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The continuing advance in computational power is beginning to make
accurate electronic structure calculations routine. Yet, where physics
emerges through the dynamics of tens of thousands of atoms in metals,
simplifications must be made to the electronic Hamiltonian. We present the
simplest extension to a single s-band model [A.P. Sutton, T.N. Todorov,
M.J. Cawkwell and J. Hoekstra, Phil. Mag. A 81 (2001) p.1833.] of metallic
bonding, namely, the addition of a second s-band. We show that this
addition yields a reasonable description of the density of states at the Fermi
level, the cohesive energy, formation energies of point defects and elastic
constants of some face-centred cubic (fcc) metals.

Keywords: tight-binding; transition metal; computer simulation; electronic
structure; point defects

1. Introduction

Where the physics of metals requires an accurate description of the electronic
structure, the first choice of simulation methods is often density functional theory
(DFT). For some transition and noble metals, there are good d-band or s–p–d-band
tight binding (TB) models available, which are significantly less computationally
expensive than DFT techniques, and yet retain an explicit treatment of electronic
relaxation as atoms are displaced [1]. However, there are many examples in the
physics of metals, which are of great practical significance, that require a treatment
of the dynamics of thousands or millions of atoms, over time scales that are too large
even for such TB models to be used with current computing resources. In such cases,
it is common practice to use instead an effective interatomic potential in which
electrons appear only implicitly through the choice of the function of the atomic
positions that defines the potential. Whenever an interatomic potential is used, the
Born–Oppenheimer approximation is made – it is assumed that as the response of
electrons is sufficiently fast, they can relax into their ground state wherever the nuclei
go. In that case, the energy of the system depends only on the atomic coordinates.
The approximation breaks down when electrons are excited. For example, the large
atomic velocities created by high-energy impacts of massive particles during

*Corresponding author. Email: daniel.mason@imperial.ac.uk

ISSN 0950–0839 print/ISSN 1362–3036 online

� 2010 Taylor & Francis

DOI: 10.1080/09500830903430979

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
m
p
e
r
i
a
l
 
C
o
l
l
e
g
e
 
L
o
n
d
o
n
]
 
A
t
:
 
1
4
:
0
7
 
1
1
 
J
a
n
u
a
r
y
 
2
0
1
0



irradiation or sputtering excite electrons out of their ground states. But there are very
few TB models which are sufficiently simple to allow one to treat the dynamics of
thousands or millions of atoms in a metal over time scales of molecular dynamics
simulations comparable to those accessible with simple interatomic potentials.

Sutton et al. [2] described the simplest possible TB model in which a single s-band
description of valence electrons is fitted to certain properties of noble metals. This
model has been used to explore the physics of electromigration in nanowires [3],
current induced heating in nanowires [4], and electronic excitations and their
influence on interatomic forces in radiation damage [5,6]. In each of these
applications, the simplicity of the model has enabled the physics to be explored in
systems that were considered too large to be modelled by a more accurate electronic
Hamiltonian. In polymer physics, a single s-band model has also been used with
great success. The Su–Schrieffer–Heeger (SSH) model of polyacetylene [7] has been
used extensively to model electron–phonon coupling in a model conjugated polymer.
We contend that in any atomistic simulation there will always have to be a balance
struck between the accuracy of a model defined in terms of (a) the treatment of
electronic relaxation and dynamics, and (b) the number of atoms and the period of
time that can be simulated. As computing power increases, the need for the balance
will never be removed; it will only move the fulcrum towards the treatment of ever
larger systems and longer periods of time. Similarly, it will always be the case that the
largest systems and longest periods of time will be simulated only with interatomic
potentials, and there will always be a demand for improved potentials, irrespective of
the advances in simulations based on DFT or TB descriptions of atomic interactions.

The simple model described in [2] is unable to capture features that have turned
out to be significant in some materials processes. The density of states at the Fermi
level is not well described. Moreover, as the bandfilling was selected as a fitting
parameter, the effective nuclear charges on atoms are non-integer. The aim of this
article is to make the simplest possible modification to the single s-band model,
which will remove these limitations with the minimum increase of computational
cost. Our model aims to reproduce the correct low-temperature crystal structure, the
elastic properties and cohesive energy, together with the density of states at the Fermi
level and integer charge states of isolated atoms. We achieve this by adding a second
s-orbital.

