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Abstract
Atomistic simulations are a primary means of understanding the damage done to metallic
materials by high energy particulate radiation. In many situations the electrons in a target
material are known to exert a strong influence on the rate and type of damage. The dynamic
exchange of energy between electrons and ions can act to damp the ionic motion, to inhibit the
production of defects or to quench in damage, depending on the situation. Finding ways to
incorporate these electronic effects into atomistic simulations of radiation damage is a topic of
current major interest, driven by materials science challenges in diverse areas such as energy
production and device manufacture.
In this review, we discuss the range of approaches that have been used to tackle these
challenges. We compare augmented classical models of various kinds and consider recent work
applying semi-classical techniques to allow the explicit incorporation of quantum mechanical
electrons within atomistic simulations of radiation damage. We also outline the body of
theoretical work on stopping power and electron—phonon coupling used to inform efforts to
incorporate electronic effects in atomistic simulations and to evaluate their performance.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The study of the damage caused to materials by high energy
particles is of huge practical importance. Beams of energetic
particles are used as experimental probes, as therapeutic tools
and as a means of materials modification in manufacturing
processes. Unintended radiation damage to materials in many
applications demands a detailed understanding of the physical
processes at work.

Structural materials in fission and fusion reactor
environments are subject to intense bombardment by high
energy neutrons. Given that commercial viability demands
long plant lifetimes, it is likely that future reactor materials
will have to cope with lifetime dose rates of over 100
displacements per atom (dpa) [1]. Such high levels of
atomic disturbance within an often carefully designed and fine-
scaled microstructure can significantly influence the choice of
material. The damage caused by irradiation can promote large
long-term changes in bulk material properties, some of which,
such as embrittlement, can threaten dangerous failure.

Characterizing this damage and understanding the
mechanisms by which it is caused is central to efforts to
improve the lifetime of materials in hostile environments.
Experiment can only take us so far. Typical damage
distributions have length scales that are accessible to the
highest resolution experimental probes, but they are formed in
times of no more than a few picoseconds; too fast to measure
directly.

Filling this experimental gap, a century of theoretical work
on the subject of radiation damage has built an impressive
array of models, treating the interactions of one type of ion
with another and treating in turn the interactions of those
ions with the system of electrons in which they sit. In
the last half century, these models have been incorporated
into computer simulations of radiation damage events, which,
as computing power has increased, have become more
sophisticated, attacking ever higher energies and larger length
and time scales. Today, computing resources allow simulations
of radiation damage to advance to the next stage. They will
move beyond the realm of classical molecular dynamics and
towards a full quantum mechanical treatment of the metallic
system.

A current challenge, acknowledged by recent efforts in
the field, is to provide a better understanding of the effect of
the interaction between ions and electrons on the outcome of
radiation damage events [2] (see [3] for a general review of
such effects in radiation damage). The electrons in a metal
contribute to the potential in which the ions move and their state
of excitation will affect that potential. Classical simulations
assume the validity of the Born—Oppenheimer approximation:
that the electrons will respond instantaneously to the motion
of the ions. In fact their response time is finite and this will
manifest itself increasingly strongly at higher ionic velocities.
The electrons will also behave as a heat bath, in thermal contact
with the system of ions. This heat bath will influence the
production and healing of defects in the ionic system and the
comparatively high thermal conductivity of the electrons will
provide a means of enhanced energy transport away from areas
of ionic disturbance.

In this paper we will consider the variety of ways in which
electronic effects can be incorporated into atomistic models of
radiation damage in metals, by which we mean simulation
methods that follow the evolution of an explicitly represented
set of ions. We will review the well established and much used
analytical models and their application in dynamic simulations
to yield an implicit treatment of energy loss to electrons. But
we will also cover more recent simulation work, in which
electrons are treated explicitly, and examine to what extent
the results validate previous conclusions. And we will look
to the future, identifying some techniques that improvements
in computational power may soon render applicable to the
simulation of radiation damage events.

We do not aim to present a comprehensive review of
collision and stopping theory. Detailed discussions of these
subjects are available elsewhere (see, for example, Bohr’s
review [4], the discussion of the work of Lindhard and
co-workers by Ziegler et al [5] and the more recent book by
Sigmund [6]). Instead we will consider only those aspects of
stopping theory relevant to a discussion of atomistic simulation
in metals, highlighting the essential aspects of the underlying
physics that are included within or excluded from the various
approximations made.

