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Abstract

Microscopic semi-flexible filaments suspended in a viscous fluid are widely encountered in bio-

physical problems. The classic example is the flagella used by micro-organisms to generate propul-

sion. Simulating the dynamics of these filaments numerically is complicated because of the coupling

between the motion of the filament and that of the surrounding fluid. An attractive idea is to sim-

plify this coupling by modeling the fluid motion by using Stokeslets distributed at equal intervals

along the model filament. The question then is, how well does this represent reality? We show

that, with an appropriate choice of the hydrodynamic radius, the answer to this question is - very

well. The model reproduces the variation of the friction along the length characteristic of a slen-

der cylindrical filament, without requiring an explicit surface. This is true, however, only if the

hydrodynamic radii take specific values and that they differ in the parallel and perpendicular di-

rections. Having demonstrated this, we use the model to compare with analytic theory of filament

deformation and rotation in the small deformation limit. (PACS: 87.16.Ka, 05.45.a, 46.32.+x,

47.15.Gf)

∗aimee.bailey06@imperial.ac.uk
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I. INTRODUCTION

Microscopic biological filaments moving in a low Reynolds number environment are fun-

damental to the functioning of organisms. Typical examples include flagella and cilia in the

field of micro-organism motility [1–3]. Understanding the interplay between the filament and

its surroundings has notable biological implications in the context of the incipient stages of

life [4], not to mention the design and development of fabricated micro-swimmers [1, 5].

Other biological constituents whose statics and dynamics are critical in cellular function

include biopolymers such as microtubules [6, 7]. All of these examples have one common

feature: the biological component is relatively stiff and has a high aspect ratio (the length

greatly exceeding the width). Mechanically these systems exhibit behavior indicative of flex-

ible filaments. The collective complexity of the molecular structure manifests itself simply

as an effective bending elasticity. This being the case, one can gain insight by studying

inextensible, flexible filaments, which serve as a surprisingly good approximation to more

realistic descriptions [8].

The interesting, counterintuitive behavior of biological systems is often due to the in-

teraction of the body with its viscous environment [1, 9, 10]. For example, a one-armed

swimmer tries to propel itself by waving a stiff appendage, but it will go nowhere in the

absence of inertia (low Reynolds number). However, this is a perfectly viable means of

propelling one’s own body in a swimming pool (high Reynolds number). Resistive force the-

ory [11] is frequently used to mimic this interplay, approximating the interaction as a local

relationship between the force and velocity. For theoretical investigations, it is useful in that

it is more frequently analytically tractable. Hydrodynamic effects, however, are long-range

and scale inversely with distance, rendering this local description quite a limited one. In

fact, the very simplest example – a flexible filament in a static external field – yields rich

dynamic behavior that is impossible to predict using resistive force theory [9, 12, 13]. Not

surprisingly, incorporating the coupling between the body and the fluid is also significant

for more sophisticated systems, such as the growth of liquid crystals [14].

Significant progress has been made analytically using the Kratky-Porod wormlike chain

model, in which the filament is treated as a continuous elastic curve with constant length [15–

17]. Differential equations for systems evolving under elasticity typically involve high order

spatial derivatives and contain non-linear terms. The dynamics of a 2D curve with the very
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simplest elastic bending energy (quadratic in curvature) is non-linear and depends on the

6th order spatial derivative of the positions [15]. This is the most basic conceivable example

and already the mathematical complications are daunting. Categorically, the equations

of motion, either the full or a linearized version, have to be discretized and integrated

numerically to realize the dynamics. This in itself is a formidable task. Only sophisticated

techniques such as pseudospectral methods correctly treat high order derivatives to obtain

an accurate and numerically stable simulation [15, 17]. This is not to mention that many of

these studies use resistive force theory, which we have already pointed out is limited. The

above complications are prohibitive but only arise because the filament is described by a

continuous curve and an analytical path is pursued. If we were to instead use a discrete

description to develop an accurate computational tool, speculative simulations exploring

complex configurational space could be very easily be carried out.