The second orbital is not intended to replace the d-band, which is known to be
crucial for the correct description of directional bonding in a transition metal [8]. It
merely provides sufficient flexibility to approximate the correct density of states at
the Fermi level while retaining mechanical stability. In this sense, a parallel can be
drawn with the very successful Vogl sp3s� basis set for silicon, where the higher
energy s� orbital adds significantly to the flexibility and transferability of the model
without undue increase in complexity [9]. We have found that the fitting process
naturally makes the second orbital narrower, and placed relative to the Fermi level in
such a way as to mimic the position of the d-band. The density of states produced
thus have features similar to those of transition metals. The model proposed here
suffers from the absence of same directional bonding with any s-band model, but
with the improvements to the density of states at the Fermi energy, the overall shape
of the density of states and the number of electrons per atom make it significantly
more suitable for some applications. These include, for example, studying the
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influence of the density of states at the Fermi energy on current-induced effects in

nanowires and on electronic excitation in radiation damage in metals.

2. A two orbital tight-binding model

Our starting point is the single s-band model of [2]. This model has five adjustable

parameters: an energy scale ", a measure of the hopping integral strength c, repulsive

and hopping exponents p and q and bandfilling �. These are fitted in turn to the

cohesive energy, lattice parameter a and bulk modulus, leaving some flexibility for

best fitting the other elastic moduli by tuning the bandfilling subject to the constraint

that the face-centred cubic (fcc) structure is most stable. The hopping integral

between atoms m and n is given by

Hmn ¼ HðRmnÞ � HðjRm � RnjÞ ¼ �
�c

2

a

Rmn

� �q

ð1Þ

for m 6¼ n, and zero otherwise. The binding energy of atom n in a neutral bulk crystal

in this model is then a sum of a repulsive pairwise interaction and the electronic bond

energy:

EB ¼
�

2

X
m 6¼n

a

Rmn

� �p

þ 2
X
m6¼n

Hnm�mn, ð2Þ

where Rmn is the distance between atoms m and n and �nm, the bond order between

them. The factor 2 is for spin degeneracy.
We generalise this model to two s-orbitals, which we label s and s�, by making the

adjustable parameters c and q symmetric 2� 2 matrices c and q. We also shift the s-

and s*-bands relative to each other to allow for different first moments. The hopping

integral coupling orbital � on atom m with orbital � on atom n, with �, � being s or

s�, is then

H��
mnðRmnÞ ¼

� �c��

2
a

Rmn

� �q��
, m 6¼ n

Es, m ¼ n,� ¼ � ¼ s

Es� , m ¼ n,� ¼ � ¼ s�

0, m ¼ n,� 6¼ �:

8>>>>><
>>>>>:

ð3Þ

The repulsive pairwise potential will take the same form as in Equation (2). We

terminate both repulsive and hopping integral contributions using the smooth

polynomial scheme described in Appendix A. We apply the termination between the

positions of the second- and third-nearest neighbours in the perfect fcc crystal.
Assuming that the system is not spin polarised, the binding energy of atom n in

the s–s� model is then

EB ¼
�

2

X
m2N n

a

Rmn

� �p

þ 2
X
m2N n

X
��

H��
nm�

��
mn þ 2

X
��

H ��
nn �

��
nn � Eat, ð4Þ

Philosophical Magazine Letters 53

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
m
p
e
r
i
a
l
 
C
o
l
l
e
g
e
 
L
o
n
d
o
n
]
 
A
t
:
 
1
4
:
0
7
 
1
1
 
J
a
n
u
a
r
y
 
2
0
1
0



where N n indicates the set of atoms neighbouring n, and Eat is the energy of an
isolated neutral atom (Appendix B).

