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Boundary conditions, the critical conductance distribution, and one-parameter scaling
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We study the influence of boundary conditions transverse to the transport direction for disordered mesos-
copic conductors both at the Anderson metal-insulator transition and in the metallic regime. We show that the
boundary conditions strongly influence the conductance distribution exactly at the metal-insulator transition
and we discuss implications for the standard picture of one-parameter scaling. We show in particular that the
scaling function that describes the change of conductance with system size depends on the boundary conditions
from the metallic regime up to the metal-insulator transition. An experiment is proposed that might test the
correctness of the one-parameter scaling theory.
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I. INTRODUCTION

More than 40 years after its discovery by Anderson1 the
disorder-induced metal-insulator transition is still the subj
of much theoretical as well as experimental research.2 One of
the major achievements in the long history of the Anders
metal-insulator transition~MIT ! is the renormalization group
theory, which has also become known as the one-param
scaling theory.3,4 Its basic assumption is that close to t
transition the change of the dimensionless conductancg
with the sample sizeL depends only on the conductan
itself and not separately on energy, disorder, the size of
sample, its shape, the elastic mean free pathl e , etc. Many
predictions, like the lower critical dimension or the critic
behavior,5,6 were successfully based on this theory, as wel
an enormous amount of numerical work that aimed at
direct calculation of the scaling functionb(g)5d ln g/d ln L.
Another important consequence of the one-parameter sca
theory is the prediction of a universal conductance distri
tion P* (g) exactly at the MIT.7 Earlier numerical work on
the three-dimensional Anderson model seemed to con
the universality of the conductance distribution.8 The depen-
dence on the universality class was stressed in Ref. 9.

Recently, however, some doubts have been cast
whether the conductance distribution is universal within
sameuniversality class. Two different numerical studies r
ported two different forms ofP* (g) for the same system,9,10

and it was found that the difference originates in the use
different boundary conditions~BC’s!.11

The idea thatP* (g) might depend on the BC’s indee
appears very natural after the discovery that spectral st
tics, and in particular the energy level spacing distribut
P(s) exactly at the MIT,do depend on the BC’s.12 Samples
with periodic boundary conditions show a much strong
level repulsion than samples with hard walls~Dirichlet
boundary conditions!.

In this work we show with a numerical analysis of th
conductance distribution at the critical point thatP* (g) does
indeed depend on the BC’s applied perpendicular to
transport direction. Choosing the appropriate boundary c
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ditions, we can reproduce the results of both Refs. 9 and
In particular, the average critical conductancegc depends on
the BC’s. This alone already implies a dependence ofb(g)
on the BC’s sincegc is defined asb(gc)50. We confirm the
BC dependence ofb(g) analytically by reinvestigating its
form in the metallic regime with the help of a 1/g expansion.
Much to our surprise we find that earlier analyses overloo
the effect of the BC’s by approximating a sum over diffusi
modes by an integral. Evaluating the sum more carefully,
find not only a dependence on the BC’s, but also a so
unknown ln(le/L)/g term in b(g) in three dimensions tha
makesb(g) nonuniversal in the metallic regime.

II. NUMERICAL INVESTIGATION AT THE ANDERSON
TRANSITION

The model studied is the three-dimensional tight bind
Anderson Hamiltonian with diagonal disorder on a simp
cubic lattice,

H5(
i

ei u i &^ i u1u(
bulk
^ i j &

u i &^ j u1u (
sy ,sz

^ i j &

3c~e2p ifu i &^ j u1H.c.!. ~1!

The ei are distributed uniformly and independently betwe
2w/2 andw/2. The notation̂ i j & means next nearest neigh
bors,u is the hopping matrix element, which we set equal
unity in the following, andw is the disorder parameter. Th
last sum in Eq.~1! links corresponding sites on opposi
sides of the cubic sample perpendicular to they andz direc-
tions, assuming that transport occurs in thex direction. Hop-
ping between these boundary sites arises when the syste
closed to a ring (c51) and includes a phase factorei2pf,
wheref is the magnetic flux in units ofh/e enclosed by the
ring. Hard wall ~Dirichlet! BC’s correspond toc50. The
model ~1! shows a MIT at the critical disorderwc.16.5.13

The numerical calculation of the conductances use
standard Green’s function recursion technique14 that yields
©2001 The American Physical Society07-1
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the transmission matrixt of the sample. The latter is con
nected to the two-probe conductance of the sample by
Landauer-Bu¨ttiker formula

g5tr tt1, ~2!

whereg5G/(e2/h) denotes the conductanceG in units of
the inverse of the von Klitzing constanth/e2. Whether the
two-probe conductance formula or the four-probe cond
tance formula is used is irrelevant at the metal-insulator tr
sition, since the bulk resistance always greatly domina
over the contact resistance.15 All conductances were calcu
lated at energyE.0. The number of conductances used
each BC and system size ranged from 105 for L56 andL
58 to 23103 for L516. All system sizesL are measured in
units of the lattice constant.