With this in mind, here we describe a simple and computationally efficient simulation

model of a flexible filament immersed in a viscous fluid. The various force contributions are

described in detail. In a simulation model, at a small additional computational cost, one

is not limited to resistive force theory but can use the more accurate Stokesian description

that takes into account the body-fluid coupling. Representing a filament as a sequence of

‘Stokeslets’, or point forces acting on the fluid, is not new [9, 12, 18, 19]; however, we show

in this article that agreement between slender body theory and the continuum limit of the

discrete Stokesian hydrodynamic force is conditional on the choice of a tensor hydrodynamic

radius with specific values relative to the bead spacing. This is in contrast to previous work

where the hydrodynamic radius is set to exactly half of the bead spacing, which is referred

to as the “shish kebab” model [20]. We show that by choosing the hydrodynamic radius

appropriately, we are not limited to infinitely slender bodies; instead, we can accurately

simulate systems that have a realistic aspect ratio, such as a flagella which can have a

diameter of a few percents of the filament length [3].

II. FILAMENT MODEL

We describe a model filament as a collection of equally spaced points along a curve. All

forces and masses are concentrated at the site locations, which we will refer to as beads using

conventional nomenclature. Three types of forces – elasticity, hydrodynamics, and tension
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– form the basis of the model. External forces relevant for a specific application can easily

be added.

A. Elastic forces

The filament evolving under elasticity will be penalized for deviation from the lowest

energy conformation. If we take the ground state of the elastic filament to be a straight line,

the continuous equation for the elastic energy is an integral over the entire contour length

of the square of the curvature (κ) [21].

Ue =
α

2

∫ l

−l

∣

∣

∣

∣

∂2r

∂s2

∣

∣

∣

∣

2

ds =
α

2

∫ l

−l

κ2ds (1)

The position of the filament is denoted by r. The contour length (s) spans from −l to l,

where L = 2l. The constant α is the elastic flexure, or bending rigidity. This result is from

continuum elasticity theory, but our filament is actually represented as a discrete collection

of connected beads, separated by a spacing of b = L/(n−1). The variable θ is the deviation

of the tangent from the straight line of adjacent segments at bead i, given by

cos (θi) =
ri−1,i · ri,i+1

b2
, (2)

where rij = ri − rj. Relating the local radius of curvature to the angle θ by the cosine rule,

we have

κ2
i =

2

b2
(1 − cos (θi)) . (3)

Using this relationship, the discrete counterpart of Eq. (1) is

Ue =
α

b

n−1
∑

i=1

(1 − cos (θi)) . (4)

The elastic forces are the gradient of Eq. (4) with respect to position.

In our model the filament has a fixed segment length, meaning b is constant (see Sec. II C).

Therefore, no elastic energy can be stored in the form of axial extension/compression. The

filament simply has an energetic incentive to remain straight. This is analogous to writing

Eq. (1) with a Lagrange multiplier term to enforce local length constraints. Experiments

measuring force-extension curves indicate the Kratky-Porod wormlike chain model is a good

description of biofilaments and proteins [22–25]. Therefore, our combination of a bending

penalty plus length constraints is justified.

5



B. Hydrodynamic forces

In order to mimic the interaction of the filament submersed in a viscous fluid, we need to

include hydrodynamic forces. Solving the fluid flow equations exactly with a stick bound-

ary condition in a dynamic simulation, during which the shape evolves, is a computation-

ally daunting task. Alternatively, resistive force theory [11] provides a much simplified

description, but there are many instances where one cannot neglect the hydrodynamic cou-

pling [12, 14]. Conveniently, we will show that the solution of the flow equations can be

approximated by treating the continuous object as a collection of discrete Stokeslets, or point

forces. At arbitrarily high Stokeslet density, the continuous form of the object is recovered.

For example, the hydrodynamic force acting on our filament can be modeled using a line

of sufficiently numerous Stokeslets to recreate the behavior of a continuous curve. An ad-

vantage of this methodology, in addition to being computationally tractable for simulations

over long timescales, is that unbounded geometries can be considered.