In the rest of this introduction we will discuss the
evolution of a typical radiation damage event, considering
where electronic effects might make themselves felt, and then
introduce the basic theoretical framework on which much of
the discussion in the literature of energy exchange between
electrons and ions is based. In sections 2 and 3 we will
describe the various analytical approaches that have been
applied to energy transfer in different regimes of ionic motion.
In sections 4 and 5 we will discuss the history, the state of the
art and the future of atomistic simulations of radiation damage
in metals.

1.1. The radiation damage cascade

Before delving into the nature of the interactions between
the various particles involved in radiation damage, we will
describe a typical event, introducing some of the terminology
prevalent throughout the literature along the way. Much
of our discussion will focus on the notion of a radiation
damage collision cascade developing within a solid block of
some material. The various ultimate causes of damage are
brought together in a single phenomenological framework by
considering the cascade to be initiated when an ion within the
material, known as the primary knock-on atom (PKA), is set in
motion, typically with a very high energy. This PKA is often
an ion of the target material itself, accelerated by a collision
with an intruding particle such as a neutron or «-particle, but
it might also be the recoiling product of a radioactive decay
process taking place, for example, within the storage medium
for radioactive waste.

The distribution of kinetic energy of the PKA (its
spectrum) and the subsequent pattern of development of the
collision cascade depend on the initiating event [1]. Collisions
with the 14 MeV neutrons emerging from a deuterium—tritium
fusion reaction will produce recoil energies in iron of up to
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1MeV with half of all recoils being above 10keV. The
somewhat slower neutrons emerging from nuclear fission
reactors produce recoil energies of up to several hundred
kiloelectronvolts. The recoiling 2**U nucleus from the decay
of 238Pu will have an energy of around 100keV.

A PKA with energy ~100keV and above will have a
very small cross-section for interaction with the nuclei of
the solid and can travel large distances without undergoing
a significant collision in a process known as channelling.
Experiments in which 40keV radioactive '>Xe ions are
implanted into crystalline tungsten along channelling axes
[7] show significant penetration at depths of up to 107%m.
Comparison with results for amorphous tungsten, in which no
penetration exceeds 0.1 x 107 m, suggests that channelling
plays a key role in determining the spatial distribution of
damage. A channelling ion will progressively lose energy
to the electrons of the solid and ultimately the channelling
behaviour will end with a collision between a pair of ions.
Depending on the energies and trajectories of the ions emerging
from the collision one or both of them might be able to travel
a significant distance before experiencing a further collision
and a subcascade can form. However, an ion which has been
significantly slowed, either by the collision or by energy loss
to the electrons, and has a kinetic energy in the keV range, will
have a large cross-section for interaction with other ions and
will undergo collisions with every ion that it encounters. At
this stage a displacement spike will form.

Before we discuss the evolution of the displacement
spike in detail, we will consider the important role played by
electrons in the processes discussed above. At the high ion
velocities involved in channelling, kinetic energy is lost mainly
to the electrons’, whilst the ions surrounding the channel
are disturbed only slightly by their fleeting interaction with
the passing projectile. However, experimental results show
significant damage, referred to as an ion track, to the material
surrounding the path of a channelling ion. The transfer of the
energy required to displace these ions must be mediated by the
electronic subsystem. The mechanism involved is the subject
of some controversy. Two plausible models have been put
forward.

The first is the so-called thermal spike model in which
the electrons in the vicinity of the ion track undergo a large
degree of excitation and subsequently lose energy to the ions
in the same region, causing local melting. The plausibility of
the thermal spike model depends on the competition between
the rate at which the energy is conducted away from the track
region within the electronic subsystem and the rate at which
it is transferred to the ions. A model, due to Duffy et al, that
is capable of investigating this balance [8, 9] is discussed in
section 4.5 on page 69.

The second, alternative view is the Coulomb explosion
model in which the channelling ion is thought to ballistically
eject electrons from the adjacent ions, causing a build-up of
spatial charge in the track region [10]. It is the Coulombic
repulsion between the ions that is responsible for the damage.
The plausibility of a Coulomb explosion depends on the

3 The stopping power theories discussed in section 2 suggest that for a 500 ke V
Fe ion in iron, ~70% of the energy loss is to electrons.

ability of the target material to sustain a spatial charge
distribution for time scales comparable to those required for
ionic rearrangement to take place.