Consider possible hopping exponents q��. The simplest choice is that all elements
are equal, q��¼ q. This has the advantage that the ground-state density matrix would
be invariant to small changes in volume [2]. Moreover, the Hamiltonian would be
separable into the outer product of orbital- and position-dependent parts, and
so could be expressed on a basis in which the orbital part was diagonalised.
We could write Ĥ¼ c1P1ĥ({R})þ c2P2ĥ({R}), with P1(P2) being a projector onto
the first(second) eigenstate of the orbital part of the Hamiltonian and c1(c2)
the corresponding eigenvalue. Note that this separation is valid even if the
electron–electron interactions given in Appendix B are included. However, we
would find surprising unphysical consequences if we then performed time-dependent
tight-binding (TD-TB). In TD-TB (a full description of which can be found in [10])
the evolution of the density matrix is given by the quantum Liouville equation
i�h _̂� ¼ ½Ĥ, �̂�. The density matrix can quite generally be written as
�̂ ¼ P1�P1 þ P1�P2þ P2�P1 þ P2�P2. As the projectors are time-invariant, we see
immediately that the quantum Liouville equation would become
i�hd=dtðPa�̂PbÞ ¼ ½Ĥ,Pa�̂Pb�; we find that the projected parts of the density matrix
would evolve independently. Since the trace of any matrix commutator is zero,
TrðPa�̂PbÞ is independent of time. The total occupation of each orbital (summed over
lattice sites) would therefore remain constant.

The next simplest case for the hopping exponents q is to fix them to different
values. We can be guided by the physics of s–d-band mixing, and choose
the exponents to match the s- and d-orbital exponents of Harrison’s TB model
[11], qss¼ 2, qss

�
¼ qs

�s
¼ 7/2, qs

�s�
¼ 5. The s�-orbital is therefore spherically symmetric

like an s-orbital, but tails off rapidly like a d-orbital. We note that, while fitting to
the cohesive energy, elastic constants and density of states, the absolute level of the
first moment of the bands is immaterial, and only the difference D¼Es�Es� is
important. The bandfilling is fixed to half-filled for the group VIIIb metals and
three-quarters for the Ib metals. This gives a total of two or three electrons per atom,
respectively, in the neutral state. Finally, we make the repulsive index p a floating
point variable, giving a total of six parameters to fit {�, p, D, c}.

The six parameters are fitted to the following six empirical quantities: the
equilibrium condition at the experimentally observed lattice parameter; the cohesive
energy of the low temperature crystal; the three elastic moduli of the perfect fcc
crystal and the density of states at the Fermi level as calculated using DFT with the
Castep code [12]. This is done by least squares fitting. For a given choice c�� and D,
the lattice parameter and cohesive energy (from [13]) are fitted exactly by varying
p and �. This leaves a four-dimensional search to best fit the elastic properties and
density of states. Candidate fits are discarded if they are mechanically unstable (any
calculated elastic constant not positive, or c115 c12). They are also discarded if the
body-centred cubic (bcc) structure is found to be more stable than the fcc. Finally, we
discard any fit for which any point defect formation energy (Section 4) is
unreasonably small or negative, as this also indicates an unstable potential.

The absolute values of Es and Es� together with the on-site Coulomb repulsion
energy U can then be fit for the electron affinity and first ionisation potential
(Appendix B).
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3. Potentials for fcc transition metals

The parameterisation of the best-fit potentials found is given in Table 1. The elastic

constants and the electronic properties, including the density of states at the Fermi

level computed as part of the fitting process, are given in Table 2.
It is seen that a reasonable fit to all three elastic constants can be achieved with

this simple model. Only c44 for gold is poor. Candidate fits for gold with a much

better match for c44 were rejected on the grounds of unacceptable point defect

energies. It can be seen that the densities of states at EF can be well reproduced by

tuning the parameters of this simple model. This is encouraging, but inspection of

histograms of the densities of states shows that the fit to the electronic structure is

good not just at EF, but in a window centred on it (Figure 1). Best fitting to the

elastic properties and the density of states at EF has naturally produced a wide flat

s-band with a sharply peaked s�-band superposed on it. The bandfilling has ensured

that the s� peak appears either at, or 2 eV below, EF. The coincidence of true and

model densities of states around the Fermi energy implies that where transport or

electronic excitation phenomena probe the d-band in a real metal, a similar

bandstructure effect might be seen with the model potential at roughly the same

energy scale.