The hydrodynamic force in our model is defined by

FiH = −γ0 (vi − viH) . (5)

The constant γ0 is the bead friction, where γ0 = 6πηa. The constants η and a are the

fluid viscosity and the hydrodynamic bead radius, respectively. Note that a is not a real

radius, in that the beads in the model have no spacial extension. Rather, it is a parameter

determining the friction strength. The term vi is the velocity of the filament at bead i,

and viH is the velocity of the fluid at the same location. We have written Eq. (5) with a

scalar bead friction for now, although we show in the following sections that in fact γ0 –

and therefore the hydrodynamic radius a – must be a tensor to recover results from slender

body theory.

Using the Stokeslet form for the fluid velocity, we have

viH =
1

8πη

∑

i6=j

(

Fj

|rij|
+ Fj ·

rijrij

|rij|3

)

, (6)

which gives the following hydrodynamic force:

FiH = −γ0vi +
γ0

8πη

∑

i6=j

(

Fj

|rij|
+ Fj ·

rijrij

|rij|3

)

. (7)
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Fi is the force on bead i. Eq. (6) is derived by eliminating the convective terms in the

Navier-Stokes equations. In other words, it is consistent with the Reynolds number being

low, with fluid inertia neglected.

C. Length constraints

In order to fix the contour length, we use SHAKE methodology to incorporate length

constraints in a dynamic simulation [26]. The distance between all connected beads is held

at a constant value to within a predefined degree of accuracy. For all results presented here,

we set the accuracy to be a relative bead separation |rij| /b of within 10−12. Using SHAKE

methodology, there is an array of numerical recipes one can use to calculate the Lagrange

multipliers that make up the constraint forces. For a linear geometry in which each bead

is connected to at most two nearest neighbors, such as the geometry we are considering

here, we use and recommend MILC SHAKE, which can be orders of magnitude faster than

SHAKE iteration [27].

D. Integrating the equations of motion

Now that all forces have been identified, what remains to be specified is an appropri-

ate integration scheme to evolve the equations of motion in a dynamic simulation. With

velocity-dependent forces present, one cannot use the standard velocity Verlet algorithm [28].

Instead, one can derive an update scheme using the Trotter factorization of the Liouville

propagator, the same method used to derive the reversible, multiple time scale, molecu-

lar dynamics scheme RESPA [29]. Furthermore, Kalibaeva et al. demonstrated that one

can combine a novel update scheme for a particular set of velocity-dependent forces with

SHAKE methodology for applying constraints [30]. Details of the procedure can be found

in their paper. Taking into account the assumption that the simulation model is for the

inertialess regime, one may also use an alternate method for evolving the system. Here we

solve a purely dissipative Langevin equation. Inertial effects are eliminated by minimizing

the inertial time-scale, with respect to all other times-scales, to the point where it does not

influence the results. Details can be found in References [31] and [32].
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III. COMPARISON TO SLENDER BODY THEORY

We want to evaluate the validity of using a collection of discrete Stokeslets to approxi-

mate the behavior of a continuous filament. Relevant analytical solutions that can be used

for comparison are numbered, and only manageable in the regime of small deformation. Our

comparison to theoretical results are likewise restricted to this regime. Cox, Batchelor, and

Tillet carried out seminal theoretical work on a slender elastic body undergoing sedimenta-

tion, with which some comparisons can be made [33–35]. To compare our model with their

results, let us first start with our definition of the hydrodynamic force, Eq. (7).

