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Two-dimensional electron gas in a linearly varying magnetic field:
Quantization of the electron and current density
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(Received 25 August 1995

We have developed methods to calculate dispersion cganedytically, in the simpler casgfom which we
are able to derive the spatial distribution of electron and current densities. We investigate the case where the
magnetic field varies linearly with position and the results provide useful insights into the properties of this and
other field distributions. We consider a spin as well as a confining electrostatic potential. We show that the
electron and the current density exhibit a very rich structure related to the quantization of the energy. Moreover,
there is a direct contribution to the current density due to the spin, which could be of interest in relation to the
spin-polarized current.

. INTRODUCTION of the edge of the systerS,is the spin operator. The param-
etersae and B allow the shape of the potential to change
A two-dimensional electron ga@DEG) in a magnetic  continuously from very sharp to very smooth, which can
field has proved to be an extremely rich subject for theoretimodify the properties of the syste}ﬁ,By solving
cal and experimental investigatiorFor example, consider-
able effort has been devoted to the study of the integral and
fractional quantum Hall effectsl (and FQHE, transport —(p—eA)
properties, and edge stafeExcept in a few cases,” how- 2m
ever, the magnetic field considered was homogeneous. In this
paper, we address the problem of a magnetic field varyingve can obtain the electron density
linearly with the position added to an underlying homoge-
neous field. This is of relevance, because in real systams
a constant magnetic field is not always attainable, @h@n p(XY)= 2 x*(X,y)x(xy), (€)
inhomogeneous field may be desired, and produced, for ex- states
ample, by means of magnetic gatgmtes of superconduct- )
ing or ferromagnetic materialsAnother interesting point is Where we sum over all states with enefgy<Er, and the
that in the composite fermiof€F) theory®” which is used to ~ CUrrent density for a state,
describe the FQHE, the electron-electron interaction, neces-
sary for the appearance of the FQHE, is incorporated into an e
effective magnetic field via a singular gauge transformation. 1" (%,Y)= " Re[ X7 (X,¥)(P—€A) xn(X,y) ]+ oV
The result is a system of noninteracting quasiparticles carry- ©
ing a fictitious magnetic flux in an inhomogeneous effective X[ xn(X,Y)Sxn(X,y)]. 4
magnetic field. It must be stressed that in the CF case, the
effective magnetic field is a function of the local electron As a result of our choice of andB, the symmetry of the
density and should be calculated self-consistently, in contragigmiltonian allows us to write the wave function as
to the case that we consider in this paper. Nevertheless, g, y)=e**y(y), wherek, is a good quantum number, and

better understanding of the properties of a simple noninterwe then obtain the one-dimensional Satinger equation:
acting electron gas in an inhomogeneous field might bring

useful insights into CF theory.
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SB+ V. | x(X,Y)=Ex(x,y), (2)
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ll. MODEL ©)
To investigate the electronic properties of a noninteracting
electron gas in a linearly varying magnetic field, we considemwith s= +0.5. Equation(5) then enables us to derive the
the following Hamiltonian: dispersion curveg&,(k,), and to rewrite the electron density
as
g*e
2mg

1
Hzﬁ(p—eA)z— SB+ V., )

o p(N=2 2 U () ¥alY), )
where A=(3B,y“+Byy,0,0), B=—-(0,0B,y+Bg), the nky

confining potential due to the walls V(y)

= B{exd alyY—Yo) 1 +exd — aly{y+VYo 1} Ve is the position  and the current density for one stateand a fixedk, as
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FIG. 1. Dispersion curves obtained analytically compared with

numerical resultsy,=0, B;=1 G/A, andB,=0. The curves plot-
ted correspond to the levets=0,1,10,11.
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both now solely functions of. Due to the symmetry of the
system, there is a current density only along xhaxis. In-
tegrating overy will give the total current} carried, for a
fixed k, by the staten and summing oven andk, the total
currentl, .

. METHOD

Starting from Eq.(5), the Hamiltonian can be written as
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FIG. 2. Dispersion curves withvV.#0, B;=1 G/A, and
Bo=0.5x10" G.
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+ N _kaX(J)O y+ —zme 2m*

+Vc(y)}z/;(y)=E<//(y), ®

with wy=eBy/m* andw,=eB,;/m*. For what follows, it is
useful to introduce the dimensionless variable
y=(A"'m* w,)Y¥y and p=(m* w,%?) ~3p, which yields
for (8),

2
Dy a9 b et A+ et V) | (D) =Ew(®),

2m
9

with m’=m*/(m* w,%%)?? and a,b,c,d,e now given in
units of energy. Although in some simplified cases it is pos-
sible to obtain analytical results, as we will see below, there
is, in general, no way to find the analytical solution of Eq.
(9), and, therefore, we have to resort to numerical calcula-
tions. Equation(9) can be solved by expanding(y) in

terms of oscillator functions¢n(§/)=Hn(y)e*yz’z, where
H, is a Hermite polynomial, and then by numerically diago-
nalizing the corresponding secular equation,