Table 2. Elastic constants measured in eV/Å3, and electronic properties of the perfect crystal
for the potentials fitted here.

c11 c12 c44 Eb Ef Et D(Ef) �

Cu 1.068 (1.100) 0.832 (0.780) 0.523 (0.510) �29.143 �2.054 0.453 0.101 (0.118) 0.750
Ag 0.834 (0.869) 0.622 (0.604) 0.394 (0.344) �24.740 �2.418 �0.324 0.125 (0.117) 0.750
Au 1.207 (1.314) 0.897 (0.975) 0.568 (0.274) �31.838 �3.023 �0.295 0.130 (0.119) 0.750
Ni 1.595 (1.630) 1.098 (0.940) 0.740 (0.820) �38.705 �4.085 2.187 1.753 (1.693) 0.500
Pd 1.609 (1.460) 1.016 (1.100) 0.642 (0.440) �28.133 �4.443 0.751 0.919 (1.083) 0.500
Pt 2.250 (2.230) 1.556 (1.585) 0.452 (0.480) �48.577 �5.512 4.871 0.999 (0.915) 0.500

Note: The experimental values for elastic constants are in parentheses from [13]. The Fermi
level (EF) and band edges (Eb, Et) of the model are given in eV. The density of states at the
Fermi level is in states per atom per eV, with the DFT calculated value in parentheses. � is the
total s, and s� bandfilling used.

Table 1. Parameterisation of the potentials.

a � p Es Es� css css� cs�s� U

Cu 3.61 8.340E�04 13.7723 �4.4800 �4.5070 1970.6920 �2.5959 120.8204 6.493
Ag 4.09 1.790E�04 17.1865 �4.4501 �4.4411 7303.9667 894.0779 0.3231 6.270
Au 4.08 2.270E�04 17.5275 �5.7873 �5.7682 6726.0558 1707.7570 0.8968 6.914
Ni 3.523 4.080E�03 11.2761 �4.7125 �4.0878 543.9727 53.2842 0.7294 5.854
Pd 3.887 6.620E�04 15.4687 �4.4483 �4.4484 1889.9262 641.9126 161.8567 7.777
Pt 3.924 6.800E�03 11.9395 �5.7544 �5.3872 220.5027 138.7442 78.4589 6.525

Note: a is in Å and �, Es, Es�, U are measured in eV.
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4. Point defect energies

As a test of the transferability of the potentials produced, we have computed
point defect formation energies at T¼ 0K. The values quoted in Table 3 are
relaxed constant-volume point defect formation energies for vacancies,
and self-interstitials, computed using a simulation cell of 6� 7� 8 fcc unit cells
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Figure 1. Computed densities of states around the Fermi level for group Ib and VIIIb
elements. The energy scales are shifted so that the Fermi level is adjusted to zero. In each plot,
the dark line has been computed with the DFT code Castep [12], and the lighter line using the
simple model parameterisations given here. At the Fermi level, all three Ib elements are seen to
have a very flat density of states, which is reproduced by our simple model. We note that the
s�-band also produces a spike in the density of states about 2 eV below the Fermi level.
The three VIIIb elements are characterised by having a rapidly falling density of states at the
Fermi level, which is reproduced by our simple model. Note that our parameterisation for
nickel is spin-degenerate.
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(totalling 1344� 1 atoms). An on-site Coulomb correlation energy is included in
these calculations (Appendix B). We see from Table 3 that the h100i-split dumbbell is
the lowest energy interstitial for the group VIIIb metals, in line with other studies.
The noble metals show the octohedral self-interstitial to be the lowest energy
configuration, whereas it is usually believed to be the h100i-split [17]. This indicates a
failure of the simple model – the potential forms given here are too stiff at short
distances, as indicated by the rather high index p in the repulsive part of the
potential. It is also notable that the s-band models underestimate the vacancy
formation energies by about a factor of 2.