Ryazanov et al [11] have compared calculations of heating
in copper for the two models of damage formation and found
that only the Coulomb explosion can give sufficient heating to
yield a molten region around the track. Fleischer et al [12]
have shown that the extent of radiation damage in dielectrics
correlates better with the rate of ionization by the PKA than
with its rate of energy loss, again lending support to the
Coulomb explosion model. Itoh and Stoneham [13] point
to evidence from work on dichalcogenides that shows track
formation does not occur for electrical conductivity exceeding
10°Q 'em™!.

A third possibility, not widely considered in the literature,
mirrors the thermal spike model, but without the requirement
that the excitation energy of the electrons be passed to the
ions in the form of thermal excitation. In fact, as discussed
in section 5.4 on page 89 and in [14], a highly excited
electronic subsystem implies significant weakening of the
attractive bonding interaction between ions and the resulting
outward pressure on the surrounding lattice may well be
sufficient (and sufficiently long-lived) to provide a mechanism
for damage formation. Distinguishing between these models
requires a quantum mechanical model of electronic stopping
and electron—phonon coupling.

Now, returning to our discussion of the evolution of a
collision cascade, we will consider the displacement spike [15],
first of all from the point of view purely of the interionic
interactions. We can regard the displacement spike as being
initiated by an energetic ion, moving sufficiently slowly that
it interacts strongly with the surrounding ions, intruding into
an undisturbed region of the target material, which for the
sake of example we will take to be a crystalline lattice. A
sequence of collisions takes place over a time scale of 1-10 ps
in which the majority of ions over a region of 10-100 nm in
size are displaced from their equilibrium lattice sites. This
initial period of disruption is known as the displacement phase
of the displacement spike and is followed by a relaxation
phase during which the energy is rapidly repartitioned amongst
the ions to yield a hot (and potentially molten) region, often
referred to as a thermal spike. Finally, there follows a cooling
phase in which the excited region grows and cools. By the end
of the cooling phase, several hundred picoseconds after the
initial PKA impact, the lattice will have healed itself to a large
extent, many of the interstitial and vacancy defects formed
in the displacement phase having recombined, and some final
damage state will have formed. The nature of the damage will
depend on the target material and the energy of the cascade
and will be characterized by some particular population of
defect types showing a particular tendency towards clustering.
Broadly speaking, we tend to observe a core region with
an elevated concentration of vacancies (the depleted zone)
surrounded by a shell containing interstitial defects.

An important mechanism for damage production is the
replacement collision sequence (RCS) in which an energetic
ion collides with another ion at a low angle of incidence to a
line of atoms in the crystal. A sequence of collisions ensues,
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with each ion replacing the next along the line, carrying the
resulting interstitial atom far enough from the corresponding
vacancy to inhibit recombination. Successful formation of an
RCS is highly dependent on the alignment of the ions and is
thus less likely at high temperatures. It also requires a low
ionic kinetic energy and even an RCS along a close-packed
direction will require energies of less than 100eV [16]. The
lattice surrounding an RCS will tend to ‘breathe’ slightly as
the disturbance passes, helping to steer the collisions and also
gradually slowing their progress.

We expect that the electrons should play an important
role in the evolution of the displacement spike. When the
spike first forms, all of the excess energy is contained in
the ionic subsystem and so although at low velocities (below
~500keV) the dominant mechanism for energy loss from
an ion is to other ions, we expect a net transfer of energy
into the electronic subsystem during the displacement and
relaxation phases. During the cooling phase the electrons will
function as a thermal bath in which the final defect distribution
establishes itself. The dynamics of energy exchange with the
ions, characterized by the electron—phonon coupling, as well
as the high electronic thermal conductivity, will determine
the effect of the electrons in quenching in, annealing out or
inhibiting the production of defects.

1.2. Transfer of energy between ions and electrons in
radiation damage

A key aim of the simulation of radiation damage collision
cascades in metals is to establish analytical tools and methods
of simulation able to predict the damage distribution at the
end of the cooling phase. Experimental testing of the
effects of 20 years of exposure in a high flux environment
is difficult to achieve. The defect populations caused by
irradiation constitute the initial conditions for the long-term
microstructural evolution of the metal. The models reviewed
here form the first level in a multiscale hierarchical description
of radiation damage spanning time and length scales from the
electronic to the geological.