A. Average friction coefficient

Take the example of a filament experiencing a uniform external force density perpendic-

ular to its axis, denoted by f y (= F y
j /b). Eq. (7) for this example is

FiH = −γ0vi +
3af y

4

(

i−1
∑

j=1

1

j
+

n−i
∑

j=1

1

j

)

. (8)

The sum in Eq. (8) can be estimated using the definition of the Euler-Mascheroni constant,

k (≈ 0.5772).

k = lim
m→∞

(

m
∑

j=1

1

j
− ln(m)

)

(9)

Although this definition is for an infinite series, the following finite sum is a good approxi-

mation.
m
∑

j=1

1

j
≈ ln(m) + k (10)

For instance, for m = 100, the highest order omitted term (1/2m) in the harmonic series

is already two orders of magnitude smaller than k. With this approximation, we can write

Eq. (8) in terms of the dimensionless contour length, x (= s/l, where s = jb), spanning the

interval [−1, 1]. The result is

FH(x) = −γ0v(x) +
3af y

4
ln

(

1 − x2

(βb/l)2

)

, (11)

where β = e−k.

Consider the steady state solution, when the total hydrodynamic force matches the ex-

ternal force (−F y = FH). All sections of the filament move with the same velocity, the

terminal or steady state velocity, which we label U . Using L ≈ nb for large n, we have
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−bf y = −γ0U +
1

L

∫ 1

−1

[

3af y

4

(

ln

(

1 − x2

(βb/l)2

))]

dx. (12)

The logarithmic term diverges at the ends but is integrable. The solution is

γ0U = F y

[

b

L
+

3a

2L

(

ln

(

L

βb

)

− 1

)]

(13)

The average friction coefficient (γ⊥) of sedimenting filament can be evaluated by taking the

quotient of the total imposed external force and the resultant terminal velocity.

γ⊥ =
F y

U
=

4πηL

ln (L/(βb)) + 2b
3a

− 1
(14)

From theory [33], the friction coefficient of a slender body is

γ̄⊥ =
4πηL

ln (L/r) + C2

+ O
(

ln−3(L/r)
)

, (15)

where C2 depends on the cross sectional shape. For a uniform circular cross-section C2 =

ln(2)− 1/2. When the filament radius is chosen to be r = βb and the hydrodynamic radius

is chosen to be a⊥ = 4b/(3(2 ln 2+1)) ≈ 0.559b, our result is in exact agreement with theory

(to the order of error in the equations) for the case of sedimentation perpendicular to the

axis.

Starting with Eq. (7) and instead considering the scenario of the filament experiencing a

uniform force density parallel to its axis, we find that the average friction coefficient is

γ‖ =
2πηL

ln (L/(βb)) + b
3a

− 1
. (16)

From theory,

γ̄‖ =
2πηL

ln (L/r) + C1

+ O
(

ln−3(L/r)
)

, (17)

where C1 is a coefficient that again depends on the cross sectional shape. For a uniform

circular cross-section, C1 = ln(2) − 3/2. For the case of axial sedimentation, our results

match theory exactly when r = βb and a‖ = 2b/(3(2 ln 2 − 1)) ≈ 1.726b.

B. Relationships between a, r, and b

In order for the Stokesian hydrodynamic treatment to be consistent with the results from

slender body theory, the hydrodynamic and the filament radii must be chosen appropriately.
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In the shish kebab model both a and r are chosen to be simply b/2 [20]. However, our analysis

indicates that there is a more consistent choice.

First, we determined that the filament radius using the Stokesian treatment is r = βb ≈

0.562b, and therefore dictated by the degree of discretization. As the discretization increases,

the bead spacing decreases, and the model mimics a more slender filament.

The more interesting result is that two hydrodynamic radii are recovered, one for motion

perpendicular to the filament and one for motion parallel.

a⊥ =
4b

3 (2 ln(2) + 1)
≈ 0.559b

a‖ =
2b

3 (2 ln(2) − 1)
≈ 1.726b (18)

When a tensor hydrodynamic radius is implemented according to Eq. (18), the hydrody-

namic force in the limit that the force mediated by the fluid is negligible reduces to resistive

force theory with a tensor friction coefficient (since γ
⊥(‖)
0 = 6πηa⊥(‖)).

FiH = −
(

γ⊥
0 n̂n̂ + γ

‖
0 p̂p̂

)

· vi (19)

The vector n̂ (p̂) is the unit direction normal (perpendicular) to the filament.

