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Abstract. Using a model of random one-dimensional wires, we determine an exact recursive
formula for the transmission probability of a Bethe lattice. We use this formuta, in numerical
simulations, to study the metal-insulator transition. In particufar, we examine the form of the
conductance distribution and find that it does not obey the predictions given in other studies.

1. Introduction

In a previous paper [1], we calculated the critical exponents of the Anderson metal-insulator
transition [2, 3] on a network of random wires. The exponents of the transition are an
important quantity and, as was detailed in that paper, there is still doubt over the acteal
values of these exponents [1, 4, 5]. However, in order to study the nature of the Anderson
transition itself, perhaps the most important quantity to study is the conductance distribution.
In particular, is it possible to identify any characteristic behaviour in the conductance
distribution as the system being studied is driven from the metallic to the insulating regime?
Above all, what happens to the conductance distribution at, and near, the transition point?
Detailed theoretical work has been done mainly in one dimension [6, 7, 8, 9] and only
limited theoretical and numerical work exists in higher dimensions [10, 11, 12], due to the
immense technical difficulties involved.

Because of these difficulties, approximations have to be made. One such approximation
is to study the conductance on a Bethe lattice {13]. The Bethe lattice can be characterized
by its connectivity K which is just equal to one less than the number of nearest neighbours
Z. That is, K = Z — 1. The Bethe lattice has no closed paths and the number of sites
on its surface are as numerous as the number inside. An example of a Bethe lattice with
connectivity K = 2 is shown in figure . The numbers by the lattice sites indicate the
shell of the Bethe lattice, n. So the number of sites, N, in a particular shell is N = K",
Another property, due to the lack of any ring structures, is that any two points on the lattice
are connected by only one, unigue, path. This absence of ring structures makes theoretical
studies tractable but prohibits any weak-localization effects and, therefore, the Bethe lattice
can only serve as an approximation to a real lattice for studying the metal-insulator
transition. The Bethe lattice is believed to represent a space of infinite dimensionality and,
therefore, any transition on such a lattice must represent only a mean-field approximation.

The Bethe lattice was first studied, with reference to the Anderson transition, by Abou-
Chacra ef al in 1973 [14]. They derived an equation for the self-energy which couid be
solved self-consistently, but which was exact on a Bethe lattice. From this they proved the
existence of localized states at certain disorders and achieved an estimate of the mobility
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Figure 1. A Bethe lattice of connectivity X' = 2. This figure shows only the first four shells of
the lattice.

edges. They did not, however, prove that truly extended states exist outside the localized
energy-disorder regions, nor did they analyse the neighbourhood of the transition. These
points were given more thorough investigation by Kunz and Souillard in 1983 [15], when
they showed that a transition from extended to localized wavefunctions did occur on the
Bethe lattice when the disorder or energy were varied. They claimed their model was
the first to show the definite existence of an Anderson fransition. They also obtained an
exponent for the divergence of the localization length of v = 1.

Shapire [16] alzo studied the Bethe lattice, using a model of chapnels and beam splitters.
The model defined in this paper is similar to Shapiro’s, in the sense that both make use
of the scattering matrix formalism. By finding an equation for the refiection of the lattice,
Shapiro found the existence of a continuous MIT and a value for the conductivity exponent
of ¢ = 1, using an analytic approach.

Most recently, Chalker and Siak [17] studied the Anderson Hamiltonian on a Bethe
lattice. They found, as expected, a transition between extended eigenstates at weak scattering
and exponentially localized eigenstates at strong scattering. However, they also emphasized
that on a Bethe lattice three phases and two transitions exist; the less obvious transition
being from a power-law-decaying wavefunction to an exponentially decaying wavefunction,
but with both wavefunctions giving rise to conduction. This is due, principally, to the
strange geometry of the Bethe lattice, which makes the conditions for normalization of the
wavefunctions different from that on a2 ‘normal’ lattice.

In all these references, it is a criterion for localization which has been sought, hence
the search for critical disorders or energy. Also, in two of the references the exponents
were determined, the nature of the Bethe lattice making these calculations tractable. In this
paper we extend the work of these authors: we study the Bethe lattice numerically for the
existence of a transition, then we examine the behaviour of the conductance distribution
around this critical point.
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2. The model

Consider some initial distribution of random one-dimensional wires. These wires can be
completely described by their scattering matrix 8, figure 2. The amplitudes of the input
and output waves are related by the scattering matrix in the following way:

(¢)-5(5) ®

where
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and |r[, |¢| are the reflection and transmission amplitudes respectively and 6, 6, are the
reflection and transmission phases. This scattering matrix describes a one-dimensional wire
in the absence of a magnetic field and with no spin—orbit coupling.