Our main numerical result is shown in Fig. 1, where w
have plotted the distributions of the logarithm of the cond
tance at the transition for periodic and hard wall~HW! BC’s,
and different system sizes. For the same BC the distribu
is almost independent of the system size, as is to be expe
from the criticality of the ensemble atwc516.5. But the
distributions are clearly very different for the two BC’s. Th
maximum of the distribution is considerably more pr
nounced for periodic BC’s than for hard walls. A more d
tailed statistical analysis is presented in Table I and for
average valueŝln g& in Fig. 2.

The average is always over the disorder ensemble. Fig
2 shows that the average logarithmic conductance still
pends slightly on the system size in the regime investiga
But the difference between periodic and hard wall BC’s do
not diminish with increasingL, and the dependence onL
decreases for largerL. Where we have used the same syst
sizes as in Refs. 9 and 10 our values for all quantities ca
lated (̂ g&, ^ ln g&, and the standard deviations ofg and lng)
coincide within 1% with the values given in these referenc
For comparison with Ref. 10,g should be multiplied by a
factor 2, since we consider only one spin direction. Thus,

FIG. 1. Critical conductance distribution for periodic and ha
wall boundary conditions, and different sample sizes. Sample s
L58, 10, 12, and 16 are denoted by circles, squares, diamonds
triangles, respectively; open symbols indicate periodic BC’s,
ones hard walls. The full lines are averages over the above sy
sizes.
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discrepancy between Refs. 9 and 10 can indeed be expla
by the influence of the BC’s~see also Ref. 11!.

Our result has important implications for the scalin
theory of the metal-insulator transition, since it shows th
the scaling functionb(g) must depend on the BC’s. Th
conductance that enters into this equation has to be un
stood as an average conductance,16 and the critical conduc-
tance is given byb(gc)50. According to our resultsgc de-
pends on the BC’s,gc50.413 for periodic BC’s andgc
50.348 for hard walls atL516 ~see Table I!, and therefore
the b(g) curves must at least be shifted as a function of
BC’s. In the next section we show by reexamining the we
localization corrections to the conductance thatb(g) de-
pends on the BC’s in the metallic regime also.

III. METALLIC REGIME

It is well known that in the metallic regimeg@1 the
quantum interference of diffusing electrons reduces the c
ductance compared to the classical valueg5sL, wheres is
the bulk conductivity. The weak localization correctiondg is
given by a sum over diffusion modes as16

es
nd

ll
m

TABLE I. Statistical analysis of the critical conductance dist
bution for different boundary conditions (P periodic and HW hard
wall!. Besides the averages ofg and lng the standard deviations o
these quantities,sg ands ln g are also given.

L BC ^g&5gc sg ^ ln g& s ln g

6 P 0.356 0.314 -1.554 1.183
8 P 0.377 0.324 -1.476 1.159
10 P 0.392 0.329 -1.412 1.129
12 P 0.402 0.334 -1.378 1.118
16 P 0.413 0.336 -1.329 1.092
6 HW 0.313 0.306 -1.777 1.281
8 HW 0.326 0.310 -1.710 1.252
10 HW 0.331 0.312 -1.685 1.246
12 HW 0.338 0.311 -1.675 1.211
16 HW 0.348 0.319 -1.614 1.222

FIG. 2. As a function of system size the average^ ln g& is plotted
for periodic ~circles! and hard wall boundary conditions~squares!.
7-2
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dg522(
q

e2Dq2te

q2L2
. ~3!

The sum is limited to the diffusive regime whereDq2

!1/te . This limitation is taken into account by the expone
tial cutoff; te is the elastic collision time,D5vF

2te/3 denotes
the diffusion coefficient, andvF is the Fermi velocity. The
sum ~3! depends on the BC’s via the quantization conditi
for the diffusion modesq. For the transport direction th
wave vector is quantized according toqx5nxp/L, nx
51,2, . . . .Periodic boundary conditions in they direction
imply qy5ny2p/L, ny561,62, . . . andcorrespondingly
for thez direction. Hard wall BC’s on the other hand, lead
qy5nyp/L, ny50,1,2, . . . andqz5nzp/L, nz50,1,2, . . . .
Consequently, we have

dg52
2

p2
SBC~y! ~4!

where the index BC stands for a boundary condition and

SP~y!5 (
ny ,nzÞ0

nx.0

exp@2p2~nx
214ny

214nz
2!y#

nx
214ny

214nz
2

, ~5!