In studies using resistive force theory, a popular choice for the ratio of the bead friction

coefficients is γ
‖
0/γ

⊥
0 = 1/2, equivalent to the ratio of the average friction coefficients in the

limit of an infinitely slender body. This is not the best choice. Finite slenderness must be

accounted for. In our model the ratio of the bead friction coefficients is γ
‖
0/γ

⊥
0 ≈ 3.09. This

is counterintuitive because the parallel friction coefficient of the filament is actually always

lower than that perpendicular. But, as Sec. IV shows, the average friction coefficients for

motion in each direction are recovered to a greater degree of accuracy using these values.

Given the effective radius for parallel movement is around three times that for per-

pendicular movement, the resultant hydrodynamic shape of the filament is caterpillar-like,

having the basic features of an ordinary garden cabbage looper. Therefore, we refer to it as

“caterpillar” Oseen hydrodynamics. An illustration of the hydrodynamic shape is shown in

Figure 1.

C. Inhomogeneous hydrodynamic force

As a further confirmation that our results are consistent, there is an additional theoretical

result with which we can compare: the (inhomogeneous) friction coefficient along the contour
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FIG. 1: A schematic of a) caterpillar and b) shish kebab hydrodynamic filament shapes.

length during sedimentation [33, 36]. The result for perpendicular sedimentation, rewritten

in terms of the variable definitions in this paper, is

f y

2πηU
= −

2

ln(ǫ)
−

1 + 2 ln(2) + ln(1 − x2)

ln2(ǫ)
+ O

(

ln−3(ǫ)
)

, (20)

where the constant ǫ is the slenderness parameter, defined as ǫ = r/l.

Defining ǫ̃ = βb/l, we can write the steady state friction from Eq. (11) as

γ0U = bf y +
3af y

4
ln

(

1 − x2

ǫ̃2

)

. (21)

We expand Eq. (21) in terms of ln−1(ǫ̃) to get

f y

2πηU
= −

2

ln(ǫ̃)
−

4b
3a

+ ln(1 − x2)

ln2(ǫ̃)
+ O

(

ln−3(ǫ̃)
)

. (22)

This is equivalent to Eq. (20) when the following two conditions hold:

ǫ̃ = ǫ (23)

4b

3a⊥
= 1 + 2 ln(2). (24)

Therefore, the filament radius is r = βb, and the effective hydrodynamic radius is a⊥ =

4b/(3(2 ln 2 + 1)). The analysis also holds for a comparison of the hydrodynamic force

during parallel sedimentation.

These conclusions are consistent with those from the analysis in Sec. III A, where we

calculated the average friction coefficient for sedimentation in the perpendicular direction.

Confirmation that the correct inhomogeneous hydrodynamic force is recovered, even whilst

neglecting higher order terms in Eq. ( 15), is significant since it is this variation in the

hydrodynamic force that causes the deformation of the flexible body.
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IV. RESULTS FROM SIMULATION
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n

0.1
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FIG. 2: Average friction coefficient versus bead density of a sedimenting filament in steady state

using the caterpillar model (B = 0.01, L = 1), where n = l/r.
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γ
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FIG. 3: Average friction coefficient versus bead density of a sedimenting filament in steady state

using the shish kebab parameterization (B = 0.01, L = 1), where n = l/r.

To compare our computational model with slender body theory, a series of simulations

was carried out. For all calculations, the starting configuration is a single filament oriented

along the x-axis. The number of beads n (and the resultant filament slenderness) in this case

is variable. Each pair of neighboring beads is constrained to be at a separation b = L/(n−1).

The velocity was initialized to zero. We introduce a dimensionless force

B =
L3F

α
, (25)
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which weighs the relative magnitudes of the elastic and external forces. When B ≪ 1, elastic

forces dominate and the filament remains largely straight. When B ≫ 1, the magnitude of

the external forces is large enough for significant deformation to occur.