DetfH ,— E iy = 0. (10)

Using the properties of the Hermite polynomials, all of the
matrix elements(¢,|H|#,) can be calculated analytically
(Appendi®, which greatly improves the diagonalization
method. However, before starting with the numerical calcu-
lations, we can try an analytical approach to E8). in the
simplified case wher8,=0 andV.=0. We then have

FIG. 3. Fermi energy, as a function of the magnetic figld
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pf/ 52 25% , €B Whe_zre n=g* m*s/2me._From here it is straightforward to
S 172 y*— —kxy derive the group velocity (RdE,/dk,) for the staten as
65177 eBl
g*eBm*s SWP: v,=—5| ket +2n+ )\ |,
Ty k2 [y =Euty). 11 e ST 2 T D N gk,
e

(14)

We choose two regimes for whidd,; #0: (a) k<0, single 2 eB,
well potential(SWP), nearB=0, and(b) k,>0, double well DWP:; vx=—{—2—+(2n+ 1) 9\ 5

potential (DWP), near B=*B,|\2%k,/eB,|. We expand m* | 4fk 8ﬁk Zﬁk15
parabolically around the minima of the effective potential (19

and obtain harmonic oscillator equations, which we solve
analytically. The expressions obtained for the energy are

IV. RESULTS

In the following calculations, the system we consider cor-

2 ) keB, eB;7? responds to an ideal slab of GaAs/@a; _,As heterostruc-
SWP: E,= o kit(2n+1) Y ture filled with an ideal 2DEG. The effective electron mass is
x (12 m* =0.06M,, the effectiveg factor is g* =—0.44, the
electron density 410 ° A ~2, and the sample has width,
) 5 whenV, #0, 2y,=2x10"* A and lengthL>1 with periodic
DWP: E _ T (2n+1) 2keeB; eB;7 boundary conditions along.
TN 2m* h 2%k, The numerical and the analytical resuligs. (12),(13)]

for the case wheV,=0, B;=1 G/A, andB,=0 are re-
(13) ported in Fig. 1. We can see that the agreement is very good,
' except aroundk,=0, where the method breaks down. Al-
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Z 3x10f . FIG. 5. Electron densitp(y) for B;=1 G/A
3 g andBy=0. The inset shows the number of states,
g 2 as a function ok, . The number of oscillations in
W 2x10°5F g : p(y) corresponds to the number of states.
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though it is possible to obtain useful information from ana- 1 K2
lytical calculations, they do not allow us to derive complete N= ﬂ; fkuxw dky™”, (16)
dispersion curves and hence the electron or current densities. x1

Moreover, we are interested in taking into account the effects o) I
of a confining potentialV., but this cannot be included in where {k,;’} are the parameters we vary to minimize the

our analytical approach. We then have to use a numericg"€r9Y- As we might expe_cEF_does not _dgpend .Okk but,
approach In contrast to the assumption in Ref. 3, it is not independent

So, we start with the same model system configuration agf the magnetic field. This is shown in Fig. 3, whdtg has
above, but this time with/,#0 andB,=0.5x10° G. We een calculated for various values Bf andB,. This de-

; . pendence is due, in the absence of external leads, to the
chosea =100 andB=50, which correspond to quite a sharp walls, which can be seen by the fact that wiBsn which in

confining potential. The dispersion curves are plotted in Figcontrast taB, removes the degeneracy of the states and gives
2. The degeneracy of the energy levels is completely regge 1o an effective confining potential, increas&s, be-
moved and the structure appearing in the dispersion curves j$mes independent of the magnetic field.

_dug to the_breaking of the symmetry iq the Hamiltonian. It Using Er, we can now calculate the electron density
is interesting to note that some S|m|I_ar features were obp(y). In Fig. 4,p(y) is plotted for different values d; and
served in the case of a curved 2DEG in a constant magnetgol We see that W|th an externa| Confining potentimc(
field.'* Having E,, andy;, , we can now calculati” (y) and  #0) p(y) is not constant; it can have quite a rich structure
p(y), but to do this we need the Fermi eneff§y. This can  with local charging effects. Moreover, wheBy,#0, p(y)

