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Boundary conditions, the critical conductance distribution, and one-parameter scaling
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We study the influence of boundary conditions transverse to the transport direction for disordered mesos-
copic conductors both at the Anderson metal-insulator transition and in the metallic regime. We show that the
boundary conditions strongly influence the conductance distribution exactly at the metal-insulator transition
and we discuss implications for the standard picture of one-parameter scaling. We show in particular that the
scaling function that describes the change of conductance with system size depends on the boundary conditions
from the metallic regime up to the metal-insulator transition. An experiment is proposed that might test the
correctness of the one-parameter scaling theory.
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[. INTRODUCTION ditions, we can reproduce the results of both Refs. 9 and 10.
In particular, the average critical conductamgedepends on
More than 40 years after its discovery by Anderstre  the BC’s. This alone already implies a dependenc@(@)

disorder-induced metal-insulator transition is still the subjecton the BC's sincey. is defined ag3(g.) =0. We confirm the
of much theoretical as well as experimental resed®@he of BC dependence oB(g) analytically by reinvestigating its
the major achievements in the long history of the Andersorform in the metallic regime with the help of agléxpansion.
metal-insulator transitiofMIT) is the renormalization group Much to our surprise we find that earlier analyses overlooked
theory, which has also become known as the one-parametthe effect of the BC’s by approximating a sum over diffusion
scaling theory* Its basic assumption is that close to the modes by an integral. Evaluating the sum more carefully, we
transition the change of the dimensionless conductance find not only a dependence on the BC’s, but also a so far
with the sample sizd. depends only on the conductance unknown In{c/L)/g term in 8(g) in three dimensions that
itself and not separately on energy, disorder, the size of thenakesB(g) nonuniversal in the metallic regime.
sample, its shape, the elastic mean free pathetc. Many

predictions, like the lower critical dimension or the critical Il. NUMERICAL INVESTIGATION AT THE ANDERSON

behavior’® were successfully based on this theory, as well as TRANSITION
an enormous amount of numerical work that aimed at the
direct calculation of the scaling functige(g)=dIng/dInL. The model studied is the three-dimensional tight binding

Another important consequence of the one-parameter scalimgnderson Hamiltonian with diagonal disorder on a simple
theory is the prediction of a universal conductance distribucubic lattice,
tion P*(g) exactly at the MIT. Earlier numerical work on
the three-dimensional Anderson model seemed to confirm o o
the universality of the conductance distributfofihe depen- H=2 eliXi|+uX [i)Xjl+u X
dence on the universality class was stressed in Ref. 9. ' éidﬁk (i)
Recently, however, some doubts have been cast on 7y
whether the conductance distribution is universal within the xc(e?™?]iy(j|+H.c). (1)
sameuniversality class. Two different numerical studies re-
ported two different forms oP* (g) for the same systett’®  Thee; are distributed uniformly and independently between
and it was found that the difference originates in the use of-w/2 andw/2. The notatior(ij ) means next nearest neigh-
different boundary condition€8C’s).!* bors,u is the hopping matrix element, which we set equal to
The idea thatP* (g) might depend on the BC’s indeed unity in the following, andw is the disorder parameter. The
appears very natural after the discovery that spectral statidast sum in Eq.(1) links corresponding sites on opposite
tics, and in particular the energy level spacing distributionsides of the cubic sample perpendicular to yrendz direc-
P(s) exactly at the MIT,do depend on the BC'¥ Samples tions, assuming that transport occurs in xhgirection. Hop-
with periodic boundary conditions show a much strongeming between these boundary sites arises when the system is
level repulsion than samples with hard wallBirichlet  closed to a ring §=1) and includes a phase factef™?,
boundary conditions where ¢ is the magnetic flux in units di/e enclosed by the
In this work we show with a numerical analysis of the ring. Hard wall (Dirichlet) BC’s correspond tac=0. The
conductance distribution at the critical point thRit(g) does  model (1) shows a MIT at the critical disordev.~16.522
indeed depend on the BC’'s applied perpendicular to the The numerical calculation of the conductances uses a
transport direction. Choosing the appropriate boundary constandard Green’s function recursion technifuiat yields
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04 . T T 1 . T TABLE |. Statistical analysis of the critical conductance distri-
bution for different boundary condition$®(periodic and HW hard
wall). Besides the averages gfand Ing the standard deviations of

0.3 - - these quantitiesyy and oy, 4 are also given.