Fundamentally important in the history of the develop-
ment of the theory and simulation of radiation damage has
been the evolution of the means by which energy exchange,
between ions and between ions and electrons, is treated. The
earliest theories undertook a wholly statistical treatment of cas-
cade development. Collisions between particles were treated
within various approximations and with increasing sophistica-
tion, ultimately yielding a body of theory able to make strik-
ingly accurate predictions of particle implantation ranges and
defect concentrations.

With the increasing availability of computer resources,
work began on the direct simulation of cascade evolution. The
earliest efforts married the established theory with Monte Carlo
techniques to gain more accurate information about the results
of radiation damage (see section 4.3). In such simulations,
an explicit model of the ionic distribution makes its first
appearance, although the ion-ion interactions are treated in
a simplified way. More recent work has used molecular
dynamics (MD) to give a completely explicit picture of ions

evolving under Newton’s laws, under the influence of various
force models. However, electrons within the metal have until
recently been treated only implicitly, in the simplest case
via their contribution to the interionic potential and in the
most sophisticated case additionally as a viscous medium and
energy sink.

Given the important role of electrons in providing a heat
sink or reservoir and a means of energy redistribution, and
given the likelihood that in many situations the electronic
contribution to the interionic forces will violate the Born—
Oppenheimer approximation implicitly assumed in the
potentials of classical MD, we might reasonably conclude that
the next stage in the evolving effort to model radiation damage
should focus on improvements in the treatment of electrons.
Some of the most recent work begins to address this challenge.

The full dynamics of a system of interacting nuclei
and electrons are encapsulated within the time-dependent
Schrodinger equation for the system. The solution of this
equation being intractable for large systems, a given simulation
method can be viewed as an approximation, to some lesser
or greater extent, of the full many-body quantum mechanical
dynamics. Broadly speaking, there are then two routes to
incorporating electronic effects within such a simulation. One
possibility is for the degree of approximation to be such as
to retain the physics necessary to give rise to the electronic
effects as a direct consequence of the dynamics of the model.
That is to say that the model includes an explicit description of
quantum mechanical electrons. Examples of such simulation
methods are discussed in sections 5.3-5.5. Alternatively, the
approximation to the system dynamics may be such as to
exclude electronic effects, which are then added back in via
some augmentation of the model intended to capture particular
phenomena. Examples of this class of model are covered in
sections 4 and 5.1.

The large body of theoretical and experimental work
dedicated to understanding and measuring the effects of energy
exchange between ions and electrons in radiation damage
is thus highly relevant, either in evaluating models of the
first class or in informing the phenomenological additions
to models of the second class. In sections 2 and 3 we will
undertake a brief review of the most significant material.

Traditionally, theorists have divided the process of energy
transfer between ions and electrons into two regimes: the
electronic stopping regime and the electron—phonon coupling
regime. These regimes can be defined in terms of the
predominant mode of ionic motion. In the electronic
stopping regime, the ions are assumed to move ballistically,
undergoing collisions with one another. In the electron—
phonon coupling regime, the ions are assumed to oscillate
around their equilibrium positions. It is important to note
that the boundary between these two modes of behaviour is
ill-defined and that the physics of energy exchange is the same
in both cases [17]. In fact, the distinction is largely a practical
one, with each regime having yielded a different theoretical
treatment: for instance, extrapolation of electronic stopping
theory down to ionic energies approaching those associated
with phonon-like behaviour is unsuccessful.

The electronic stopping regime is characterized by high
ionic energies, so that the dominant processes lead to a net
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transfer of energy from ions to electrons. Ubiquitous within
the literature concerned with such processes is the concept
of electronic stopping power, defined as the rate of energy
loss to the electrons along an ion’s path and representable as a
retarding force on the ion’s motion. At high ionic velocities,
these forces can significantly affect ion trajectories and in all
events will act to dampen the evolution of an ionic system.
Various models that aim to predict the rate of this energy loss
are considered in section 2.