SHW~y!5 (
ny ,nz>0

nx.0

exp@2p2~nx
21ny

21nz
2!y#

nx
21ny

21nz
2

. ~6!

The argumenty is defined as

y5
Dte

L2 5
1

3 S l e

L D 2

. ~7!

Previous analyses in the literature proceeded by approxim
ing the sum by an integral,16 whereupon all dependence o
the boundary conditions is lost. While this is a good appro
mation forg→`, important corrections of the order (lng)/g
arise for finiteg, which we are going to derive now, assum
ing that to this order no further diagrams beyond the diffus
approximation contribute. In Ref. 17 it was shown by fie
theoretical methods combined with a renormalization gro
approach that the diffuson approximation gives the lead
perturbative contribution to the small energy behavior of
spectral correlation function to order 1/g2.

In order to proceed it is convenient to differentia
SBC(y). The derivatives for both periodic BC’s~PBC’s! and
HW BC’s can be written with the help of the function

F~y!5 (
n51

`

e2p2n2y ~8!

as

]ySP~y!52p2F~y!@2F~4y!#2, ~9!

]ySHW~y!52p2F~y!@11F~y!#2. ~10!
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The functionF(y) is related to the complete elliptic integra
K[K(k) andK8[K(k8) with k85A12k2 by18

1

2 F S 2K

p D 1/2

21G5 (
n51

`

e2pn2K8/K. ~11!

Since we are interested iny!1, we needK8/K!1 and
thereforek→1 (k8!1). For small values ofk8 the elliptic
integrals behave like

K5 ln
4

k8
1O~k82!, K85

p

2
1O~k82!, ~12!

and we therefore obtain

F~y!.
1

2 F S 1

pyD 1/2

21G . ~13!

Inserting this into Eqs.~9! and ~10! and integrating with
respect toy yields

SP5
Ap

4Ay
1

5

8
p ln y22p3/2Ay1

p2

2
y2aP, ~14!

SHW5
Ap

4Ay
2

1

8
p ln y1

1

4
p3/2Ay1

p2

8
y2aHW , ~15!

whereas by replacing the sum~3! by an integral one would
have found

S5
Ap

4Ay
2a, ~16!

wherea is an integration constant resulting from the cuto
at smallq.1/L. Thus, the leading term for smally, Ap/y/4,
is the same for both boundary conditions. The integrat
constantsaP andaHW can be evaluated numerically, by su
tracting from the exactly calculated sums the analytical f
mulas~14! and~15! without the constants. At the same tim
this serves as a sensitive check for the correctness of t
formulas. For smally the differences converge to

aP.26.1509, aHW.2.3280 . ~17!

We have evaluated the sum numerically down to valuey
51026, where in particular the logarithmic term with th
prefactors given above could be clearly verified.

With Eqs.~14! and ~15! the conductance as a function o
the dimensionless lengthL̃[L/ l e takes the form

g5~ s̃2A!L̃2a ln L̃1b1O~1/L̃ ! ~18!

for both periodic and hard wall BC’s. The dimensionle
bulk conductivitys̃ is defined ass̃5s l eh/e2, and the con-
stantA5A3/(2p3/2) is the same for both BC’s. The coeffi
cientsa andb, on the other hand, do depend on the bound
conditions; their values are given in Table II. Note that in t
traditional approach the coefficienta vanishes.

Quite surprisinglya,0 for PBC’s, which means that th
conductance increases even slightly faster than linearly w
7-3
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TABLE II. Coefficients in the 1/L̃ expansion ofg for periodic boundary conditions~PBC! and hard walls
~HW!.

a b

PBC 25/(2p).20.7958 5(ln 3)/(4p)2236.1509p2.20.8093
HW 1/(2p).0.1592 232.328/p22(ln 3)/(4p).0.3843
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the system size. This looks as if there is antilocalization,
it should be noted that the leading behavior due to w
localization is still the usual decrease of the~bulk! conduc-
tivity, i.e., the leading term is linear in the system size a
with the expected negative sign. The fact thata,0 only for
PBC’s suggests a simple physical explanation for the lo
rithmic term: Closing the sample to a double torus by imp
ing PBC’s allows for additional paths that interfere constru
tively and lead to enhanced localization for small syst
sizes compared to the HW case. When increasing the sy
size these additional localizing paths quickly stop contrib
ing and the conductance therefore increases more rap
than would be expected just from the volume part of
weak localization.