Figare 2. The input and output amplitudes from a one-dimensional disordered wire, which are
related by the scattering matrix.

Now, to construct a Bethe lattice of connectivity K, we randomly select K wires from
the distribution. These K wires must then be joined at a single node. In order to perform
this operation, we attach these X wires to an infinitesimally small piece of perfect wire; that
is, a piece of wire which is perfectly transmitting. Stage 1 of figure 3 shows this procedure.
In a previous paper {1], we explained the conditions which must be satisfied at a node where
several one-dimensional wires are joined. Namely, the amplitude of the waves on each of
the wires must be the same at the node and the sum of the first derivatives must be zero
(taking care of the direction) at that node.

A wave on the ith wire, starting at the node and moving along the wire, will have an
amplitude

¥ =Ai(1+1) 3
at the node, because the amplitude of the reverse travelling part of the wave is given by the

product of the forward-travelling amplitude A; and the reflection coefficient r; of the wire.
The amplitude of the wave on the perfect infinitesimally small wire will be

Y = Agn(1+r") @

where r’ is the new reflection of the junction. Thus the condition of equal amplitudes gives

Y1=Yr=...=Ygn (5)
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Stage 1

Stage 2

Stage 3

Figure 3. The first three stages needed to form a Bethe lattice with connectivity K = 2. stage
1 of the recursive procedure is to join two random wires to an infinitesimally small piece of
perfect wire. At stage 2, another random wire is aftached to the junction formed by stage 1.
Stage 3 shows the new system with reflection r from the end.

or
A+ =0+r) =...= Aga(1+1). (6)
The current-conservation (first-derivative sum) condition gives
Al —r)+A2(1—r)+... = Ag (1 — 1) )
noting that the direction of the derivative has been reversed for the wave on the infinitesimal
wire. Again, using the same arguments as in [1], the value of the wavenumber is assumed

to be the same for all waves at the node. The above equation can be written more succinctly
as

K
Aga(l=r)y=) All—n). ®)
i=1
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Dividing the LHS of this equation by the amplitude of the (X + 1)th wave at the node
gives

(1—r _ 1 . .
G5 = dena s 2 0= @

But, from the amplitude condition (6),
A1+ =A(1+r) Yi e (1, K). (10)

Therefore

(-ry _&Hd-m
(1+r’)_§(l+r¢)' i

The reflection from the junction, formed by joining X wires together, is

”=(1 ZSJ“))/( Z(1+r,) (12)

In order to go from stage 2 to stage 3 of figure 3, another one-dimensional wire must
be attached to the newly formed junction. The new reflection from this object, r, will
involve two terms: a simple reflection from the end of the one-dimensional wire and
a multiple-scattering term due to reflections from the opposite end of the wire and the
junction. Including both these terms gives an expression for the reflection r of the system
shown in stage 3 of figure 3 of

=]
=1y +tyr't, Z Y (13)
n=0

and since |r} | and |7] must be less than unity,

tar'ty

r=rq+ (14)

1—rir
where #, is the transmission coefficient of wire 3, ry, and ), are the reflection coefficients
from the left- and right-hand side of wire 3 respectively and r’ is the reflection of the
junction, equation (§2). Thus, we have determined the reflection from the end of a Bethe
lattice of size one shell.

However, examination of the procedure just detailed shows that it can be repeated using
Bethe lattice sections of arbitrary shell number and a single one-dimensional wire, since it is
only required to know the reflection from the end of the objects being joined. Therefore, it is
clear that stages 1, 2 and 3 of figure 3 show an exact recursive procedure for generating very
large Bethe lattices. The procedure is successful for the Bethe lattice, since any arbitrarily
sized Bethe lattice section can be characterized by the reflection from its end (or centre)
and can therefore replace the one-dimensional wires with reflections r) and r; in stage 1 of
figure 3.

So we can calculate the transmission probability (and hence the conductance) of a very
large Bethe lattice by repeatedly using the above recursive procedure {(equations (12) and
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(14)) and then applying the current-conservation condition |¢|> = 1 — ||, where r is the
calculated reflection coefficient for that Bethe lattice. The conductance is then trivially
obtained from the Landauer formula, G = (e2/(2nh))|¢|* [18].

Unfortunately, this procedure proves to be numerically unstable when the reflection
coefficient of the lattice becomes close to unity. Since a reflection coefficient of unity
signals the insulating regime, this means that the instability occurs in the region of the
metal-insulator transition, precisely where we wish to perform our calculations! Therefore,
we need to find an alternative formulation of the recursive procedure which will give us the
transmission probability without relying so explicitly on the reflection probability: notice
that we have to subtract two almost equal numbers which will obviously result in a loss of
accuracy (irrespective of whether » is unstable or not).