5. Conclusion

Where a dynamical process in a metal requires an explicit treatment of the electrons,
a compromise must always be made between the realism of a simulation in terms of
its duration, size and the accuracy of the electronic Hamiltonian. This will remain
true regardless of advances in computational power and algorithms. We have
developed a simplified TB model for the simulation of large metallic systems where
an explicit treatment of electron dynamics is essential. The model builds on an earlier
single s-band TB model, and improves it by returning a more accurate density of
states at the Fermi level and integer electronic occupancies of neutral atoms.

The elastic properties are well reproduced. The electronic density of states 1 eV
either side of the Fermi level is reproduced reasonably well in all cases, suggesting
that these models may also be suited to studying current-induced effects in
nanowires. The density of states for the model noble metals show a large spike 2 eV
below the Fermi level, around the same position as the real d-band edge. The model
is a significant improvement on the earlier s-band model of [2] and will enable further
qualitative insight to be gained into complex dynamical processes involving
electronic excitation in metals.

Table 3. Calculated point defect energies at T¼ 0K, for the vacancy, and three self-
interstitial types (h100i-split dumbbell, octahedral and tetrahedral).

Hvac
f Hh100if Hoct

f H tet
f

Cu 0.62 (1.04–1.31) [1.33a] {0.60} 4.77 {2.51} 4.36 {2.78} 5.81 {3.16}
Ag 0.60 (1.09–1.19) [1.24a] {0.57} 5.61 {3.79} 5.28 {3.90} 6.89 {4.68}
Au 0.54 (0.89–1.00) [0.82a] {0.30} 7.63 {3.02} 7.25 {6.52} 9.32 {3.10}
Ni 1.06 (1.45–1.80) [1.77a] 5.04 [4.07b] 5.10 [4.25b] 6.27 [4.69b]
Pd 1.09 (1.60–2.10) [1.70c] 6.59 6.71 8.36
Pt 0.87 (1.15–1.60) [1.16c] 6.17 6.35 7.55

Notes: aKorhonen et al. [14].
bTucker et al. [15].
cMattsson and Mattsson [16].
All energies reported in eV. The experimental results are given in round parentheses.
DFT results are in square braces where available. The results generated with the TB model of
Ref. [2] using the same procedure as that outlined in the text given in curly braces.
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Appendix A: Polynomial tails

We want an order n polynomial truncation function pn(r) in the interval rt� r� rc which can
smoothly take a function f(r) and its first m derivatives to zero at a cutoff point r¼ rc. For a
transferable polynomial, we apply the truncation function in a multiplicative fashion, that is,
we replace the bare function f(r) with

~fðrÞ ¼
f ðrÞ r � rt

f ðrÞ pnðrÞ rt � r � rc
0 r 	 rc

8<
: : ðA1Þ
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The purpose of such a termination is to remove the discontinuities in such a function which
can violate conservation laws during numerical integration. We can therefore identify that m
needs to be at least the order of the integrator, and that the number of derivatives matched at
rt should also be m. The lowest order polynomial that will meet the boundary conditions is
then n¼ 2mþ 1.

It is convenient to write x ¼ rc�r
rc�rt

, and use the function ~pnðxÞ ¼
Pn

i¼0 aix
i. The matching

conditions take the form of a set of simultaneous equations which can be solved to give the
coefficients ai. The boundary conditions at r¼ rt, x¼ 0 give ai¼ 0 for i�m. The boundary
conditions at r¼ rc, x¼ 1 give the set of simultaneous equations

1 1 . . . 1
mþ 1 mþ 2 . . . 2mþ 1
ðmþ 1ÞðmÞ ðmþ 2Þðmþ 1Þ . . . ð2mþ 1Þð2mÞ

. . . . . . . . . . . .
ðmþ 1Þ!=1! ðmþ 2Þ!=2! . . . ð2mþ 1Þ!=ðmþ 1Þ!