In the electron—phonon coupling regime, when ionic
energies are much lower, energy transfer in both directions
between electrons and ions will be significant and the
electronic system will function predominantly as a heat
reservoir. Theoretical models of electron—phonon coupling
are considered in section 3.

2. Models of electronic stopping power

The problem of how a ballistic particle loses energy to the
material through which it moves has attracted the attention of
many researchers over the last century. The sheer volume
of literature generated in a field whose importance spans
from fundamental physics research to large-scale industrial
application precludes a truly comprehensive treatment in any
review paper?. Here we will give only a brief treatment,
focussing on those aspects of the theory that have a bearing on
atomistic simulations of radiation damage, either in helping
us to understand the physics of the processes at work or in
informing the construction of atomistic models.

We will begin by considering an energetic particle
penetrating a stopping medium, assumed to consist of a
collection of target particles. We will restrict our discussion
mainly to the case of a solid target made up of ions with
electrons in bound states and a gas of valence electrons.
The penetrating particle, the projectile can lose energy via
mechanisms falling into five categories:

(1) changes in the internal state of the target ions (electronic
excitation and ionization) or excitations of the electron
gas,

(i1) changes in the internal state of the projectile (electronic
excitation, ionization and electron capture),

(iii) transfer of energy to the motion of the target ions (or to
the generation of phonons),

(iv) emission of radiation (e.g. Bremsstrahlung and Cerenkov
radiation), and

(v) chemical or nuclear reactions.

The general picture is clearly very complicated and efforts to
understand the energy loss of a projectile are classified based
on which mechanisms are significant. A standard classification
scheme in the literature [20] divides projectiles by their atomic
number Z; into light (Z; < 2), heavier or intermediate
(3 < Z; £ 18) and heavy (Z; 2, 19) ions. Projectiles
are further classified by their kinetic energy per atomic mass
unit £/ W (effectively a measure of the velocity squared) into

4 Many excellent sources of further information exist, including the work
of Bohr [4], Northcliffe [18], Seitz and Kohler [19], Ziegler et al [S] and
Sigmund [6].
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Figure 1. The classification of electronic stopping behaviour into
various regimes based on projectile atomic number and kinetic
energy per atomic mass unit. A sample of applications is indicated
on the chart according to their corresponding regimes.

fast (E/W = 10MeV), intermediate (100keV < E/W <

10MeV) and slow (1keV < E/W < 100keV). This
classification scheme is illustrated in figure 1 along with an
indication of to which region various applications of the theory
correspond.

For atomistic simulations, the key concept in the literature
on the energy loss of particles in matter is that of the stopping
power, S, defined as the rate of loss of projectile kinetic energy
E per unit length x along its path,

_dE

=a.

ey

In fact, S has the dimensions of a force, but whilst the term
‘stopping force’ is now finding its way into the literature,
‘stopping power’ remains the dominant name. Because the
energy transferred into the stopping medium can be attributed
partly to the centre of mass motion of the target ions and partly
to electronic excitations, it is common to split the stopping
power into corresponding nuclear (n) and electronic (e) parts,

S =5 +Se. 2)
Each term will behave differently as a function of projectile
velocity, with nuclear stopping dominating at low speeds and
electronic stopping at higher speeds. This behaviour is most
directly illuminated if we consider a target medium made up of
free electrons or nuclei and an intruding point charge projectile
of mass m; and charge ¢; moving with speed v. The energy
transferred to a stationary target particle of mass m, and charge
g> in a collision with impact parameter b is given by the
Rutherford formula®,

2q1q3

T =
movZbh?

1
, 3
<1+(quh/uv”ﬂ2> ©

where the reduced mass . = mym,/(m +m,) and where b is
defined as the initial distance between the projectile and target

5 Tn all appearances of Coulomb’s law, Gaussian units will be used.



Rep. Prog. Phys. 73 (2010) 116501

CPRaceetal

perpendicular to the projectile velocity. If we assume that the
projectile path is unperturbed and the target particle does not
move during the collision then (3) reduces to

201142

T =——
myv2b?’

“
Assuming a target particle number density n and integrating
over the range of valid impact parameters gives a stopping
power,

me\X
Sw) = 27111/ dbb T (b)
47”]192 bmax
nln —. 5
7”21)2 8 bmin ( )

At large velocities, the behaviour of this stopping power
will be dominated by the prefactor to the logarithm and so
the fraction 1/m, will determine the relative contribution of
nuclear and electronic energy losses. This result, that the
electronic stopping power is the dominant process at high
projectile velocity, remains generally true in more complex
treatments.