Consider again the argument we used for joining K branches together at a single node
by attaching them to a small piece of perfectly transmitting one-dimensional wire (see stage
1 of figure 3). Let each of the branches have reflection r; from the end and a transmission
coefficient #;. Let A; be the amplitude of the wave starting at the end of the branch, nearest
the node, and travelling along it. Then the amplitude of the wave transmitted through the
ith branch is

L A;

Now, let |i} represent the ith branch, through which current is being transmitted. At the
surface of the lattice, the waves do not interfere since they are spatially separated from one
another. Hence the |i) must obey

0 =& (15)

and the total amplitude of all waves, «, transmitted through the joined branches will be just

X
o= ;z,-A,-[i). (16)

If a wave with amplitude Ay, is fed into the junction formed by joining the X branches
to the perfect small wire, then the total transmitted current is just
AP = o) (17)

where [t'|? is the transmission probability of the junction. Therefore,

K 2
lAgatPIEP =D 64l (18)
i=1
or
12 1 4 i 12
"= A;l* 19
1P = e 2 Al (19)

because there is no interference between waves at the surface. Now, equation (10) can be
written in the form

Ay _ 147
Apsl T4

(20
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where r’ is the reflection of the junction. Hence

|z'|2=11+r’[2§ il
11+ r:?

i=1

@21

With this expression, we have determined the transmission probability of the junction formed
by joining K wires together at a single node. But in order for us to form a Bethe lattice,
a one-dimensional wire must be attached to the junction. Let the wire have transmission
coefficient t,, and a reflection from its RHS of r;,. Then the transmission probability through
the Bethe lattice section |¢|2, formed by joining the RHS of the wire to the junction will be

, 11+ & 1P

t]2 =t )
= W B & T e

(22)

This expression can be used recursively, in conjunction with equation (12), to determine the
transmission probability of the Bethe lattice as it grows in size. Notice that we still require
to calculate the reflection from the junction and use it in the expression for the ransmission
probability, However, we have altered its r6le in the calculation of the transmission and thus
hopefully increased the stability of the procedure for calculating the transmission probability.
Also note that we have removed the potentially accuracy-limiting step of subtracting two
almost equal numbers. Extensive numerical tests on both methods indicated to us that this
was indeed the case and for the remainder of this paper, we calculate the transmission
probabilities of the growing Bethe lattice using equations (12) and (22).

3. Algorithm

The equations (12) and (22), which define the exact recursive procedure for calculating the
transmission probabilities of arbitrarily large Bethe lattices, are useful for two reasons: the
equations are simple and therefore ideally suited to numerical computation, and by storing
the relevant variables of a large number of Bethe lattice sections at each step, quantities
such as the transmission probability (and thus the conductance) distribution can be studied.

We set up the numerical simulation of a disordered Bethe lattice as follows: define an
initial array of N disordered one-dimensional wires, forming the distribution of transmission
probabilities. For the surface of the Bethe lattice we need to choose some boundary
conditions. In this case it was convenient for us to choose the surface wires (the initial
distribution} to be perfectly transmitting, so that any particle reaching the surface is lost
from the system. We then selected a connectivity, K, and a disorder value for all the
other wires in the lattice. The disorder within the wires was introduced by assuming that
all the transmission occurs via tunnelling through a single eigenstate in each wire. This
assumption was justified in [1] and allows us to make use of the Azbel distribution [19] for
the transmission amplitude of disordered one-dimensional wires

Ly 1
P(Itl)=f°i-t-i- exp(—L/Lo) < 1] < 1 (23)

the disorder value being defined by the ratio L/Lg (as is normal in these calculations, we
also assume phase randomization across the wires). This expression is very simple and is
thus not wasteful of computing time.
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We can then commence the numerical recursive procedure: select X elements at random
from the initial array and join these together to form a junction with reflection r’ (stage 1
of figure 3). Next select a single one-dimensional wire and attach it to the junction to form
a new, larger, Bethe lattice section with reflection r and transmission ¢ (stages 2 and 3 of
figure 3). Repeat the process N times, to form a new array of larger Bethe lattice sections.
Once this new array has been constructed, discard the array of the previous generation and
begin the entire process again. We can represent this procedure in the form of a flow chart,
figure 4.