) L BC (9)=9c gy (Ing) Olng
=02y I 6 P 0356 0314  -1554  1.183
8 P 0.377 0.324 -1.476 1.159
01 L i 10 P 0.392 0.329 -1.412 1.129
| 12 P 0.402 0.334 -1.378 1.118
16 P 0.413 0.336 -1.329 1.092
0.0 . 1 , 1 6 HW 0.313 0.306 -1.777 1.281
-6.0 -4.0 -2.0 0.0 8 HW 0.326 0.310  -1.710 1.252
Ing 10 HW 0.331 0312  -1.685  1.246
FIG. 1. Critical conductance distribution for periodic and hard 12 HW 0.338 0.311 -1.675 1.211
wall boundary conditions, and different sample sizes. Sample sizek6 HW 0.348 0.319 -1.614 1.222

L=8, 10, 12, and 16 are denoted by circles, squares, diamonds, and
triangles, respectively; open symbols indicate periodic BC’s, full
ones hard walls. The full lines are averages over the above systeffiscrepancy between Refs. 9 and 10 can indeed be explained
sizes. by the influence of the BC'¢see also Ref. 11
. ) ) Our result has important implications for the scaling

the transmission matrix of the sample. The latter is con- heory of the metal-insulator transition, since it shows that
nected to t"he_ two-probe conductance of the sample by thg,o scaling functiond(g) must depend on the BC’s. The
Landauer-Btiker formula conductance that enters into this equation has to be under-
stood as an average conductatftand the critical conduc-
tance is given by3(g.)=0. According to our resultg. de-
whereg=G/(e?/h) denotes the conductan& in units of  pends on the BC’sg.=0.413 for periodic BC’s andy,
the inverse of the von Klitzing constahfe?. Whether the =0.348 for hard walls at. =16 (see Table), and therefore
two-probe conductance formula or the four-probe conducthe 8(g) curves must at least be shifted as a function of the
tance formula is used is irrelevant at the metal-insulator tranBC's. In the next section we show by reexamining the weak
sition, since the bulk resistance always greatly dominatetocalization corrections to the conductance tif{g) de-
over the contact resistant®All conductances were calcu- pends on the BC's in the metallic regime also.
lated at energfE=0. The number of conductances used for
each BC and system size ranged fron? i6r L=6 andL
=8 to 2x 10° for L=16. All system size$ are measured in . METALLIC REGIME
units of the lattice constant. ) i ) i

Our main numerical result is shown in Fig. 1, where we It is well known that in the metallic regimg>1 the
have plotted the distributions of the logarithm of the conduc-duantum interference of diffusing electrons reduces the con-
tance at the transition for periodic and hard waiw) BC's, ~ ductance compared to the classical vajueosl, whereo is
and different system sizes. For the same BC the distributiof€ bulk conductivity. The weak |°Ca|'§a“°” correctiog is
is almost independent of the system size, as is to be expect&Ven by a sum over diffusion modes &s
from the criticality of the ensemble at.=16.5. But the

g=trtt*, 2

distributions are clearly very different for the two BC'’s. The -1.0 T T T T
maximum of the distribution is considerably more pro-
nounced for periodic BC's than for hard walls. A more de- 12| j
tailed statistical analysis is presented in Table | and for the
average valueén gy in Fig. 2. 14 + o ¢
. . . A . o
The average is always over the disorder ensemble. Figure o o
2 shows that the average logarithmic conductance still de- 5 169
. . . . . . =-1. r ]
pends slightly on the system size in the regime investigated. a o
But the difference between periodic and hard wall BC's does 180 “ |
not diminish with increasind-, and the dependence dn -
decreases for largér. Where we have used the same system . . . .

sizes as in Refs. 9 and 10 our values for all quantities calcu- -2.0 6 8 10 12 14 16
lated (g), (Ing), and the standard deviations @fand Ing) L

coincide within 1% with the values given in these references.
For comparison with Ref. 103 should be multiplied by a FIG. 2. As a function of system size the averalyeg) is plotted
factor 2, since we consider only one spin direction. Thus, théor periodic(circles and hard wall boundary conditiorisquares
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e~ Dd’7e The functionF(y) is related to the complete elliptic integrals
sg=—2, R (3)  K=K(k) andK'=K(k’) with k' =1—Kk? by'8
a q
T . 2 1[(2K\¥2 oo
The sum is limited to the diffusive regime whei2q =] -2 e mKIK (11)
<1/7,. This limitation is taken into account by the exponen- 2|\ m n=1

tial cutoff; 7 is the elastic collision time) =vg7/3 denotes  gjnce we are interested ip<1, we needK’/K<1 and