be obtained by minimizing the total energy with the con-becomes asymmetric y It has to be noted that in the case
straint that the number of electrom$ is constant withN V.=0 p(y) is constant, the oscillations on the left and right
given by hand sides of the graphic are only a numerical effect, due to
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\ FIG. 8. Current density calculated for a fixed
s SOOADAAN A . k, and a fixedn. For k,=—0.018 A~% (...),
\/W MW\/ k,=0.08 A~1 (---), andn=0, the movement of
the electron is well defined by its classical orbits
(edge and snake orbjtsAround k,=0, here
k,=0.005 A~! andn=31 (—), the situation is
more complicated. The density of current can be
positive and negative, as a function of.
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the fact that in this case one should use a larger sét,dbr  largestk, close to the Fermi energy, the movement of the
the expansion ofy. But, for V #0, the structure op(y) can  electron can be described by its classical orlitsfting or-

be explained in the following way. When the number of bits along the edge and snake orbits in the opposite direction
states as a function &, is plotted, a discontinuous curve, along the line wherd8=0). For smallerk,, however, the
due to the quantization of the energy, is obtained. Althouglstates tunneling between the two wells, but mainly the ones
there is no simple relation between thespace and the real of energy above the central maximum of the double well, are
space, as for a homogeneous magnetic field, the number g&ry important and their contribution cannot be overlooked.
oscillatiops of thg elec_tron density is the same as the numbsy, factjf(”)(y), after summing over ah andk,, turns out to

of steps in the discontinuous curve and then is indeed a conye very small for the case, wheBy=0 for all y. Different

sequence of the energy quantization. - (n) . . 1
: e , ted in Fig. 8. Fok,=—0.018 A
This can be seen in Figs. 5 and 6. The next step now is, b (¥) are repor X .
«=0.08 A~ andn=0 the movement of the electron is well

Lnyeans of Eq(7), to calculate the total current density given defined by its classical orbitedge and snake orbjtsBut
aroundk,=0 and, for example, hene= 31, the situation is
i (y)= 2 iM(y) (17) more complicated. An interesting point is that now the cur-
states ' rent density for one state can be positaed negative as a
function of y. Moreover, we see that the positive part is
where the sum runs over all the states vitis Ex. In Fig. 7 located iny, where the density of current flows in the other
are reported the current densities for different magnetic fieldglirection, due to the presence of the snake orbits. The same
disregarding first the part due to the spin. One sees that thénd of phenomena appears with edge orbits. This can be
shape of the current density is much more subtle than mighinderstood by considering the first term#ik,
be expected from semiclassical approximations. Actually— 1eB,y2—eByy in Eq. (7). It is easy to imagine that when
consideringj{"(y) for |k/>0 or, in other words for the summing the current density over all the different states, the
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as a function of the electron density-( ).
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result is rather different from what we might expect from the  Until now only the first term in Eq(7) has been consid-
consideration of the simple classical picture of the orbits. ltered, but there is a second term containing the derivative of
has to be noted that although the current density can be poshe electron density and which is directly related to the pres-
tive and negative as a function of, the group velocity ence of the spin for the electron. Because, as we have seen
ve=Jdyj"(y) has a well defined sign and has been verifiedabove, the electron density displays a very rich structure, one
from the dispersion curves by means of the relationcan expect some contribution to the current density, due to
vg=1/AdE,/dk,. In order to get a better understanding of the spin of the electron. This is shown in Figs. 11 and 12.
the shape of the current density, we have plotted together thgithough the part due to the spin is smaller than the first
electron and the current densities in Figs. 9 and 10. Thgerm in Eq.(7), it is nevertheless noticeable. This could im-
density of current oscillates between positive and negativgy some interesting phenomena in relation to spin-polarized
“channels,” as a function of the electron density, and then iscrents. The problem is that the “channels” are more or less

a reflection of the quantization of the energy. It is interesting,; the same position for spin up or down, which makes it
to note that in the study of the FQHE, there is also the ap- '

: Jquite difficult to distinguish between both spin directions. On
pearance of channels, which can be seen there as alternatlﬂ%

strips of compressible and incompressible ffiid.When other hand, many parameters can be varied, such as the
P P . P ) : magnetic field, the width of the system, or the external con-
Bo#0, the current density increases wily and flows in

opposite directions on both sides of the sample whgris fining potential, which may allow us to find a suitable system

large enough compared By, or in other words, wheB, is cor|1:f.|gu|rlat|.c;nhfortthi pl’OthCtIO(;l t?]f Emoll?rtllfedd.curren.ts. b
large enough to overcome the effective confining potential inafly, 1t has to be stressed that all the discussion above

due toB;, so that the electrons are confined by the externai:oncemed the culrrent density. Although thi; quantity is non-
confining potentialV,. Moreover, the current density be- zero and has a rich structure, it does not imply that the net

comes asymmetric. currentlx=2kxfjx(y)dy is nonzero. In fact, as our calcula-
1x 1071 — 7 T — T T
05 x 107101 1
E]
% FIG. 11. Contribution due to the spin to the
£ L N S N S e o B R i M current density. The dotted line is the other con-
$ / tribution in Eg. (7) to the current density.
3 B;=0.5 G/A,By=2%x10* G.
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tion showed E is independent ok, , which means there is <¢k|[(p§/2m’)+a§/‘+ by3+cy?+dy+e]|o,) gives
no difference of potential across our system and thus no ngf=:
current.