(Crealc the initial dislribmion)

Sclect K elements from
distribution
]

}oin them together to ¥ 3
form junction

1
Connect 2 1-dimensional
wirc to junction

|
A Calculate the reflection
and wansmission
of new object
|

Replace old distribution

Swore the reflection
and transmisston in
new distribution

Arc there N
clements in
new
distribution?

Is the Bethe
lattice
sufficiently
big?

Figure 4. The algorithm used for carrying out the recursive calculation of the transmission
probability distribotion of a Bethe lattice.
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4, Results and analysis

4.1. Behaviour of T with system size and disorder

We ran the simulations with array sizes of N = 16384 elements forming the distributions.
For various disorder values, we calculated three different means: namely, the arithmetic
mean log(T}, the geometric mean (log7}) and the harmonic mean —log(T~!), where
T = |t]%. In all cases we used a connectivity value of K = 2.

Figure 5 shows the behaviour of these guantities with increasing shell number, for three
typical cases which we found. For all disorder values up to around 1.70, the means rapidly
converge to some constant value, see figure 5(a). Above this value, the lines are noticeably
more noisy and take longer to converge to a constant value, However, above a disorder
value of 1.80 the means no longer converge to some constant value: the transmission
probability decreases with increasing system size, figure 5(b). Quite clearly the lattice is in
an insulating state, since the transmission probability extrapolates to zero at infinite shell
number.

So, from the behaviour in these two regimes we predict that an Anderson metal-insulator
transition must oceur at a disorder value somewhere between 1.70 and 1.80. Figure 5(c)
shows the typical behaviour of the means in this critical region; the data are extremely
noisy. In particular, from disorders of 1.71 to 1.76 the transmissive behaviour is peculiar;
it does not seem to settle into any regular type of behaviour. Nevertheless, for disorders
below 1.76 we removed data for small shell numbers (where we knew the lattices had yet to
reach their stable states) and used linear regression to fit straight lines through the remainder
of the points. Using the intercept of the log T" as an estimate of the average transmission
probability, we plotted the graph shown in figure 6. According to MacKinnon [20], plotting
the logarithm of each of the three calculated means against disorder should show that these
quantities diverge from each other as the transition is approached from the metallic side.
Figure 6 shows that this is indeed the case for our model. Near the transition the data points
have large error bars, but we have not included these on the graph since the general trend
of the curves is sufficient to emphasize the important behaviour.

4.2. The localization length

For high disorder we find that the transmission probability decreases with increasing shell
number, figure 5(b). Clearly, in this regime a relationship of the form

logT x —Cn (24)

where C is a constant, n is the shell number and log T represents the appropriate mean.
Now, we know that n represents a length scale on the Bethe lattice since it is the distance
covered in travelling from the centre to any point on the lattice. Therefore in this regime,
the transmission probability (and hence the conductance) decays exponentially and C must
represent the inverse localization length.

We fitted a straight line through all graphs having the form shown in figure 5, for all
disorders, and calculated the the negative of the inverse localization lengths. We plot these
values against the disorder in figure 7. For low disorder the lattice is conducting and the
localization length must be infinite, hence the inverse localization length must be zero. This
is clearly seen in figure 7. At high disorder, the inverse localization length grows as the
disorder increases in a more or less linear fashion. Between these regimes, the transition
can be clearly identified, occwrring at a disorder value near 1.70.
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Figure 5. The logarithmic behaviour of the transmission for three distinct cases. In (a) the
disorder is weak and the system quickly converges to a constant transmission. For the case
of strong disorder (b), the transmission no longer reaches a constant value, but decreases
exponentially. In graph (c) the data are extremely noisy and the infinite lattice behaviour is
not easy to determine.

Unfortunately, the results of this simulation do not allow us to calculate a critical
exponent for the transition. In a recent paper MacKinnon [5] confirmed that in order to
obtain an accurate result for the exponent, it is essential that data must be taken very close
to the transition point. The data obtained from our simulation are too noisy in this region,
making any calculation of the exponent meaningless because of the large error which would
be involved.
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Figure 7. The inverse localization length is plotted
against disorder, showing a transition to localized states
at a disorder around 1.70-1.75.

they diverge frotn one another in the transition region.

There is no evidence in our simulation of a second transition, occurring between power-
law and exponentially decaying states as predicied by Chalker and Siak [17]. However,
this is due to the definition of our model: we make no distinction between the character of
the states which carry the current. The precise form of the states which carry the current
{which were shown to undergo a transition from power law to exponentially decaying by
Chalker and Siak) are not of interest in this particular model. However, it is possible that
this second transition does show up in our model through a change in the statistics of the
conductance. However, the inevitable fluctvations near the metal-insulator transition are
probably sufficient to mask this second transition, as is clear in the next section.

