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We have developed methods to calculate dispersion curves~analytically, in the simpler cases! from which we
are able to derive the spatial distribution of electron and current densities. We investigate the case where the
magnetic field varies linearly with position and the results provide useful insights into the properties of this and
other field distributions. We consider a spin as well as a confining electrostatic potential. We show that the
electron and the current density exhibit a very rich structure related to the quantization of the energy. Moreover,
there is a direct contribution to the current density due to the spin, which could be of interest in relation to the
spin-polarized current.

I. INTRODUCTION

A two-dimensional electron gas~2DEG! in a magnetic
field has proved to be an extremely rich subject for theoreti-
cal and experimental investigation.1 For example, consider-
able effort has been devoted to the study of the integral and
fractional quantum Hall effects (I and FQHE!, transport
properties, and edge states.2 Except in a few cases,3–5 how-
ever, the magnetic field considered was homogeneous. In this
paper, we address the problem of a magnetic field varying
linearly with the position added to an underlying homoge-
neous field. This is of relevance, because in real systems~a!
a constant magnetic field is not always attainable, and~b! an
inhomogeneous field may be desired, and produced, for ex-
ample, by means of magnetic gates~gates of superconduct-
ing or ferromagnetic materials!. Another interesting point is
that in the composite fermion~CF! theory,6,7 which is used to
describe the FQHE, the electron-electron interaction, neces-
sary for the appearance of the FQHE, is incorporated into an
effective magnetic field via a singular gauge transformation.
The result is a system of noninteracting quasiparticles carry-
ing a fictitious magnetic flux in an inhomogeneous effective
magnetic field. It must be stressed that in the CF case, the
effective magnetic field is a function of the local electron
density and should be calculated self-consistently, in contrast
to the case that we consider in this paper. Nevertheless, a
better understanding of the properties of a simple noninter-
acting electron gas in an inhomogeneous field might bring
useful insights into CF theory.

II. MODEL

To investigate the electronic properties of a noninteracting
electron gas in a linearly varying magnetic field, we consider
the following Hamiltonian:

H5
1

2m*
~p2eA!22

g* e
2me

SB1Vc , ~1!

where A5( 12B1y
21B0y,0,0), B52(0,0,B1y1B0), the

confining potential due to the walls Vc(y)
5b$exp@a/ye(y2ye)#1exp@2a/ye(y1ye)#%, ye is the position

of the edge of the system,S is the spin operator. The param-
etersa and b allow the shape of the potential to change
continuously from very sharp to very smooth, which can
modify the properties of the system.7,8 By solving

S 1

2m*
~p2eA!22

g* e
2me

SB1VcDx~x,y!5Ex~x,y!, ~2!

we can obtain the electron density

r~x,y!5 (
states

x* ~x,y!x~x,y!, ~3!

where we sum over all states with energyE<EF , and the
current density for a staten,9

j ~n!~x,y!5
e

m*
Re@xn* ~x,y!~p2eA!xn~x,y!#1

g* e
2me

¹

3@xn* ~x,y!Sxn~x,y!#. ~4!

As a result of our choice ofA andB, the symmetry of the
Hamiltonian allows us to write the wave function as
x(x,y)5eikxxc(y), wherekx is a good quantum number, and
we then obtain the one-dimensional Schro¨dinger equation:

F py
2

2m*
1

1

2m*
~\kx2eAx!

22
g* e\s

2me
Bz1VcGc~y!5Ec~y!,

~5!

with s560.5. Equation~5! then enables us to derive the
dispersion curvesEn(kx), and to rewrite the electron density
as

r~y!5(
n

(
kx

cn* ~y!cn~y!, ~6!

and the current density for one staten and a fixedkx as
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j x
~n!~y!5

e

m*
@cn* ~y!~\kx2eAx!cn~y!#

1
g* e\s

2me

]@cn* ~y!cn~y!#

]y
, ~7!

both now solely functions ofy. Due to the symmetry of the
system, there is a current density only along thex axis. In-
tegrating overy will give the total currentI x

n carried, for a
fixed kx by the staten and summing overn andkx the total
currentI x .

