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J. B. Pendry and A. MacKinnon

The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 2 April 1992)

The current generation of photon scattering experiments requires a fast, accurate, general technique
for calculation of transmission coefficients and of photonic band structure. A new methodology, which
has significant advantages of speed and convenience, enables the band structure and, for the first time,
transmission coefficients of complex dielectric materials to be calculated. Excellent agreement with ex-

periment is found.

PACS numbers: 41.20.Jb, 71.25.Cx, 84.90.+a

The formation of allowed and forbidden bands of fre-
quency is a phenomenon common to all wavelike distur-
bances in periodic media. Only the case of electrons in
crystalline solids has been extensively studied, but recent-
ly Yablonovitch and co-workers [1,2] have published a
striking analogy between the electron band gap in an in-
sulator and a gap in the photon spectrum of a periodic
dielectric. These experiments are strongly motivated by
theoretical considerations, so there is an urgent need to
set photonic band theory on the same firm basis as elec-
tron band structure. A few pioneering papers have al-
ready appeared [2~5] and conclude that photons consti-
tute a nontrivial extension of the electron case: The vec-
tor nature of the field, particularly the need to exclude
the unphysical longitudinal modes, needs to be addressed
carefully. The theories developed in [2-5]1 have been
highly successful in accounting for Yablonovitch’s data,
but there remain important gaps in our computational ca-
pability and it is these which we address in this Letter:

(i) A wave of fixed frequency @ incident on a periodic
dielectric in principle excites all bands at that frequency.
Current methodologies calculate  given a real k, and the
search for complex k is nontrivial. What is required is
the photon equivalent of the on-shell scattering method-
ologies employed in low-energy electron diffraction theory
to calculate all the bands k(w), real and complex [6].

(ii) For highly complex structures such as disordered
systems, or periodic structures containing a single defect
or “dopant” (see [2]), Fourier methods are extremely
time consuming. In contrast, on-shell methodologies ex-
pand the wave field over a surface, not a volume, and
hence give a more compact description, and a much more
efficient calculation. All calculations of electron reflec~
tion and transmission coefficients are made by on-shell
methods of one sort or another.

(iii) The current theories all work in Fourier space, and
require a well-defined Fourier expansion of the dielectric
constant &(r). For metallic systems at microwave fre-
quencies, £(r) takes on very large imaginary values and
Fourier methods become impractical.

Further impetus is added by the desire to exploit the
electron-photon analogy to study disordered systems [7].
Several experiments have been made on the interaction of
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photons with strongly disordered dielectric media. In the
optical backscattering experiments [8,9], photons moving
in a disordered medium show the same backscattering
peak as predicted for electrons by the maximally crossed
diagrams, while Genack and Garcia [10] have used mi-
crowaves as a powerful probe of localization effects in
disordered media.

In this Letter we seek to establish the computational
framework within which photonic phenomena can be
studied with the same facility now available for electrons.
Our method is in essence a finite-element method in
which space is divided into a set of small cells with cou-
pling between neighboring cells. For most materials ¢
can be treated as diagonal in real space and hence com-
plex structures can readily be incorporated into this
methodology, even those including regions where g=oo,

The choice of lattice and of coupling elements is crucial
to the stability of the method. Excellent stability can be
achieved provided certain requirements are met. In the
electron case this amounts to requiring that, as the cell
size tends to zero, all low-frequency modes converge to
the continuum limit. Of course the modes at higher fre-
quencies may still be in serious error, but they pose no
problems provided that the system is never subjected to
these high frequencies. Some choices of cell do not have
this property and are plagued by low-frequency “ghosts.”
In the electromagnetic case we are presénted with a par-
ticular problem in this respect: The longitudinal solutions
of Maxwell’s equations can be regarded as a set of zero-
frequency modes with no dispersion; at finite frequencies
they are present in principle but only as waves decaying
infinitely rapidly. Finite-element models in which the
longitudinal modes are only approximately zero will inev-
itably confuse longitudinal with low-frequency transverse
modes— just the ones we should be calculating most ac-
curately. Therefore a requirement of our model is that it
must contain a set of modes which at all cell sizes have
zero frequency and are nondispersing, and which in the
limit of small cell size converge to the longitudinal modes.