0
BBBB@

1
CCCCA

amþ1
amþ2
amþ3
. . .

a2mþ1

0
BBBB@

1
CCCCA ¼

1
0
0

. . .
0

0
BBBB@

1
CCCCA,

where the first row fixes ~pnðx ¼ 1Þ ¼ 1, and the subsequent m rows zero the first m derivatives
at x¼ 1.

The first few solutions are given in Table A1. Note that each truncation function ~pnðxÞ is
symmetric about x ¼ 1

2.

Appendix B: On-site Coulomb correlation energy

The energy of isolated charged ions may be written down by the inspection of Hamiltonian
and bandfilling. With ionic charge Q (measured in units of electronic charge, so that an excess
of one electron gives Q¼�1) relative to the neutral atom we add to the on-site Hamiltonian
elements an additional term �UQ to represent the on-site Coulomb correlation energy for a
spin-degenerate system (U is analogous to the Hubbard energy in non-spin-degenerate
systems). For an isolated atom, the Hamiltonian is then

H ¼
Es �UQ 0

0 Es� �UQ

� �
, ðB1Þ

and the energy of the non-interacting ion is EatðQÞ ¼ 2Es�ss þ 2Es� �s�s� þ
1
2UQ2. Note that

the factor of one half is needed to avoid double-counting the electrons. The energy of the ionic
charge states is given in Table A2. The energy scale U and the lower of Es and Es� are fitted to
reproduce exactly the first ionisation potential I1 and the electron affinity Ia , making this
parameterisation suitable for sputtered ions as well as those in the bulk. These values are then
given in Table A3. We note that our simple model underestimates the second ionisation
energy.

Table A1. First few truncation functions for smooth polynomial tails.

a

m 0 1 2 3 4 5 6 7 8 9 10 11

0 0 1
1 0 0 3 �2
2 0 0 0 10 �15 6
3 0 0 0 0 35 �84 70 �20
4 0 0 0 0 0 126 �420 540 �315 70
5 0 0 0 0 0 0 462 �1980 3465 �3080 1386 �252
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Note that the value of U does not affect equilibrium properties of the metal, such as
cohesive energy or elastic constants, as all atoms are then neutral. In any dynamic process,
ionic charges are screened by mobile electrons, which can be accounted for more fully by
supplementing the present model with the addition of a pairwise Coulombic interaction.

Table A2. The energy of non-interacting ions.

Charge
� ¼ 1

2 (Ni, Pd, Pt) � ¼ 3
4 (Cu,Ag,Au)

state Q Es5Es� Es	Es� Es5Es� Es	Es�

�1 2Es þ Es� þ
1
2U 2Es� þ Es þ

1
2U 2Es þ 2Es� þ

1
2U 2Es� þ 2Es þ

1
2U

0 2Es 2Es� 2EsþEs� 2Es�þEs

þ1 Es þ
1
2U Es� þ

1
2U 2Es þ

1
2U 2Es� þ

1
2U

þ2 2U 2U Esþ 2U Es�þ 2U

Ia �Es� �
1
2U �Es �

1
2U �Es� �

1
2U �Es �

1
2U

I1 �Es þ
1
2U �Es� þ

1
2U �Es� þ

1
2U �Es þ

1
2U

I2 �Es þ
3
2U �Es� þ

3
2U �Es þ

3
2U �Es� þ

3
2U

Notes: The energy of the isolated neutral ion required by Equation (4) is given in the row for
Q¼ 0. The electron affinity and first two ionisation energies (Ia and I1, I2) are also given.

Table A3. Ionic properties of the atoms.

Eat Ia I1 I2

Cu �13.494 1.233 7.727 14.25 (20.30)
Ag �13.341 1.306 7.576 13.86 (21.46)
Au �17.343 2.311 9.225 16.16 (20.53)
Ni �9.425 1.161 7.639 13.49 (18.18)
Pd �8.897 0.560 8.337 16.11 (19.39)
Pt �11.509 2.125 9.017 15.54 (18.57)

Notes: All energies are given in eV. The electron affinity and first ionisation potential (Ia and
I1, respectively) are fitted exactly to the experimental values from [18]. The second ionisation
potential is compared to the experimental value in parentheses.
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