III. METHOD

Starting from Eq.~5!, the Hamiltonian can be written as

F py
2

2m*
1
m*v1

2

8
y41

m*v1v0

2
y31Sm*v0

2

2
2

\kxv1

2 D y2
1S e\sB1

me
2\kxv0D y1S g* e\sB0

2me
1

\2kx
2

2m* D
1Vc~y!Gc~y!5Ec~y!, ~8!

with v05eB0 /m* andv15eB1 /m* . For what follows, it is
useful to introduce the dimensionless variable
ŷ5(\21m*v1)

1/3y and p̂5(m*v1\
2)21/3p, which yields

for ~8!,

S pŷ
2

2m8
1aŷ41bŷ31cŷ21dŷ1e1Vc~ ŷ! Dc~ ŷ!5Ec~ ŷ!,

~9!

with m85m* /(m*v1\
2)2/3 and a,b,c,d,e now given in

units of energy. Although in some simplified cases it is pos-
sible to obtain analytical results, as we will see below, there
is, in general, no way to find the analytical solution of Eq.
~9!, and, therefore, we have to resort to numerical calcula-
tions. Equation~9! can be solved by expandingc( ŷ) in
terms of oscillator functions,fn( ŷ)5Hn( ŷ)e

2 ŷ2/2, where
Hn is a Hermite polynomial, and then by numerically diago-
nalizing the corresponding secular equation,

DetuHkn2Edknu50. ~10!

Using the properties of the Hermite polynomials, all of the
matrix elementŝ fkuHufn& can be calculated analytically
~Appendix!, which greatly improves the diagonalization
method. However, before starting with the numerical calcu-
lations, we can try an analytical approach to Eq.~8! in the
simplified case whereB050 andVc50. We then have

FIG. 1. Dispersion curves obtained analytically compared with
numerical results.Vc50, B151 G/Å, andB050. The curves plot-
ted correspond to the levelsn50,1,10,11.

FIG. 2. Dispersion curves withVcÞ0, B151 G/Å, and
B050.53104 G. FIG. 3. Fermi energy, as a function of the magnetic fieldB.
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2

2m*
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4 \2 y
42

eB1
\

kxy
2

1
g* eB1m* s

\me
y1kx

2D Gc~y!5Ec~y!. ~11!

We choose two regimes for whichB1Þ0: ~a! kx,0, single
well potential~SWP!, nearB50, and~b! kx.0, double well
potential ~DWP!, near B56B1uA2\kx /eB1u. We expand
parabolically around the minima of the effective potential
and obtain harmonic oscillator equations, which we solve
analytically. The expressions obtained for the energy are

SWP: En5
\2

2m* Fkx21~2n11!AkxeB1
\

2
eB1h

2

\kx
G ,
~12!

DWP: En5
\2

2m* F ~2n11!A2kxeB1
\

2
eB1h

2

2\kx

62hA2kxeB1
\ G , ~13!

whereh5g*m* s/2me . From here it is straightforward to
derive the group velocity (1/\dEn /dkx) for the staten as

SWP: vx5
\

m* Fkx1 eB1h
2

2\kx
2 1~2n11!A eB1

16\kx
G ,

~14!

DWP: vx5
\

m* FeB1h2

4\kx
2 1~2n11!A eB1

8\kx
6hA eB1

2\kx
G .

~15!

IV. RESULTS

In the following calculations, the system we consider cor-
responds to an ideal slab of GaAs/AlxGa12xAs heterostruc-
ture filled with an ideal 2DEG. The effective electron mass is
m*50.067me , the effectiveg factor is g*520.44, the
electron density 431025 Å 22, and the sample has width,
whenVcÞ0, 2ye523104 Å and lengthL@1 with periodic
boundary conditions alongx.

The numerical and the analytical results@Eqs. ~12!,~13!#
for the case whenVc50, B151 G/Å, andB050 are re-
ported in Fig. 1. We can see that the agreement is very good,
except aroundkx50, where the method breaks down. Al-

FIG. 4. Electron densities for different mag-
netic fields. The solid line corresponds to the case
without an external confining potential.

FIG. 5. Electron densityr(y) for B151 G/Å
andB050. The inset shows the number of states,
as a function ofkx . The number of oscillations in
r(y) corresponds to the number of states.
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though it is possible to obtain useful information from ana-
lytical calculations, they do not allow us to derive complete
dispersion curves and hence the electron or current densities.
Moreover, we are interested in taking into account the effects
of a confining potentialVc , but this cannot be included in
our analytical approach. We then have to use a numerical
approach.

So, we start with the same model system configuration as
above, but this time withVcÞ0 andB050.53104 G. We
chosea5100 andb550, which correspond to quite a sharp
confining potential. The dispersion curves are plotted in Fig.
2. The degeneracy of the energy levels is completely re-
moved and the structure appearing in the dispersion curves is
due to the breaking of they symmetry in the Hamiltonian. It
is interesting to note that some similar features were ob-
served in the case of a curved 2DEG in a constant magnetic
field.10 HavingEn andcn , we can now calculatej x

(n)(y) and
r(y), but to do this we need the Fermi energyEF . This can
be obtained by minimizing the total energy with the con-
straint that the number of electronsN is constant withN
given by

N5
1

2p(
n
E
kx1

~n!

kx2
~n!

dkx
~n! , ~16!

where $kxi
(n)% are the parameters we vary to minimize the

energy. As we might expect,EF does not depend onkx but,
in contrast to the assumption in Ref. 3, it is not independent
of the magnetic field. This is shown in Fig. 3, whereEF has
been calculated for various values ofB1 andB0 . This de-
pendence is due, in the absence of external leads, to the
walls, which can be seen by the fact that whenB1 , which in
contrast toB0 removes the degeneracy of the states and gives
rise to an effective confining potential, increases,EF be-
comes independent of the magnetic field.

