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Behavior of the thermopower in amorphous materials at the metal-insulator transition
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We study the behavior of the thermal transport properties in three-dimensional disordered systems close to
the metal-insulator transition within linear response. Using a suitable form for the energy-dependent conduc-
tivity o, we show that the value of the dynamical scaling exponent for noninteracting disordered systems such
as the Anderson model of localization can be reproduced. Furthermore, the values of the thern&ipaveer
the right order of magnitude close to the transition as compared to the experimental results. A sign change in
the thermoelectric poweB — as is often observed in experiments — can also be modeled within the linear
response formulation using modified experimentadata as input.

I. INTRODUCTION Note thatS is mainly due to two distinct effectsi) the
diffusion of the charge carriers arid) the net momentum
Transport phenomena in disordered quantum systenfgansfer from phonons to carriet§.But for T<0.3 K as
have been studied for many yedrsyet many open prob- considered in this work, the diffusive part of the ther-
lems remain. One focus of these investigations is the meta0POwWer dominates  that of the  phonon-drag

insulator transition(MIT). This quantum phase transition contribution.”™ * Hence, from this point on in this papé&
denotes only the diffusion thermopower.

from a good conducting material to an insulator may be in- The prototype for a theoretical description of 3D disor-

duced by disorder due t0.|00a|i2<’:.1ti100’ by interactions SUCh. dered systems is the Anderson model of localizatfoNear
as electron-electron interactions and eIectron—Iattlce;[he MIT atT=0. o behaves 28

coupling?® In three-dimensional3D) amorphous materials

the MIT is mainly attributed to disordérFor example, in Ef”

heavily doped semiconductors the disorder is brought about oo|1— El |Ed <E.,

by the random distribution of dopant atoms in the crystalline T ¢ (2)
host. However, indications of electron-electron interactions 0, |Ee[>Eq,

have also been found, e.g., in the dc conductivityor re- whereEg is the Fermi energyE, is the mobility edge that
sistivity p=1/0) in doped semiconductors in both metdllic separates the extended conducting states from localized in-
and insulating regimes. sulating statesg is a constant and is a universal critical

_ A further open problem is the be_havior o_f the thermoeleg-exponeml_ By using Eq.(1) for o in a linear response for-
tric powerSor the Seebeck coefficient of disordered materi-my|ation the behavior of the thermoelectric transport proper-
als near the MIT. In many amorphous alloys and both comtjes such assS (Refs. 21-24 the thermal conductivityK
pensated SiP,B) and uncompensated Si:B,continuously (Refs. 2224 and the Lorenz number, (Refs. 23 and 24
changes from negative to positive values or vice versa at [0V the MIT have been computed. Moreover, similaptthe
temperaturd. This corresponds to a change of thermal CON-quantities S, K, and L, have also been found to obey

ductors from electrons to holes or conversely and has bee&a"nggs The scaling form of the dynamical conductivity
attributed to the electron-phonon interaction in amorphousg;gse to the MIT in 3D is given 42028

alloys®” On the other hand, in heavily doped semiconduc-
tors the sign change is believed to be caused by electron- o(t,T) }_( t )

electron interactionén uncompensated Si:P in the insulating i 2
regimé) or attributed to the existence of local magnetic mo- T

ments and their interactions with electréi’sThis conclu-  Heret measures a dimensionless distance from the critical
sion is based on the suppression of the anomalous behavipoint, such as=(E—E_.)/E., the correlation-length expo-

by a magnetic field® We note that the sign change $iis  nent» in 3D is equivalent to the conductivity exponent as
also observed in metals, high- materials, and given in Eq.(1), andz is the dynamical exponeftFor a
quasicrystald®~1? Analytical treatments of metals as a de- noninteracting system such as the Anderson model, one ex-
generate free-electron gas taking into account inelastic scapectsz=d in d dimensiong. But, instead of obtaining=3
tering with phononS~*as well as numerical considerations in the scaling form ofr, one findszv= 1 2*?4?%|n addition
incorporating electronic correlations in superconducfors to this discrepancyS turns out to be at least one order of
have also been shown to generate a sign chan§eBut in  magnitude largéf** than the experimental results in doped
these systems the sign change occurs @tvalue that is 2 semiconductorsand in amorphous alloys’ Furthermore,
orders of magnitude higher than that in disordered systemshe sign change i cannot be explained using the Anderson