We are now in a position to explore the consequence
the BC dependent weak localization corrections for the s
ing functionb(g). Inserting Eq.~18! into the definition

b~g![
d ln g

d ln L̃
~19!

yields

b~g!511
1

g
@a lnL̃2b2a1O~1/L̃ !#. ~20!

It remains to reexpressL̃ by g. To this end we invertg(L̃)
from Eq. ~18! to order 1/g,

L̃5
1

s̃2A
@g1a ln g2a ln~ s̃2A!1b#, ~21!

and insert it in Eq.~20!. We obtain the final result

b~g!512
1

g
$b1a@11 ln~ s̃2A!#2a ln g%1O~1/g2!.

~22!

It is now obvious that the scaling function does indeed
pend on the BC’s via the coefficientsa andb, and the depen-
dence arises at order (lng)/g. Furthermore,b(g) depends to
order 1/g as well on the material dependent dimensionl
bulk conductivity s̃, and is thereforenonuniversal. Again,
the nonuniversality vanishes forg→` ~equivalently, on the
metallic side of the transition:L→`), but is important if one
is interested inb(g) at finite values ofg. This nonuniversal-
ity was already noticed by Abrahamset al.,3 who where ‘‘un-
able to show definitely that the mean free path does not
resent a relevant scale for the problem.’’ Since HW BC’s le
to smaller values ofb(g) at intermediate values ofg than
PBC’s but to a smaller critical conductance, there should
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a point where the two curves cross, which would imply th
at that point the change ofg with the system size is indepen

dent of the BC’s. Due to the dependence ofb(g) on s̃, this
point is not expected to be universal, though.

Our result implies that the relevant length scale for a c
rect renormalization procedure cannot be the system siz
proposed in the seminal paper of Abrahamset al.3 As sug-
gested by Gorkovet al., a correct procedure is scaling drive
by frequency or temperature in an infinite system.4

The most interesting question is, of course, whether
slope ofb(g) at g5gc is also changed by the BC’s and/ors̃,
as this slope determines the critical exponentn defined by
j(w)}ug2gcu2n according to b(g)5(1/n)(g2gc)/gc .
This question actually arises already from the dependenc
spectral statistics on the BC’s, since the scaling function
be determined also from purely spectral statistics.19,20 Very
recently it has been argued that within the same universa
classn at least does not depend on the shape of the samp21

Since the critical spectral statistics does depend on the s
of the sample much in the same way22 as on the BC’s~in-
deed, all that has been said above about the dependenc
the BC’s translates one to one to a dependence on the s
of the sample!, one might suspect thatn is also independen
of the BC’s. On the other hand, considering the qualitat
behavior of the two scaling curves, a critical exponent ind
pendent of the BC’s would appear rather as a coinciden
However, so far it is an open question and definitely deser
attention.23

The scale dependence of the conductance at the MIT
predicted by Polyakov24 to be a simple power law,dg5g
2g`}1/Ly with an exponenty532d2 in three dimensions,
whered2 is the multifractal exponent of the wave function
c associated withucu4. While our results do not contradic
such a power law dependence, it is difficult to establish
exponent from the present numerical data due to the lim
L interval accessible to the simulation.

With the dependence of the critical conductance distri
tion on the BC’s, an experimental test of the correctness
the one-parameter scaling picture seems within reach. E
though an accurate absolute measurement of the critica
ponent is rather difficult,25,26 one might hope to detect
changewith the BC’s. To this end it is not even necessary
open and close the sample. Rather, one can investigate
difference between periodic andantiperiodicboundary con-
ditions. At least in one direction antiperiodic BC’s, i.e.,
phase factor21 between two opposite sides of the samp
can easily be produced by closing the sample to a ring
introducing half a magnetic flux quantum@f51/2 in Eq.
~1!#. Note that forf51/2 the system still belongs to th
orthogonal universality class, since the Hamiltonian ha
7-4
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real representation. This situation has been termed ‘‘fa
time reversal symmetry breaking.’’27 An experimental search
for a change of the scaling function in the metallic regim
upon inclusion of half a flux quantum would also be a m
welcome contribution to the long-lasting debate on the lim
of validity of one-parameter scaling.

In summary, we have shown that the conductance dis
bution at the Anderson metal-insulator transition depends
the boundary conditions applied in the directions transve
to the transport. Furthermore, in the metallic regime the
pendence of a change of the conductance on the system
does not depend solely on the conductance itself but als
the boundary conditions and the dimensionless bulk cond
tivity. As a consequence the scaling functionb(g) that de-
scribes the change of conductance when the size of
y
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sample is changed is not entirely universal but depends
the boundary conditions and the amount of disorder in
sample from the metallic regime up to the metal-insula
transition.
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