Using EF , we can now calculate the electron density
r(y). In Fig. 4,r(y) is plotted for different values ofB1 and
B0 . We see that with an external confining potential (Vc
Þ0) r(y) is not constant; it can have quite a rich structure
with local charging effects. Moreover, whenB0Þ0, r(y)
becomes asymmetric iny. It has to be noted that in the case
Vc50 r(y) is constant, the oscillations on the left and right
hand sides of the graphic are only a numerical effect, due to

FIG. 7. Current density for two different mag-
netic fields. — :B151 G/Å, B050; and ••• :
B150.5 G/Å,B0523104 G.

FIG. 6. Same as Fig. 5, but withB150.5 G/Å
andB0523104 G.
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the fact that in this case one should use a larger set offn for
the expansion ofc. But, forVcÞ0, the structure ofr(y) can
be explained in the following way. When the number of
states as a function ofkx is plotted, a discontinuous curve,
due to the quantization of the energy, is obtained. Although
there is no simple relation between thekx space and the real
space, as for a homogeneous magnetic field, the number of
oscillations of the electron density is the same as the number
of steps in the discontinuous curve and then is indeed a con-
sequence of the energy quantization.

This can be seen in Figs. 5 and 6. The next step now is, by
means of Eq.~7!, to calculate the total current density given
by

j x~y!5 (
states

j x
~n!~y!, ~17!

where the sum runs over all the states withE<EF . In Fig. 7
are reported the current densities for different magnetic fields
disregarding first the part due to the spin. One sees that the
shape of the current density is much more subtle than might
be expected from semiclassical approximations. Actually
considering j x

(n)(y) for ukxu@0 or, in other words for the

largestkx close to the Fermi energy, the movement of the
electron can be described by its classical orbits~drifting or-
bits along the edge and snake orbits in the opposite direction
along the line whereB.0). For smallerkx , however, the
states tunneling between the two wells, but mainly the ones
of energy above the central maximum of the double well, are
very important and their contribution cannot be overlooked.
In fact j x

(n)(y), after summing over alln andkx , turns out to
be very small for the case, whereB050 for all y. Different
j x
(n)(y) are reported in Fig. 8. Forkx520.018 Å21,
kx50.08 Å21 andn50 the movement of the electron is well
defined by its classical orbits~edge and snake orbits!. But
aroundkx50 and, for example, heren531, the situation is
more complicated. An interesting point is that now the cur-
rent density for one state can be positiveand negative as a
function of y. Moreover, we see that the positive part is
located iny, where the density of current flows in the other
direction, due to the presence of the snake orbits. The same
kind of phenomena appears with edge orbits. This can be
understood by considering the first term\kx
2 1

2eB1y
22eB0y in Eq. ~7!. It is easy to imagine that when

summing the current density over all the different states, the

FIG. 9. Total density of current~sum over all
states with E<EF) for B150.5 G/Å,
B0523104 G. The density of current~—! oscil-
lates between positive and negative ‘‘channels,’’
as a function of the electron density (•••).

FIG. 8. Current density calculated for a fixed
kx and a fixedn. For kx520.018 Å21 (•••),
kx50.08 Å21 ~-•-!, andn50, the movement of
the electron is well defined by its classical orbits
~edge and snake orbits!. Around kx50, here
kx50.005 Å21 and n531 ~—!, the situation is
more complicated. The density of current can be
positiveandnegative, as a function ofy.
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result is rather different from what we might expect from the
consideration of the simple classical picture of the orbits. It
has to be noted that although the current density can be posi-
tive and negative as a function ofy, the group velocity
vg5*dy jx

(n)(y) has a well defined sign and has been verified
from the dispersion curves by means of the relation
vg51/\dEn /dkx . In order to get a better understanding of
the shape of the current density, we have plotted together the
electron and the current densities in Figs. 9 and 10. The
density of current oscillates between positive and negative
‘‘channels,’’ as a function of the electron density, and then is
a reflection of the quantization of the energy. It is interesting
to note that in the study of the FQHE, there is also the ap-
pearance of channels, which can be seen there as alternating
strips of compressible and incompressible fluid.8,11 When
B0Þ0, the current density increases withB0 and flows in
opposite directions on both sides of the sample whenB0 is
large enough compared toB1 , or in other words, whenB0 is
large enough to overcome the effective confining potential
due toB1 , so that the electrons are confined by the external
confining potentialVc . Moreover, the current density be-
comes asymmetric.