Tl/VZ
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model and Eq.(1). One may argue that the discrepanciestakes on the same value @&t<10 K in metals where the
between the transport calculations and the experimental meatectrons suffer no inelastic scattering procesées.

surements are due to the absence of interactions in the The primary consideration then in determining S, K,
Anderson model. Indeed, interactions may influence the beandL, is to calculateL;; . Under the assumptions that the
havior of the thermoelectric transport properties. Yet we emsystem is noninteracting and inelastic scattering processes
phasize that the neglect of interactions in the Andersorare absentl;; are given in the Chester-Thellung-Kubo-
model is not entirely inconsistent with the experimental situ-Greenwood formulatioh—>" as
ation in 3D amorphous materigdi$For example, recent mea-

surements in Si:P yield scaling withz~3 andv~1.3° This Lyj= J'w A(E)[E—pu(T)]*177 - M}dE, (5)
agrees withz=d as predicted by the scaling argumérifs —c JE
for noninteracting systems. for i,j=1,2, where u(T) is the chemical potential,

The goal of this paper is to show that the correct value Off(E”u”T) is the Fermi distribution function, anti(E) con-
z, the right order of magnitude @at the MIT, and perhaps tainsall the system-dependent features.

even the sign change Bat low T can be described within a Last, we note that th& dependence qf. can be obtained
linear response formulation using the noninteracting Anderfor noninteracting systems from

son model of localization. However, in order to do so, we

have to use a more suitably chosen energy-depenagnt n(w.T =fwdE EVF(E w.T 6
instead of Eq.(1). After a brief review of linear transport (. T) o e(B)I(E,uT) ©

theory,Ewe dc_lc_J?struct a new ftorlrr:j f;)tcBas a funt(r:]t_lon 0:; | where n is the number density of electrons awrdis the
energyE and | from experimental data. By UsINg tis MOCE! yansity of stated? In the 3D Anderson model of localization,

data as input for the linear response formulation, we computg has been computed previougfyThus keeping constant
the temperature dependencespK, L, and alsar and show  \ye find numericall§? that (T)~ T2 with an increased ef-

that they have the expected qualitative and quantitative b&gctive mass due to the disorder as expected for noninteract-
havior close to the MIT. Finally, we show that a small varia- jng Fermi system&*

tion in o(E,T) can change the sign & This effect cannot
be produced simply by varying the density of stagesr the I1l. A PHENOMENOLOGICAL APPROACH

chemical potentiaj(T). There are only two parameters that are model dependent

in the transport theory discussed in Sec. Il. TheseAdIE)
Il. LINEAR THERMOELECTRIC TRANSPORT THEORY and u(T). In order to determine the behavior of the thermo-

electric transport properties close to the Anderson MIT,
In the presence of a small temperature grad®iit the A(E) in Eq. (5) has usually been €t equal to the

electric current densityj,) and the heat current densitis)  critical behavior ofo given by Eq.(1). As mentioned in the

induced in a system are givéto linear order as Introduction, this leads to the unphysical value for 1/»
_ and therefore an unphysical frequency dahdependence of
(jin=lel'(|le|Li;E-L,T7VT), (3) . The main reason for this behavior is easily understood:

there is noT dependence in Eq1) and consequently all
wheree is the electron charge arifl is the induced electric dependence i is due to the broadening of the Fermi func-
field. L;; are the kinetic coefficients. Since we do not con-tion in Eq.(5) with increasingT. Thus in order to model the
sider the presence of a magnetic field in this work, the On€orrectT dependence, we should add to Ety), valid atT
sager relatiorL;;=Lj; holds>> Ohm's law, (j;)=0E, im- =0, the desiredl dependencies such as< T in the me-
plieso=Lq, in Eq. (3). tallic and oo exp(=T) in the insulating(say, variable-range-
The flow of thermal conductors due YT is counteracted hopping regimes®° Such a purely theoretical model for
by an electric force arising fro@ making{j,)=0. Equation  o(E,T) will then incorporate a multitude of constants that
(3) then yields the thermoelectric pow&=Lq,/|e|TL;, can be adjusted to fit the experimental results. Of course this
which relatesV T to E. The sign ofSdetermines whether the is of limited practical use since the validity of these fitting
thermal carriers are electrons or holes. Using the Sommeparameters is hard to justify.
feld expansion folEg—E/>kgT, Sis given by the Mott Here we will instead use as input for(E,T) recentex-
formula®? as S=—72k3To' (Ep)/3\e|o(Er), where kg is  perimental data obtained by Waffenschmict al,** who
Boltzmann’s constanty’ is the derivative ofs with respect measuredr in Si:P at the MIT under uniaxial stress. Their
to E, ando(E) is assumed to be a slowly varying function data yield good scaling of according to Eq.(2) with a
on the scale okgT.21:22:24:33:34 dynamical exponerz=2.94+ 0.3 andv=1+0.1. These val-
The thermal conductivitK determines the contribution to ues agree with the scaling argumérifsand reasonably well
{j») stemming fromVT. Usingo andSin (j,) we obtaink  with the numerical result=*? for noninteracting systems.
in terms of the kinetic coefficient &&2* We emphasize that it is—in principle—unimportant whether
the scaling has been achieved by stress-tuning or other varia-
tions of the effective disorder content in the material. Indeed,
) (4)  theoretical studies in anisotropic Anderson models have
le]?TLy, showrf}“? that the critical properties remain unaffected by
the anisotropy(or stress Therefore, we expect that while
For the definition of the Lorenz number follow&,  nonuniversal properties such as the numerical values &
=e?K/k3oT.232* In metals at roonT, Lo=7?/33* It also  etc., may differ according to the material considered in a

_ L22L 1 L21L 12
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particular experiment, the universal properties such as the
critical exponents and the scaling behavior should be as dis-

cussed here.

In the o(t,T) scaling of Ref. 30t=(s—s;)/s., wheresis
the stress and. the corresponding value at the transition.
We sample those scaled data for several values, ) (and
fit a spline curvé&® o to these points in order to get a smooth
functional form foro(t,T). Transforming the spline. as a
function not only of T but also of E, we sett=(E
—EJ)/E.. Finally, we substituter(E,T) for A(E) in Eq.
(5) and compute the thermoelectric transport properties de-
fined in Sec. Il.

In this paper we consider temperatures from 0.01 K to 0.2
K. Far from the transition we could not probe lower thRn
<0.02 K. This is due to the limited input data and conse-
quently a limited range of the spline function that generated
o(E,T). The unit of o is taken as) ™! cm™! consistent
with the experiments. Th& scale is(arbitrarily) fixed at 1
meV, which is the order of magnitude of the binding energy
of an isolated donor in a heavily doped semiconduttor.
order to compare with the previous results in the Anderson
modef* we let E.=7.5. We emphasize that this value is of
no significance and can be assigriedarly) arbitrarily. The
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FIG. 1. Numerical calculations for the electrical conductivity

important point to consider is the location of the Fermi en-as a function of temperatur€. The filled symbols represent the
ergy Eg with respect tcE... This distinguishes the electronic metallic regime|Ef<E., * denotes the critical regim&g=E_,
regimes. Thus, the metallic, critical, and insulating regimesand the open symbols represent the insulating regtae>E. .

are identified a3Ef|<E., Er=E., and|Eg>E_, respec-
tively. Usually, «(T) is derived in Eq(6) from ¢ of the 3D

lines in Fig. 2,Sis in good agreement with the Mott formula

Anderson model of localization. In the next section we shallsinceo in Fig. 1 is smooth across the transition at firlte
also show the effect of using a different functional form of Note that in order to evaluate the Mott formula properly for

wu(T).

the system considered here, thedependence of the input

spline o(E,T) was used instead af(T) from Fig. 1. We
emphasize that it is no contradiction thHais positive here