Because atomistic models treat energy exchange between
a projectile and the nuclei automatically, via some explicit
model for the internuclear or interionic interaction, and
because our key concern in this review is the treatment of
electronic excitations, we will henceforth focus our discussion
on theories of electronic stopping.

Over the decades, many different approaches to
determining the electronic stopping power have been tried:
classical and quantum mechanical, treating the target medium
as a continuum and in a binary collision approximation,
and varying between a first principles basis and completely
empirical fitting. The aim is to produce models that can
accurately predict electronic stopping powers for arbitrary
combinations of projectile and target over given energy ranges.
Which approach works best depends on the type and velocity
of the projectile and the nature of the stopping medium.

Broadly speaking, the physics is at its simplest, and theory
at its most successful (and abundant), in the case of fast, light
projectiles. In this situation, the projectile can be regarded as a
point charge, stripped of all electrons and losing energy only to
excitation of target electrons and, at relativistic velocities, via
radiative processes. For heavier particles it becomes necessary
to consider bound electronic states and the additional energy
loss mechanisms that appear as aresult. And for slow particles,
matters become even more complicated. Screening of the
interaction of the projectile, now a complex compound object,
with the target is significant and few simplifying assumptions
can be made.

Atomistic simulations of radiation damage in metals
cover all of the above regimes, dealing with channelling and
sputtering of high energy incident particles and also with the
evolution of displacement cascades down to thermal ionic
velocities. We will therefore give a brief overview of examples
from the whole range of stopping theory, beginning with the
simplest case and discussing complexities as they arise.

2.1. Models of the stopping of fast, light particles

The earliest theories of electronic stopping, from the 1910s,
were due to Thomson [21] and Darwin [22]. They treated
a point charge projectile interacting with free electrons of
mass m. in a target medium to arrive via the energy transfer
formula (4) at a stopping power,

4 Z7et
S(Zy,v) = mov2 Zrny Liree,
e
(6)
1 Tnax
Lfree =—-In s
2 Tmin

where n, is the number density of target atoms and Z; is their
atomic number. Quantities of the type Lye., following the
commonly occurring prefactor in (6), are known as stopping
numbers. Application of the formula requires limits on the
energy transfer, T« and Tyip. The maximum energy transfer
is naturally set by considering a ‘head-on’ collision,

4m1me 1 2

Thax = —————— S 7
ma: (ml+me)2 2m1U (7

but in order to prevent divergence of S due to the long range
nature of the Coulomb interaction, we also need to set a
minimum energy transfer Ti,;,. Both Thomson and Darwin
relied on an artificial limit corresponding to some maximum
impact parameter (e.g. the atomic radius in Darwin’s case).

This deficiency can be removed by taking into account the
interaction of target electrons with target nuclei. Theories due
to Bohr [23] and Bethe [24] do just this and continue to be used
(with various refinements) up to the present day.

2.1.1. Bohr formula. Bohr’s theory of electronic stopping
considers the energy transfer from a point charge projectile to
classical electrons harmonically bound to the target atoms with
angular frequencies w;. The interaction of the projectile with
the electrons is treated under the assumption that the strength
of the Coulomb interaction does not vary significantly over the
range of motion of the electron. This is known as the dipole
approximation because it amounts to neglecting all but the
leading order term in electron position in the Fourier transform
of the electric field at the electron—a long wavelength limit.
Equivalently we can calculate the response of the electron to
a force whose strength is calculated under the assumption that
the projectile path is undisturbed and the electron remains at
rest throughout the collision (the momentum approximation).
Bohr’s theory is thus a classical perturbation treatment and so
is appropriate only for weak interactions. The final result for
the stopping power is

2,4

dnZie
S(Zy,v) = —ZnaLBohr’

mev
Cmev
Lo = 355 n(5ml).
J

where the constant C = 1.1229 and the values of f; give
the relative contributions of different frequencies w; subject to

Zj fi=1

®)
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Several important concepts arise in the derivation of
Bohr’s theory. The first is that when considering the binding
of electrons, a natural upper limit to the impact parameter
emerges, countering the long range nature of the Coulomb
interaction. This corresponds to the situation in which the
collision takes place so slowly that the harmonic electron
moves appreciably during the interaction and no energy is
transferred. This maximum impact parameter, by, then
corresponds to an adiabatic radius,

v
~

bmax ’
@j

€))

where b/v is a measure of the time scale of the collision
(the collision time). We can also recognize this limit as the
distance at which the Coulomb interaction becomes significant
compared with the binding forces on the electron.