1
+3al k| 1+ §+k

1 (1
V. CONCLUSIONS T(_ +k +c

2

(k—lw 1
2 | '%

+e,

In this work, we have studied the effect of a linear mag-
netic field in a 2DEG. In certain simplified cases, we weren=K+1:
able to carry out some analytical calculations and to derive
the dispersion curveg,(k,) for quite a large range ok,

#0. These results were found to be in very good agreement
with our numerical results. In the general case with an exter-
nal confining potential, we carried out numerical calcula-p,— 4 -
tions. We derived the whole of the dispersion curve and us-
ing it, we calculated the electron and current densities. It is
worthwhile noting that for this calculation, we need to con-
sider the states fok,>0, as well asstates fork,<<0 and
k,=0. This point is important and could help in understand-
ing some recent resuffsobtained in the framework of CF n=k+3:
theory. For the derivation of the electron and current density,
we first calculated the Fermi enery, taking into account
that the number of electrons is constant. It turned out that
althoughEg is independent ok, it is, however, a function of
the magnetic field. This is due to the external confining pon=k+4:
tential. The electron and current densities show a very rich
structure, which can be seen as a consequence of the quan-
tization of the energy, although there is no simple relation
between thek, andy space, as is the case for a constant
magnetic field. Moreover, the current density exhibits alter- - :
nating “channels” of positive and negative current. It would an_d <_¢”|V°|¢m>’ due to the confining potential,
be interesting too to include interaction between electrond ~ ¢
and to study the effect of the self-consistency on the way the 2

. . . . a
energy levels cross the Fermi energy. This can give rise to zﬁea[l<a/4ye2>]|_g( — _)
interesting phenomena, particularly in connection with the 2ye
shape of the electron densfty® Finally, because(y) is not L

S0 ) N=Kk+i:

constant, we have a contribution to the current density, di-
rectly due to the spin of the electron, which could imply
some interesting phenomena in relation to spin polarized cur-

5 7(1+k)

1/2
(k+1)) <3b

(k+1)(k+2)
4

1/
1
(—W+a(3+2k)+(§),

1/2
(k+1)(k+2)(k+3)

8

16

(|<+1)(|<+2)(|<+3)(k+4))1’2
a,

2i

ﬂe—a[l—(aMyez]

1/2aii
2ye)

rents. n(in—=1)---(n—i+1)
APPENDIX o’ K+i
_ +(— 2k+i
e [1+(—1)7""],

Using the properties of the Hermite polynomial, the ma-
trix elements kK, can be derived in a recursive way. with L' the associate Laguerre polynomial.



53 TWO-DIMENSIONAL ELECTRON GAS IN A LINEARLY ...

1For a review, se@he Quantum Hall Effeciedited by E. Prange

and S. M. Grivin(Springer, New York, 1987

2For a review, seeQuantum Hall Effect edited by M. Stone
(World Scientific, Singapore, 1992

3J. E. Miler, Phys. Rev. Lett68, 385(1992.

4D. K. K. Lee, J. T. Chalker, and D. Y. K. Ko, Phys. Rev.38,
5272(1994.

5F. M. Peeters and A. Matulis, Phys. Rev4B, 15 166(1993; A.
Matulis, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. [Z&t.
1518(1994; I. S. Ibrahim and F. M. Peeters, Phys. RevbR
17 321(1995.

6J. K. Jain, Phys. Rev. Let63, 199(1989; Phys. Rev. B41, 7653
(1990.

4683

’D. B. Chklovskii, Phys. Rev. B1, 9895(1995; L. Brey, ibid. 50,
11 861(1994.

8D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Phys. Rev.
B 46, 4026(1992.

L. D. Landau and E. M LifshitzQuantum Mechanic&ergamon
Press, New York, 19%7

10C. L. Foden, M. L. Leadbeater, J. H. Burroughes, and M. Pepper,
J. Phys. Condens. Matt& L127 (1994; C. L. Foden, M. L.
Leadbeater, and M. Pepper, Phys. Re\6B 8646(1995.

Ic. W. J. Beenakker, Phys. Rev. LeB8, 385 (1990; A. M.
Chang, Solid State Commuii4, 871 (1990.

12G, Kirczenow and B. L. Johnson, Phys. Rev6B 17 579(1995.

B3, shik, J. Phys. Condens. Mattgy 8963(1993.