the diffusion coefficient, an@r is the Fermi velocity. The thereforek— 1 (k'<1). For small values ok’ the elliptic
sum (3) depends on the BC’s via the quantization conditionimegrmS behave like

for the diffusion modesy. For the transport direction the

wave vector is quantized according m=n,m/L, n, 4 -

=1,2, ... .Periodic boundary conditions in thedirection K=In—+0(k'?), K'= §+O(k'2), (12)
imply g,=ny2=/L, nj=*1,+2, ... andcorrespondingly k

for the z direction. Hard wall BC'’s on the other hand, lead to gnd we therefore obtain

q,=nym/L, n,=0,1,2 ... andq,=n,w/L, n,=0,1,2....

Consequently, we have . 1[( 1\¥? 1 13
Y)=3 =y 13
2
69=— — Sgc(y) (4) Inserting this into Eqs(9) and (10) and integrating with
7 respect toy yields

where the index BC stands for a boundary condition and 2

Jm 5 312 77
Sp=_—=+gminy—2m Jy+ SY—ap (19

ex — 74(nf+4n’+4n2)y] 4y
Se(y)= 2 s . B

00 nx+4ny+ 4n; \/; 1 1 " 2

ny .n,#0 SHW:m—gﬂmy‘l' ZW \/y‘l' ?y—aHW, (15)
exd — 7r2(n5+ n§+ ni)y] whereas by replacing the suf®) by an integral one would
Saw(y)= 2 IR : (6)  have found
h =0 ny+ny+n;
ny, ,n,=0 m
o o=V, (16
The argumeny is defined as 4\/3—/
Dr. 1/1.\2 wherea is an integration constant resulting from the cutoff

y= L—ze = §(f) (7) at smallg=1/L. Thus, the leading term for smal) \/=/y/4,

is the same for both boundary conditions. The integration

Previous analyses in the literature proceeded by approximagonstantsrp andayyy can be evaluated numerically, by sub-
ing the sum by an integréﬁ Whereupon all dependence on tracting from the exaCtIy calculated sums the analytlcal for-
the boundary conditions is lost. While this is a good approxi-mulas(14) and(15) without the constants. At the same time
mation forg— o, important corrections of the order @yg this serves as a sensitive check for the correctness of these
arise for finiteg, which we are going to derive now, assum- formulas. For smaly the differences converge to

ing that to this order no further diagrams beyond the diffuson _ _

approximation contribute. In Ref. 17 it was shown by field ap=—6.1509, apw=2.3280. (17)
theoretical methods combined with a renormalization groupye have evaluated the sum numerically down to valyes
approach that the diffuson approximation gives the leading-10-6, where in particular the logarithmic term with the
perturbative contribution to the small energy behavior of theprefactors given above could be clearly verified.

spectral correlation function to ordergf/ . . With Egs.(14) and(15) the conductance as a function of
In order to proceed it is convenient to differentiate o qimensionless lengih=L/I, takes the form

Sgc(y). The derivatives for both periodic BC®BC's) and

HW BC'’s can be written with the help of the function g=(?r—A)E—aIn[+b+O(l/E) (18)
* - for both periodic and hard wall BC’s. The dimensionless
F(y):n; e ™ @)  pulk conductivityo is defined asr= ol h/e?, and the con-

stantA=\/3/(27%?) is the same for both BC's. The coeffi-
as cientsa andb, on the other hand, do depend on the boundary
conditions; their values are given in Table Il. Note that in the

aySp(y)=—m?F(y)[2F(4y)]%, (9) traditional approach the coefficieatvanishes.

Quite surprisinglya<0 for PBC’s, which means that the

AySuwly) = — w2 F(y)[1+F(y)]2 (100  conductance increases even slightly faster than linearly with
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TABLE Il. Coefficients in the 1 expansion ofy for periodic boundary conditiond®BC) and hard walls

(HW).

a b
PBC —5/(27)=—0.7958 5(In 3)/(4r)—2x6.150972= — 0.8093
HW 1/(27)=0.1592 2 2.328/r%— (In 3)/(47)=0.3843

the system size. This looks as if there is antilocalization, but point where the two curves cross, which would imply that
it should be noted that the leading behavior due to wealat that point the change gfwith the system size is indepen-
localization is still the usual decrease of tfirilk) conduc-  §ent of the BC’s. Due to the dependencedsty) on o, this
tivity, i.e., the leading term is linear in the system size andpoint is not expected to be universal, though.

with the expected negative sign. The fact taatO only for Our result implies that the relevant length scale for a cor-