We start from Maxwell’s equations,

VXE=—0B/o:, (1)
VxH=8D/dt, 2
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and assume that

B=uoH; 3
hence,
VXVXE = —p1092D/0t 2=5(r)c ~20%E/81?
=—V2E+V(V-E). @

Transforming to (k,®) space,

(k-k)E() —klk-E(k)] =0 -2§, ek, KDEK). (5)

Note the outer product in the second term

{kik- E(k)] =(k®k)-E(k)} on the left-hand side: Its
function is to ensure that the longitudinal modes have
zero frequency. Any mode that is polarized perpendicu-

- lar to k obeys the normal Laplacian equation. The stra-

tegy we employ is to discretize this equation, approximat-
ing k-k and k®k by sines and cosines. By retaining the
form of an outer product we ensure that one of the three
modes is always of zero frequency and therefore plays no
part in transport. On transforming back into real space,

_ expressions like exp(ikya) give rise to terms coupling to

‘some neighbor. The lattice structure is defined by the
choice of approximation, as is the occurrence of first,
second, etc., nearest neighbors. Approximate (5) by

a "ZZJ‘,([lexp(ikxa) — 112+ |exp(ik,a) — 1|2+ |exp(ik,a) — 1|%16;; — {lexp(ik;a) — 11lexp(—ik;a) — 11})E;

On transforming back into real space we get 3% 3 blocks |

of elements relating to sites on a simple ‘cubic lattice, ex-

tending to next-nearest-neighbor interactions. However,

it is advantageous to stay with a set of coupled first-order
equations for the E and H fields when it comes to a nu-
merical implementation of the formulas. Transforming
(1) and (2) into (w,k) space, we have

=0l ‘2§ ek ,KDE; k). (6)

ky = (ia) ~'lexplika) — 1], etc., )
and in (8),

ky =~ (—ia) " Vlexp(—ikya) — 1], etc. (10)

Transforming back into real space gives a set of equations

kXE=+oB (7)  from which the z components of the vectors can be elim-
’ inated, and the substitution
kxH=—wD. ®)
In (7) we approximate, H'=+(i/awe)H (11)
_ made, to give
a’w?® .
E.(r+c)= +—2—u(r)Hy(r)+Ex(r)
c
+&~U(r)[H)(r—a) — Hy (1) — Hi(r —b) + Hx(r)]
— ¢ 1(r+a)[H,(r) —H;(t+a) —Hy(r+a—b)+Hi(r+a)], (12)
2,2 .
E (t+c) = — L p(@)Hy (D) +E, (r)
ol
+&" ) [Hy(r—a) —Hy(r) —Hy(r—b) + H:(r)]
—e~ e +b)H)(r—a+b) — H)(r+b) — Hi(t) + Hi (e +b)], (13)
Hi(r+c) =¢elr+c)E, (r+c)+Hi(r) 7
) u _‘(r?a-Fc)ny(r+c) —Ey(r—a+c)—Exr—a+tbtc)+E,(r—a+c)l
+a—§"—2—y “U(e+c)IE, (r+a+c) —E, (r+c) — E (r+b+c) +Ex(r+0)], (14)
® T
Hy(r+c)=—srtc)E;(r+c)+ Hy(r)
2
- g -1 'r=b+c)[E,(r+a—b+c) —E,(r—b+c) —E,(r+c)+E,(r—b+c)]
a’w ’
2
+—S—p 1+ 0)E, (r+a+c) =By (r+e) —Ex(r+b+e) +Ex(r+o)l.
a’w

as
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The simple cubic mesh on which we define the fields is
defined by vectors a,b,c, of length @ which point in the
x,y,z directions, respectively. The first two equations
(12) and (13) express the E field on the next plane of
cells in terms of the E and H fields on the previous plane.
The second pair of equations (14) and (15) express the H
fields on the next plane of cells in terms of the E on the
same plane, and the H fields on the previous plane. Thus,
given the x,y components of the E and H fields on one
side of a dielectric structure, we can integrate through the
structure to find the x,y components of the E and H
fields on the other side. Incidentally, if we wish, we can
also use subsidiary equations to calculate the z com-
ponents too. The matrix relating fields on one side of a
structure to those on the other is by definition the
transfer matrix. Where the structure is the unit cell of a
periodic array, the eigenvalues of the transfer matrix give
the band structure of the system [6,11-13]. Using this
transfer matrix gives our calculations some distinct ad-
vantages: For a dielectric structure containing L XL XL
cells the dimensions of the transfer matrix are 4L 2, giving
the compact representation we expect of an on-shell
method. Current methods would need to diagonalize a
matrix of dimensions 2L %; thus our method has an advan-
tage in speed of (2L3)3/(4L?)3=L3/8, or a factor more
than 102 when L=10.

There is an elegant reformulation of these equations
that gives considerable geometric insight into the prob-
lem. Consider two interpenetrating simple cubic lattices
such that the two lattices together constitute a bee lattice.
The first lattice we associate with the electric field E, and
the second with the magnetic field B. The x,y,z com-
ponents of the E field are each associated with the bonds
leaving the lattice sites in the +x,+y,+z directions,
with a similar decomposition for the B field. Equations
(1) and (2) can be reexpressed in integral form via the
Stokes theorem:

JE-ar=— [ @B/or)-as, (16)

Ju-a=+ [ @p/ar)-as. (17)
Observe that each bond carrying a component of B
threads through a square of bonds carrying the E field,
and we apply the first equation to this circuit. In an ex-
actly complementary fashion we can relate D to H using
the second of these equations. This procedure can easily
be shown to give the same dispersion relations as our first
algebraic derivation. With appropriate choice of parame-
ters the mesh can easily be topologically distorted to vary
the density of sampling points.