The test case we consider is a full dynamic simulation of sedimentation, both parallel and

perpendicular to the primary axis of the filament. A uniform force density was applied to the

system and the equations of motion integrated until the body reached a constant, terminal

velocity. From this steady state configuration, we analyzed the forces. To give an idea

of the computational cost, a typical simulation of a filament modeled with 80 beads takes

about an hour on a computer with an Intel Pentium D processor (3.00 GHz) running Fedora

Linux. To allow comparison with theory the magnitudes of the external force density and the

flexure were chosen such that the deflection amplitude is small (well within one percent of the

length) in the steady state configuration. In terms of the dimensionless force, all simulations

were carried out with B ≤ 0.01. For the model this is not a necessary restriction, the high

B regime can also be studied. The length L for all simulations was set to unity.

The average friction coefficients calculated from our simulations are plotted in Figure 2

along with the theoretical values from Eq.’s (15) and (17). Our model shows excellent

agreement to theory, even for the very smallest bead density of n/L = 10. In contrast,

calculations using the shish kebab parameterization are plotted in Figure 3. The values for

the case of sedimentation perpendicular to the axis are reproduced accurately because the

hydrodynamic radius is chosen to be a = b/2, which is very close to our value of a⊥ = 0.559b.

The average friction coefficient that results from motion parallel to the axis, however, only

matches in the limit that the body is infinitely slender. The results in the limit of realistic

cross-section differ substantially from theory. The discrepancy is over 15% for the lowest

aspect ratio considered (n/L = 10).

We also compare the inhomogeneous friction coefficient as a function of contour length

that was introduced in Sec. III C. The analytical expression (Eq. (20)) and results from

simulation are plotted in Figure 4. They show excellent agreement overall. The slight

deviation is due to the fact that we are comparing our model to only the leading order term

from theory, although our simulation results contain higher order contributions. The higher

order terms appear to have little cumulative effect on the average friction coefficient results

in Figure 2.

Xu and Nadim extended the groundwork of Cox, Batchelor, and Tillett and determined
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FIG. 4: Friction coefficient from theory and simulation for n/L=100 and B=0.01.
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x/l
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y/C
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Simulation, n/L=40
Simulation, n/L=400

FIG. 5: Dimensionless deflection as a function of contour length.

an expression for the y-deflection by solving the differential equation of beam deflection

from elasticity theory by using the appropriate Green’s function [13]. From Eq. (7) in their

article, the deflection is given by

y(x) = −
C

24

[

(1 + x)4 ln (1 + x) + (1 − x)4 ln (1 − x)

−

(

13

6
+ 2 ln 2

)

x4 − (1 + 12 ln 2)x2
]

.
(26)

Please note that there is a typographical error in the original paper that has been corrected

here [37]. The constant C is

C =
2πηUl4

EI ln2(ǫ)
, (27)

where EI is the Young’s modulus times the second moment of area, which together constitute

the beam flexure α. The ranges of the parameters for which the deflection was calculated

14



are B = 10−5 − 10−1 and n/L = 20− 400. All parameter sets investigated yielded the same

dimensionless deflection. Two representative data sets are plotted in Figure 5. When the

theoretical dimensionless deflection is scaled by a constant factor of approximately 1.15, the

theory matches our simulation. The modest discrepancy is most likely due to the omission

of higher order terms in the derivation of Eq. (26), terms that our simulation model does

include. It is significant to note that both the theoretical and simulation results agree in the

prediction that the functional form of the deflection is independent of slenderness.

0 20 40 60 80
θ

0

0.2

0.4

0.6

0.8

1

τ/
τ 0’

Theory
Simulation

FIG. 6: Normalized torque as a function of θ, the angle between the filament end-to-end vector

and the plane orthogonal to the force axis.

Xu et al. also derived an expression for the torque acting on a flexible slender body.