Second, the energy transfer to a bound electron in the
dipole approximation diverges for small impact parameters.
Bohr removed this divergence by recognizing that for close
collisions, such that the collision time is much smaller than the
period of electronic motion,

b 1
- —,
v a)j

(10)

the effect of binding can be ignored. By treating collisions
below some threshold impact parameter b* as being Coulomb
collisions between free particles, Bohr avoided imposing an
artificial lower limit on b.

However, this derivation implies a restriction on the
applicability of the theory. To achieve a smooth join between
the two limiting treatments of the collisions, interactions with
bound electrons in the dipole approximation at large b and
Coulomb interactions between free particles at small b, both
must be valid at b*. The full Rutherford formula for the energy
transfer in a collision between free particles is in this case

T(b) = (11)

27 fe“ 1

mev2b? \ 1 +(Ze2/m.v2b)? )’
where the term Ze? / mev2b accounts for the effect of the
deviation of the paths of the projectile and the position of the
electron under the Coulomb force, i.e. the deviation from the
assumptions used in the treatment of distant collisions, which
must be small at b*. Hence,

Z]€2
Mev2b*

< 1. (12)

For the close collisions to be unaffected by the binding forces,
the collision time must be sufficiently short:

b* 1
— < —, (13)
v w;j
and so we have a validity condition,
3
e (14)

Third, the treatment is classical and so relies on being
able to describe the projectile as a well-confined wave
packet throughout the collision. A well-collimated projectile
beam with a spread in transverse momentum d&p; will have
a corresponding uncertainty in impact parameter §b ~
h/26p;. This will imply a spread in the transverse component
of the momentum transferred in the collision of dp, ~
(2|1Z1€?|/b*v)8b (from (4)). Minimizing ((8p;)* + (8p2)?)'/?
as a function of §b and assuming that for the classical
approximation to be valid this uncertainty in the transverse
momentum must be much smaller than the total momentum
transfer yields the condition

2|1Z,€%

1. 15
y > (15)

Thus, Bohr’s classical treatment seems to become more
valid with decreasing velocity below some high threshold.
Unfortunately, the assumption is also made that the target
electron is at rest during the collision, i.e.

v > v, (16)

where vy = e¢?/h = ¢/137 is the Bohr velocity. Combining
these two criteria,

vy K v K 2Z)v, a7

we find that the Bohr theory should only be valid over a small
range of high velocities above v for a heavy projectile ion.

The Bohr formula exhibits several features characteristic
of experimental data for stopping powers (see figure 2). At
high energies the stopping power drops away as 1/v>. This
is a consequence of the fundamental physics captured in
the Rutherford scattering formula. The impulse on a target
electron will be proportional to the collision time b/v and
so the energy transfer will vary as the square of this. The
Bohr formula also exhibits a peak in the stopping power at
approximately the correct energy. This is known as the Bragg
peak and its location is important experimentally because the
depth resolution of experimental probes is maximized along
with the stopping power at this energy.

At energies below the Bragg peak, the Bohr stopping
power falls off, though much more rapidly than the
experimental data. This fall-off is due to the effect of the
binding of the electrons. Atlow velocities, the adiabatic radius
v/w; becomes small and most collisions no longer transfer any
energy.