Advancing the E and H fields through a single slice in-
volves multiplication by a sparse matrix. Thus we can

iterate Eqs. (12)-(15) very efficiently to calculate the

transmission coefficient directly [14], or to give the band
structure k(w) by diagonalizing the transfer matrix.
We have made calculations for a periodic array of
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dielectric cylinders, diameter 0.74 mm, £=8.9, and ar-
ranged in a square lattice with spacing a=1.87 mm.
These parameters were chosen because there are experi-
mental measurements of transmission coefficients and
band structure available made using the coherent mi-
crowave transient spectroscopy (COMITS) technique
[15]. For our calculations the unit cell of the system was
divided into a 10X 10X 1 mesh: For each cell an average
was taken over the dielectric constant within that cell.
The transfer matrix was found by multiplying the ma-
trices for each of the ten slices. Its eigenvalues give
k;(w,kx,ky). For the transmission coefficient a similar
division of the cell was made, but multiplying transfer
matrices for the seven layers of unit cells would have led
to numerical instability, so, instead, multiplication was
halted after integrating through one unit cell at which
point the transmission and reflection coefficients were cal-
culated for a slab one cell thick. Slabs were then stacked
together using the multiple scattering formula familiar in
the theory of low-energy electron diffraction [6]. Conver-
gence was tested by repeating the calculation for a
20x20x%1 mesh: Changes of the order of 1% at 80 GHz
were found in the band structure.

Our method proved numerically stable: Current con-
servation was obeyed to at least five decimal places (as
many as were printed out) and was fast enough that the
bands could easily be calculated on a personal computer.
Moving the codes to our RISC workstations provides us
with an extremely powerful desktop vehicle for investiga-
tion of photonic band structure.

Figure 1 shows the band structure. The frequency of
bands scales linearly with system size, so corresponding
structures fabricated on a micron scale would give band
gaps in the optical region of the spectrum. Data from
[15] are shown as black dots and agree with calculations
to within experimental resolution of 5 GHz. Note the
radical distortion of the dispersion relations, particularly
near the band edges where the group velocity vanishes, all
of which is in agreement with experiment. Bands more
narrow than 5 GHz are not resolved experimentally.

Figure 1 also shows for the first time a calculated
transmission coefficient: For the dielectric array de-
scribed above, truncated at a thickness of seven rows of
cylinders, propagation is in the (10) direction. Polariza-
tion is conserved by symmetry and scattering is strongest
when E is parallel to the cylinders as evidenced by the
large band gap observed in Fig. 1(b) around 60 GHz.
Note the much reduced transmission coefficient around
this frequency. In the band gap waves are exponentially
attenuated in the periodic structure. A smaller feature at
around 100 GHz is also seen. The much smaller band
gaps in Fig. 1(a) around 70 and 110 GHz produce simi-
lar minima. Notice the oscillatory structure on the
“theoretical curves: These are Fabry-Pérot resonances
caused by waves multiply scattering between entry and
exit surfaces of the periodic dielectric. They are not
resolved in the experiment: The pulse of microwaves was
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FIG. 1. Left: dispersion relation for propagation of elec-
tromagnetic waves along the (10) direction of a 2D array of
dielectric cylinders. (a) E perpendicular to the cylinders; (b) E
parallel to the cylinders. The experimental results are shown as
black dots and have a resolution of 5 GHz. Note that very nar-

row bands are not resolved experimentally. Right: transmitted

power for an array of seven rows of dielectric cylinders. The
dotted curve shows the instrument response in the absence of
the cylinders. (a) E perpendicular to the cylinders; (b) E paral-
lel to the cylinders.

deliberately gated to exclude multiply scattered signals.
Nevertheless, the spacing of this oscillatory structure in
frequency gives an alternative way of estimating the
dispersion of the bands from an experiment measuring in-
tensities alone.

Agreement with experiment is most satisfying and
gives us confidence that our method is capable of accu-
rately reproducing experiments.

In conclusion, we have presented a new formalism for

~ calculating the scattering of photons by complex dielec-
tric structures which opens the field for simulations of all
manner of systems, from photonic band structure of ma-
terials containing metallic elements, to calculation of
transmission coefficients of arbitrary structures, to simu-
. lation of the properties of disordered dielectrics. The
niethod successfully addresses the problems of eliminat-
_.ing the longitudinal modes, of numerical stability, and of
speed of computation, in a formulation ideally suited to
calculation of transmission coefficients. We have present-
ed theoretical transmission coefficients, the first to be cal-
culated, and successfully compared them to experiment.
~ We thank G. Arjavalingam for a very helpful discus-
_sion of his results.
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