IV. RESULTS AND DISCUSSIONS

but mainly negative in the doped semiconductors in all elec-

tronic regimes. In the energy regions close Eg>0 the

A. Temperature dependence of the thermoelectric transport
properties

Consistent with the dynamics of the experiment in Ref.
30, we expecir(T)~TY? at the critical regime wittz~3.
This is indeed the behavior @f(T) close toE; as we show
in Fig. 1. For|Eg—EJ/=<0.2 meV we obtainz=3.2+0.3.
Note thato(T) =L, has been integrated according to Ex).
over the energy range wheed/9E=10 2° meV L. Thus
our numerical calculation of is consistent since it repro-
duces closely the original result in Ref. 30. If we plot the
results in Fig. 1 with respect tqu— E)/E.TY*? we obtain a
rough scaling ofo- similar to Fig. 4 of Ref. 30.

We next turn our attention to the thermoelectric po\Ber
In the 3D Anderson model of localization, we know that
when using Eqg.(1) one obtainsS—0 in the metallic
regiméX?**3while in the insulating regimé does not ap-
proach zero but seems to divergeTas 0.24?° At the MIT S
is a constarit of the order of 100, V/K.%3?4%|n Fig. 2, we
show that in the present approaghin the vicinity of the
MIT is two orders of magnitude smaller compared to these
previous results for the Anderson model. The magnitude of
is in fact comparable to the experimental results in disor-
dered system%!° FurthermoreS—0 asT—0 in the metal-
lic, critical, and insulating cases. This behaviorS¢f) in all
electronic regimes was obser$édin amorphous AiSh, _,
and in amorphous Ge,Au, . As indicated by the different

charge carriers are holes instead of electrons as shown in
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FIG. 2. The thermopowe$ as a function ofT with the same
symbols as in Fig. 1 distinguishing the metallic, critical, and insu-
lating regimes. The lines are obtained from the Mott formula.
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FIG. 5. Comparison between modifiédashed and dotted lines
and unmodified(solid lineg chemical potentials. The curves are
shifted with respect to the mobility edge. The thin solid line is the
unmodifiedu shown on a finefright) scale.

only in the metallic regimé? Here we see no markedly dis-

FIG. 3. TheT dependence of the thermal conductivity computedtinCt behavior in the metallic regime compared to the insu-

with Eq. (4).

lating regime. FotE—EJ=0.1,0.2 meV,L, in the metal-
lic regime is less than its corresponding value in the

Ref. 24.Swould be negative if we had chosen the left mo- insulating regime. FolEg—EJ=0.5,1.0 meV,L, in the

bility edge E.<0 for low filling.?44

The correspondind dependence df is shown in Fig. 3.
We find thatKk—0 asT—0 in all electronic regimes. This is
also the behavior oK using o in Eq. (1).%* In the metallic

metallic regime is larger than its corresponding value in the
insulating regime.

In the calculation ofo(T), S(T), K(T), andLy(T), we
used a phenomenological constructionof{E,T). Further-

regimeK is larger than in the insulating regime since theremore, we have assumed that the density of statés the
are more heat carriers in the former. From the results-of Same as that of the 3D Anderson model of localization given

andK in Figs. 1 and 3, respectively, we obtdig. As shown

in Ref. 24. Since thix(E) is a smooth andrestricted to

in Fig. 4, Lo— m2/3 asT—0 whether it be in the metallic, E>0) monotonic functionu(T) obtained from Eq(6) is
critical, or insulating regime. This is different from the re- @lso smoothly and monotonically varying with as de-

sults using Eq(1) for o. There one obtains ah, that de-

scribed in Sec. Il.

pends on the conductivity exponent in the critical and insu-

lating regimes while it approaches the universal vlug/3
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FIG. 4. The Lorenz numbdr,. The results are shifted by?/3,

the universal value for metalRef. 39.

