunnelling. To a good approximation the
electrons at low energy are therefore confined to a set of parallel, one-dimensional strips,
and the structure seen in the conductivity arises from the quantized modes in these strips. At
higher energies conduction is possible perpendicular to the strips, and the one-dimensional
quantization disappears.

The conductivity perpendicular to the strips, shown in figure 4 is more affected by
the modulation than the conductivity parallel to the stripes, as we expect. In particular
we ses some characteristic sharp dips in the conductance at certain energies. These are
band-structure effects. These effects are more prominant than for a comparable ejectrostatic
modulation, as found for weak modulation by Peeters and Vasilopoulos [4], because the
effective potential grows and rises with increasing &, rather than, just rising in energy as
ky increases, smearing out bandstructure effects, as happens for an electrostatic modulation.
Comparing figures 3 and 4 we note how the effects of the one-dimensional quantization
disappear as conduction perpendicular to the strips starts with increasing energy. We also
see that in both cases the quantum mechanical and classical calculations give the same
result, with the exception of some additional structure in the quantum case.

Figure 5 shows the density of states. In the region where the conductance is showing
effects from the one-dimensional quantization, we see corresponding peaks in the density of
states. At higher energies, where the electrons are free to drift perpendicular to the strips the
structure in the density of states disappears. There is a double peak structure in the density
of states, for example at approximately 045 T and 1.15 T. The lower peak is caused by
electrons cccupying the regions where the magnetic field is small. The upper peak arises
as the electrons fiil the regions of high magnetic field.

5. Summary

‘We have presented in this paper calculations for a novel, periodic, magnetically modulated
system. Because the effective potential seen by the electron depends on its momentum
perpendicular to the modulation, or more simply since the Lorentz force experienced by
the electron increases with the velocity of the electron, band structure effects are more
prominent than in a comparable electrostatically modulated system.
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Figure 5. Density of states for a magnetic field of 8y = 1.47 T. The local density of states at
the two peaks indicated is shown in the insets, The darker areas indicate the higher density of

states. The regions of high magnetic field run vertically at the edge and centre of the unit cell
shown.
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