PBC's suggests a simple physical explanation for th_e logaze ot renormalization procedure cannot be the system size as
rithmic term: Closing the sample to a double torus by impos-

. . 3

ing PBC'’s allows for additional paths that interfere construc-prOposed n thke semlmal paper of Abrahaq’nsal. 'IA.‘S Sug-
tively and lead to enhanced localization for small systen’ﬁ?smd by Gorkoet al, a correct pro_ce_dl_Jre IS sl%amg driven
sizes compared to the HW case. When increasing the syste _:‘_rr?quency_or temperature in an |nf|r;|te SYS m.h her th
size these additional localizing paths quickly stop contribut- € most mterestm question is, of course, w et~er the
ing and the conductance therefore increases more rapid§loPe of3(g) atg=g. is also changed by the BC's andiey
than would be expected just from the volume part of the2S this slope determines the critical exponendefined by
weak localization. £(w)ec[g—gc| ™" according to B(9)=(1/v)(9—9c)/gc-

We are now in a position to explore the consequences of is question actually arises already from the dependence of
the BC dependent weak localization corrections for the scalSPectral statistics on the BC's, since the scaling function can

ing function B(g). Inserting Eq.(18) into the definition be determined also from purely spectral statistic?. very
recently it has been argued that within the same universality
ding classv at least does not depend on the shape of the sarhple.
B(g)= = (19 Since the critical spectral statistics does depend on the shape
dinL of the sample much in the same Ways on the BC'Hin-
yields deed, all that has been said above about the dependence on

the BC’s translates one to one to a dependence on the shape
1 ~ ~ of the samplg one might suspect thatis also independent
B(g)=1+ §[a|nL—b—a+O(1/L)]. (200 of the BC’s. On the other hand, considering the qualitative
behavior of the two scaling curves, a critical exponent inde-
It remains to reexpresTs by g. To this end we inverg(E) pendent of the BC’s would appear rather as a coincidence.

from Eq. (18) to order 14, However, so far it is an open question and definitely deserves
attention®
_ 1 _ The scale dependence of the conductance at the MIT was
L==——[g+alng—aln(c—A)+Db], (21)  predicted by Polyakd¥ to be a simple power lawgg=g
oA — g, 1/LY with an exponeny=3—d, in three dimensions,
and insert it in Eq(20). We obtain the final result whered, is the multifractal exponent of the wave functions

s associated withy|*. While our results do not contradict
1 ~ ) such a power law dependence, it is difficult to establish the
B(@)=1- a{b+a[1+ In(c—A)]—-alng}+O(1/g%). exponent from the present numerical data due to the limited
(22) L interval accessible to the simulation.
With the dependence of the critical conductance distribu-
It is now obvious that the scaling function does indeed detjon on the BC’s, an experimental test of the correctness of
pend on the BC'’s via the coefficierasandb, and the depen-  the one-parameter scaling picture seems within reach. Even
dence arises at order (§)/'g. Furthermore3(g) depends to  though an accurate absolute measurement of the critical ex-
order 1) as well on the material dependent dimensionles%onent is rather difficult>?® one might hope to detect a
bulk conductivity o, and is thereforeonuniversal Again,  changewith the BC's. To this end it is not even necessary to
the nonuniversality vanishes fgr— o (equivalently, on the open and close the sample. Rather, one can investigate the
metallic side of the transitior: — =), but is important if one  difference between periodic arahtiperiodicboundary con-
is interested in3(g) at finite values ofy. This nonuniversal- ditions. At least in one direction antiperiodic BC's, i.e., a
ity was already noticed by Abraharasal.,® who where “un-  phase factor-1 between two opposite sides of the sample,
able to show definitely that the mean free path does not repsan easily be produced by closing the sample to a ring and
resent a relevant scale for the problem.” Since HW BC'’s leadntroducing half a magnetic flux quantufrp=1/2 in Eq.
to smaller values of3(g) at intermediate values af than  (1)]. Note that for ¢=1/2 the system still belongs to the
PBC'’s but to a smaller critical conductance, there should berthogonal universality class, since the Hamiltonian has a
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real representation. This situation has been termed “falseample is changed is not entirely universal but depends on
time reversal symmetry breaking”An experimental search the boundary conditions and the amount of disorder in the
for a change of the scaling function in the metallic regimesample from the metallic regime up to the metal-insulator
upon inclusion of half a flux quantum would also be a mosttransition.
welcome contribution to the long-lasting debate on the limits
of validity of one-parameter scaling. o ACKNOWLEDGMENTS
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