B. Effects of a structured o

We now consider the effects of a possible structure.in
We shall assume here that this structure corresponds only to
variations inu(T) and not ing. In Fig. 5 we show two
examples of a modifieg(T) in the critical regime. Example
A has a pronounced maximum, while example B has both a
maximum and a minimum. The height of the maximum in
both examples A and B iss0.1 meV. Note that this is sig-
nificantly larger than the half-width of the bump, which is
=<0.005 meV. This is also true for the depth of the minimum
in example B. Thus a small change Thcorresponds to a
large change inu(T). Applying these forms ofu(T) to-
gether with Eq(1) for o reproduces the same structureSin
For example, using form B oft(T) we obtain anS having
both a maximum and a minimum in the samenterval as
w(T). But Siis still of the order of 100uV/K, while the
variations are only of the order of 1@V/K and not large
enough to cause a sign changesiron the other hand, using
the phenomenological construction @f(E,T) yields even
smaller changes. We observe variationk jpandL ;5 of less
than 10% from their unmodified values. Consequently, we
find negligible changes iB. Figure 2 would appear unmodi-
fied. Hence we conclude that even a large change in the
density of stateg and thus also in(T) is not sufficient to
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FIG. 6. The modifiedr,(E,T) as input having increasing bumps = 7
with decreasindl centered near &—E.=0.05 meV. For clarity )
only selected isotherms are shown. The vertical line indicates the 02 /:‘,f/j/ — bump1 |
mobility edge. - ey ——- bump 2
e —-— bump 3
- - - e — unmodified |
cause the change of sign f& as observed in the experi- 0.0 LLTxAL] L
ments. Nevertheless, this weak dependenc& oh ¢ and ) 0.01 0.10
w(T) at least justifies our use of the simple Anderson density T(K)

of states in the present paper. FIG. 7. Comparison between with and without bumps in the

metallic, critical and insulating regimes forE—E.=
C. Effects of a structured o(E) —0.1, 0.0, 0.1 meV. For clarity each set®fT) is shifted by 0.2

along the vertical axis from each preceding set. The lines are guides
Let us now assume that for smdllthere are nonmonoto- ¢, the eye only.

nicities in o(E, T)—although these have not been observed

in the experiment8.“Thus we consider the case when theresystems with different bandwidths, e.g., a larger bandwidth
is a sizable change ior(E, T) in the region close t&. for il give rise to a larger value of s_o. We observe a similar
smallT. The corresponding “bumps™ imo(E, T) are shown  sjgn change in the metallic regime but the depth of the mini-
in Fig. 6 with different peak heights and with half-widths myum is smaller than in the critical regime. The Mott formula
<1 meV. For simplicity they are essentially quadratic func-with o(T) given in Fig. 7 can readily model this behavior
tions of E and have been generated such that they decayince o(T) remains slowly varying even if(E,T) has a
quickly as expt-T*) with increasingT. The height of the pymp nearE,. In the insulating regimeS has a shallow
bumpsis<1 Q~* cm™*, which is at least an order of mag- maximum and drops back to zero &s-0. This is different

nitude smallersothan the values observed ferin the  from experimenf, where S changes sign and neither has a
measuremen$®’ The lowest temperature studied &  maximum nor minimum in the insulating regime.

=6 mK and we shall only consider metallic and insulating

regions with|Ep—E¢<0.1 meV. T (meV)

Our results in Fig. 7 usingr(E,T) with and without 0 0.005 0.01 0.015
bumps indicate that there are only small variations in the 2
slope of log¢) and o~ T remains valid within the accu-
racy of these estimations. We note that the lowest measured 1
temperature in Ref. 30 is 15 mK. From Fig. 7 we see that the
variations forT=15 mK are much smaller than those for 0 1=
T<15 mK. Hence, these variations it could not have
been observed in the experiments. 1

In Fig. 8 we show how the bumps affeégtEven with the < £ A,?.‘( 1
very small bump 3S changes sign in the critical regime as = 0 :;‘;:’
T—0. As the bump increases this change becomes more » M 1
pronounced. The temperatufg_, at which the sign change 1+ Aﬂﬂ.ﬂ-:_;f; —— bump3 |
occurs is 0.1 K for bump 3Ts-,=0.2 K for bump 2, and Z .
Ts—9~0.4 K for bump 1. These results fdars_, are still 0 [gat e
about one order of magnitude less than in semicondufttors F - unmodified ﬁ,k«***
and two orders of magnitude smaller than in amorphous 1k é_ﬁ..a-ﬁ'ﬁ’ﬁ' ametal |