Until now only the first term in Eq.~7! has been consid-
ered, but there is a second term containing the derivative of
the electron density and which is directly related to the pres-
ence of the spin for the electron. Because, as we have seen
above, the electron density displays a very rich structure, one
can expect some contribution to the current density, due to
the spin of the electron. This is shown in Figs. 11 and 12.
Although the part due to the spin is smaller than the first
term in Eq.~7!, it is nevertheless noticeable. This could im-
ply some interesting phenomena in relation to spin-polarized
currents. The problem is that the ‘‘channels’’ are more or less
at the same position for spin up or down, which makes it
quite difficult to distinguish between both spin directions. On
the other hand, many parameters can be varied, such as the
magnetic field, the width of the system, or the external con-
fining potential, which may allow us to find a suitable system
configuration for the production of polarized currents.

Finally, it has to be stressed that all the discussion above
concerned the current density. Although this quantity is non-
zero and has a rich structure, it does not imply that the net
currentI x5(kx

* j x(y)dy is nonzero. In fact, as our calcula-

FIG. 11. Contribution due to the spin to the
current density. The dotted line is the other con-
tribution in Eq. ~7! to the current density.
B150.5 G/Å,B0523104 G.

FIG. 10. Same as Fig. 9, but with
B153G/Å, B0523104 G.
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tion showed,EF is independent ofkx , which means there is
no difference of potential across our system and thus no net
current.

V. CONCLUSIONS

In this work, we have studied the effect of a linear mag-
netic field in a 2DEG. In certain simplified cases, we were
able to carry out some analytical calculations and to derive
the dispersion curvesEn(kx) for quite a large range ofkx
Þ0. These results were found to be in very good agreement
with our numerical results. In the general case with an exter-
nal confining potential, we carried out numerical calcula-
tions. We derived the whole of the dispersion curve and us-
ing it, we calculated the electron and current densities. It is
worthwhile noting that for this calculation, we need to con-
sider the states forkx.0, as well asstates forkx,0 and
kx.0. This point is important and could help in understand-
ing some recent results12 obtained in the framework of CF
theory. For the derivation of the electron and current density,
we first calculated the Fermi energyEF , taking into account
that the number of electrons is constant. It turned out that
althoughEF is independent ofkx it is, however, a function of
the magnetic field. This is due to the external confining po-
tential. The electron and current densities show a very rich
structure, which can be seen as a consequence of the quan-
tization of the energy, although there is no simple relation
between thekx and y space, as is the case for a constant
magnetic field. Moreover, the current density exhibits alter-
nating ‘‘channels’’ of positive and negative current. It would
be interesting too to include interaction between electrons
and to study the effect of the self-consistency on the way the
energy levels cross the Fermi energy. This can give rise to
interesting phenomena, particularly in connection with the
shape of the electron density.8,13 Finally, becauser(y) is not
constant, we have a contribution to the current density, di-
rectly due to the spin of the electron, which could imply
some interesting phenomena in relation to spin polarized cur-
rents.

APPENDIX

Using the properties of the Hermite polynomial, the ma-
trix elements Hkn can be derived in a recursive way.

^fku@(pŷ
2/2m8)1aŷ41bŷ31cŷ21dŷ1e#ufn& gives

n5k:

1

2m8 S 121kD13aFkS 11
~k21!

2 D1
1

4G1cS 121kD1e,

n5k11:

S ~k11!

2
D 1/2S 3b

2
~11k!D ,

n5k12:

S ~k11!~k12!

4
D 1/2S 2

1

2m8
1a~312k!1cD ,

n5k13:

S ~k11!~k12!~k13!

8
D 1/2b,

n5k14:

S ~k11!~k12!~k13!~k14!

16
D 1/2a,

and ^fnuVcufm&, due to the confining potential,
n5k:

2 be2a@12~a/4ye2!#Lk
0S 2

a2

2ye2D ,
n5k1 i :

Fbe2a@12~a/4ye2#S 2i

n~n21!•••~n2 i11! D
1/2S a

2yeD
i

Lk
i

3S 2
a2

2ye2D G@11~21!2k1 i #,

with Ln
n2k the associate Laguerre polynomial.

FIG. 12. Same as Fig. 11 but withB153
G/Å, B0523104 G.
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