The torque will cause the filament to rotate during sedimentation until a final orientation is

achieved in which the filament’s centerline is perpendicular to the force axis. Their result is

T = CT

2π2η2U2l5 sin(2θ)

EI ln4(ǫ)
= τ0 sin(2θ). (28)

The variable θ is the angle between the filament axis and x̂ when the external force is applied

in the ŷ direction. CT is

CT =

∫ 1

0

y(x)
[

2 ln 2 − 2 − ln
(

1 − x2
)]

dx ≈ 0.01661, (29)

calculated by numerical integration. The normalized torque as a function of θ is plotted

in Figure 6 along with the theoretical functional dependence. For the functional forms the

results are in excellent agreement. However, the normalization constant τ ′
0 from Figure 6 is

different from τ0 from theory. This is expected since the y-deflection from our simulation

results differs slightly from the analytic result that was used in the derivation of Eq. (28).
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V. DISCUSSION AND CONCLUSIONS

We described a simulation model for an elastic filament that accurately accounts for

intra-filament hydrodynamic interactions. We showed that the discrete Stokesian treatment

encapsulates the physics of a continuous filament of finite cross-section when a specific

tensor bead friction is chosen. Furthermore, in the limit that the inhomogeneity in the

friction coefficient is neglected, the caterpillar model reduces to simple resistive force theory

with a tensor bead friction coefficient. It follows from our analysis that the bead spacing

dictates the local radius of the filament. Therefore, when the two consecutive beads are not

constrained but instead connected by a simple spring, the inter-bead distance and therefore

the resultant filament radius is variable [18, 19]. By applying length constraints to the inter-

bead distance, as we do in this model, the radius is constant along the contour length of the

filament, which is a more realistic description.

The caterpillar model accurately simulates the dynamics of filament sedimentation for all

aspect ratios considered, whereas the shish kebab parameterization only recovers the correct

average friction coefficients for an infinitely slender body (infinitely high bead density). A

real filament is not infinitely slender but has a diameter that may be a few percent of the

filament length [1, 2]. There is significant deviation from the correct hydrodynamic behavior

in this regime using the shish kebab parameterization.

Our simulation results for the dimensionless deflection of a filament sedimenting perpen-

dicular to its axis agree with the theoretical prediction that the steady state shape does

not depend on the slenderness of the filament. Also, calculations of the torque acting on a

mis-aligned filament support that the functional dependence is sin(2θ). We observed a mod-

est discrepancy in the magnitude of the dimensionless deflection between our simulations

and the theoretical results. This could be due to the omission of higher order terms in the

derivation of the theoretical result. Another potential source of the difference may be that

the theoretical deflection (Eq. 26) is calculated from a differential equation that does not

include a Lagrange multiplier to enforce constant length. Our simulation model is a slightly

different description in that no energy can be stored in the axial direction.

We have chosen the hydrodynamic radius specifically to recover the results of a body

with a uniform circular cross-section. But, it is possible to choose it instead to match the

average parallel and perpendicular friction coefficients for a different cross-sectional radius
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profile [33]. One simply has to use different values for the constants C2 and C1 in Equations

(15) and (17), respectively. This means that the dynamic response actually depends on

the specific geometry considered. We chose a uniform circular cross-section because it is

a realistic representation for the shape for microtubules, nanotubes, and cilia/flagella of

fabricated micro-swimmers.

Where might this model be relevant? The ratio of the two friction coefficients is particu-

larly important in the field of micro-organism motility. The swimming speed (and thrust) of

a flagella with planar waves, for instance, is proportional to (1 − γ‖/γ⊥) [3]. Any deviation

in this ratio will have significant effects on the motility. In the extreme case where γ‖ = γ⊥,

the organism cannot move at all!

Elastic, hydrodynamic, and tension forces form the basis for the model. However, in-

corporating other forces is trivial. Biological molecules are frequently charged. With this

model, one could investigate the dynamics of a charged filament such as a microtubule in

an electric field, for example [6, 7]. The scope of problems one can investigate using the

deterministic simulation model presented here, in which thermal fluctuations are neglected,

is delineated by the condition that the time scale of diffusion is significantly longer than

the time scale associated with the motion of interest. In practice this restricts its applica-

bility to relatively stiff filaments. Nonetheless, similar considerations of parameterizing the

Stokeslet hydrodynamic description apply when one includes thermal fluctuations. Such a

model can then address an even wider class of important problems, notably the dynamics

of DNA fragments.
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