6.7 . . . . o * critical

alloys.’ Of course, as shown in Fig. 85— shifts to higher e » insulator 1
values as the bump height increases. Nevertheless, the mini- ol 1 1
mum value ofS for T<Ts_, has the same order of magni- 0 005 T0k1+<) 015 02
tude as the corresponding maximum valueSah Si:(P,B)
and in Si:P. We emphasize that the valuergf , of course FIG. 8. The thermopower for different cases @f input. The

depends on the energy unit chosen and thus will vary fofines are guides for the eye only.
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Unlike in S, there is no dramatic change Kas can be FIG. 10. The variation of the Lorenz number withshifted by

seen in Fig. 9. We find only negligible variations @t 2 ) . : .
<15 mK. This should be expected since there has also bee /3 for different cases of; input. The lines are guides for the eye

hardly any change in the slope af(T) except for T only.

<15 mK. However, the small increase inat T<15 mK

in the metallic regime together with the minimally modified We also note that the finit€-scaling of o, S K, andL,

K leads to a drastic change I, even in the case for the according to Eq(2) can be performed with good accuracy
smallest bump. The increase and decrease ileads to a  for z~3, »=14

maximum and minimum irLy, respectively. Howeverl_g As a further challenge, we considered the sign changes
still approaches the universal value/3 for T—0 as dem- observed irSat low T. We found that even large variations
onstrated in Fig. 10. in the chemical potentigk(T) do not lead to a sign change

Let us comment on the validity of the bumps. As re-in S On the other hand, a variation in the inpy( E,T) data
viewed in the Introduction, one commonly observes a sigrtan give rise to such a sign changeSnwhile at the same
change inSfor small T. As shown here, we can only extract time resulting in only small changes in the conductivity
such a sign change within the noninteracting Andersoryence we have effectively modeled the underlying physical
model of localization by introducing an artificial bumplike yeas0ns for the sign change—which have been attributed to
structure ino. We interpret this as evidence that the signg|ectron-electron interactionsor to the existence of local
change is more likely due to physical processes not presemhagnetic moments and their interactions with elecftdms

in the Anderson description of disordered systems. to inelastic scattering with phonoris*2—by simply chang-
ing the inputo(E,T). Regarding a possible test for the ex-
V. CONCLUSIONS istence of such a structureq(E, T), we have shown that the

. T variation ofLg is much more sensitive to the bumps than

In this paper, we have shown that the anticipated value of; Thys we have been able to describe the main features of
the dynamical scaling exponeat=3 as well as the right he critical behavior ofS(T) although it remains unclear
order of magnitu_de for the ther_mopovaa%l uVIK atthe  \ynat might cause bumps in.(E,T) close toE.. A micro-
MIT can be obtained when taking into account the expectedcopic and possible system-dependent approach to the prob-
T dependencies in addmon to the S|mplg scglmg behavior ofgm may eventually account for these abrupt changes.in
Eq. (2). Our approach is phenomenological in the sense thabs coyrse, if many-particle interactions and electron-phonon
we have refrained from using fitting parameters and haveoypling are important, we no longer expect the feasibility of

rather taken experimental data as input. Using these data, Wge Chester-Thellung-Kubo-Greenwood  formulatfor’
can explain the large deviations from experimental results agsed nere.

reported in the theoretical studies of Refs. 21-25 and 33. We
have shown that our results f&ragree with those predicted
by the Mott formula since we have usedraslowly varying

on the scale okgT near the MIT. We emphasize, however,
that for a disordered system where interactions are negli- This work was supported by the DFG through Sonderfor-
gible, we should still expect the Anderson-type transition aschungsbereich 393, by the DAAD, the British Council, and
given in Eq.(1) at T=0. ConsequentlyS~100 uV/K at  the SMWK. The authors would like to thank R. Fletcher, R.
the MIT?~?*should again be expected and one should obRentsch, R. Rosenbaum, B. Sandow, and H. ‘hriaysen
serve a large increase | at very lowT. However, such for useful discussions. We thank R. Rosenbaum for a critical
temperatures appear presently inaccessible by experimemeading of the manuscript.
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