4.3. The conductance distribution

We now know from our analysis that the transition from metal to insulator in our model
occurs at a disorder value near 1.70. This is the region where we want to study the
conductance distribution in detail. However, it is useful to examine the distribution in
the strong- and weak-disorder regimes also. In figure 8(a) we show the evolution of the
distribution of log T with shell number for a disorder value of 1.30. The distributions were
obtained by generating a histogram from the 16 384 array elements. The distribution maps
onto itself as the lattice size increases,

In figure 8(b) the evolution of the log T distribution is shown for high disorder., In
this regime, the distributions maintain their Gaussian shape as the shell number increases,
but the entire distribution steadily shifts to smaller and smaller values of the transmission
probability.

The behaviour of the distribution in the transition region is shown in figure 9. For
disorder values from 1.71 to 1.74, the distributions for each shell number are only marginally
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Figure 8. The behaviour of the logT distributions with shell oumber for strong and weak
disorder. In (a) the disorder is weak and the distribution maps onto itself as the lattice size
increases. In {b), however, the disorder is strong and the Gaussian distribution shifts with shell
number to smaller and smaller values of transmission, while maintaining its shape.

shifted from one another and they are not shifted in any regular way. For example, the
disorder value 1.72 shows most clearly that the distributions are slightly shifted from one
another, but this shift is not systematic: the distribution for lattice size 600 shells is to the
right of the distribution for 500 shells and the distribution for 400 shells is located closest
to the origin. That is, they are shifted randomly (probably due to numerical fluctuations).
But for disorder values above 1.75 the distributions begin to systematically shift to smaller
values of transmission {corresponding to an increase in the lattice size, in contrast to the
distributions for disorder 1.72) indicating that the transition has occurred somewhere between
disorder values 1.74 and 1.75.

The most interesting feature of the distributions in this region is the form of their tails.
There is little doubt that the tail on the RHS of the distributions (towards the origin) is longer
than the tail on the LHS. This indicates that there exists a small, but significant, number of
branches with transmission probability close to T ~ 1.

5. Discussion

Careful study of the distributions in the transition region indicates to us that the onset of
insulating behaviour is signalled by the failure of the RHS tail of the log T distribution to
reach the origin. Consider again figure 9. At disorder value 1.77, the tail of the distribution
never reaches the origin and the distribution gradually shifts to the left as its size increases.
However, for disorder value 1.74 the tail always reaches the origin and the distribution
remains stationary with shell number.

Cohen et al [11] predict that distributions near the transition should be very broad. A
numerical calculation of the resistance p of three-dimensional samples at the mobility edge
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obtained a distribution of log p with a large tail towards high p. Marko§ and Kramer [12]
also calculated the log G distribution for small three-dimensional samples. They did not
detect the long tail predicted by Cohen et al, but they were constrained by computational
limitations and could not test large sample sizes. Our distributions do not exhibit tails as
large as those predicted by Cohen et af; in fact the tails we find are much smaller. However,
it is known that their method of calculation severely overestimates fluctuations, while our
method is exact. But neither do we find distributions of the form found by Marko$ and
Kramer. Their distributions, in fact, resemble the distributions we find at weak disorder.

We must urge some caution on our results though. Both these other numerical studies
were performed on ‘real’ three-dimensional lattices. Also, we know that our model does
not reproduce certain features that we might expect to find in real lattices: namely, in the
metallic regime of three-dimensional samples, the conductance distribution (as opposed to
the logarithm of the conductance) should be Gaussian [12]. When we plot the conductance
distribution we see only a peak around zero with a long tail towards high values. Changing
the disorder merely changes the size of the peak and tail. Also, for one-dimensional systems
the variance of the log G distributions is known to scale linearly with the mean for moderate
disorder [7, 10, 21]. This behaviour is expected to hold in higher dimensions, but we see
no evidence of it. In particular, 5(b) clearly shows that the variance remains constant no
matter what value the mean takes.

6. Conclusion

We have studied the metal-insulator transition in detail on a Bethe lattice. In the transition
region we found that the log T distributions were of Gaussian form, but had a long tail
towards high values of transmission, For the Bethe lattice, the onset of localization seems
to be signatled by a failure of this tail to reach the origin of log T. Once the insulating
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regime was reached, we found that the distributions maintained their Gaunssian shapes with a
long tail towards high 7. Also, in this regime the distributions were found to move towards
smaller values of T as the lattice was increased in size.

We have also shown that the distributions do not follow the predictions for regular
lattices in the metallic regime and for moderately strong disorder.
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