2.1.2. Bethe formula. Bethe® derived an alternative stopping
power formula using quantum mechanical perturbation theory.
In his derivation, the Coulomb interaction of an incoming
particle, represented as a plane wave, with a target atom is
treated in the first Born approximation [27] to give a stopping

number,
2mev?
Lpethe = § fj In (_e ) s
; ha)j

6 The original derivation is in German [24], but a thorough English language
treatment can be found in Sigmund [6].

(18)
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Figure 2. Sample electronic stopping power data for oxygen
projectiles in a gold target. Experimental data (red crosses) from the
database of Paul [25] are shown, along with stopping powers
calculated via the Bohr (green long dashed line) and Bethe (blue
short dashed line) theories. Various velocity thresholds discussed in
the main text are indicated. The average excitation energy in the
theoretical expressions, In/ = )" . f; In(hw;), is calculated using a
commonly used scaling relation I ~ Z, x (10eV) [26].

where w; is the angular frequency corresponding to the jth
excitation of electrons in the target atom. f; is a generalized
oscillator strength [27] in the limit of low momentum transfer
and is proportional to the square of the matrix element of the
projectile potential coupling the initial and final states in the
Jjth excitation.

The derivation of the Bethe formula again relies on a
split between close and distant collisions, in this case made
at a particular momentum transfer iig*. If we consider the
incoming particles as a plane wave with wave-vector k being
scattered into a state with wave-vector k’ whilst the target atom
undergoes an excitation of energy fiwg, where w is a typical
excitation frequency, then for energy conservation we require

72
hwy + — (K — k%) = 0. (19)
2m1
The momentum transfer 7iq is given by ¢ = k — k' and so,
writing the projectile velocity v = hik/m|, we have
n2q?
hwo + —hq-v=0.
2m1

(20)

g™ must clearly be larger than the minimum ¢ at which (20)
can be satisfied, so

2D
In order to apply the dipole approximation for distant
collisions, the kinetic energy transferred to an electron must
be small compared with a typical excitation frequency,

hZ(q*)2
2me

q*v > wy.

< hawy. (22)

Together conditions (21) and (22) restrict the validity of the
Bethe theory to the velocity range,

> [T
v .
2me

(23)

An example of the behaviour of the Bethe theory is shown in
figure 2.

2.1.3. Corrections to the Bohr and Bethe Formulae. For
most of the key simplifying assumptions used in the derivation
of the Bohr (8) and Bethe (18) stopping numbers, there exist
refinements and correcting terms. For a detailed discussion of
these corrections see Ziegler’s review [28].

Bloch derived a revised model for the electronic stopping
number that tends to the Bohr model at lower velocity and the
Bethe model at higher velocity. Bloch’s model can be regarded
as a correction to the Bethe stopping number to account
for the failure of the Born approximation to correctly treat
close collisions [29] (which are effectively Coulomb collisions
between free particles, unaffected by electronic binding forces
over the short time scale of the collision). These collisions are
more important at lower projectile velocities when the effect
of more distant collisions is removed by a smaller adiabatic
radius. Conversely, the Bohr theory explicitly treats close
collisions as free-Coulomb interactions, in which limit the
classical and quantum mechanical treatments coincide, but
fails because of its classical nature to give a good account of
binding in distant collisions. The Bloch theory can thus also
be seen as a correction to the Bohr theory in respect of more
distant collisions and we can write the Bloch stopping number
in two forms [6],

2
Z] Vo
Lgioch ~ Lpeime — 1.202 ( ) , (24)

v

2
Lgioch = Lpohr — % <Z:)v0> , (25)
in the limit of high v and low Ze.

The Bethe and Bohr theories both assume that the target
electronisinitially at rest. Corrections to account for electronic
motion have been given for the Bohr model [30] and the Bethe
model [31] and are known as shell corrections. A Thomas—
Fermi model [32] for the target atom suggests that typical
electron velocities will be Zg/ 3 v, giving a threshold for the
importance of shell effects, v < Zg/ 3 vg.

A difference in the ranges of positive and negative pions
observed by Smith et al [33] led to explorations of terms in the
stopping cross-section of order Z ? and above, corresponding to
higher order terms in the perturbation expansions in the Bethe
and Bohr theories. Further observations by Barkas et al [34]
and Andersen [35] led to such corrections being called the
Barkas or Barkas—Andersen effect. The Barkas effect is also
referred to as the polarization effect because the underlying
cause of the difference in stopping between positively and
negatively charged projectiles is the distortion of the electron
density in the target ions. This alters the electron density
experienced by the projectile, giving an enhanced stopping
power for positively charged particles. Ashley er al [36]
produced a theoretical treatment for the Bohr model and a
simple treatment by Lindhard [37] gives an estimate of the
size of the effect in an amended Bethe stopping number,

41 Z%e* 27e*wy
1
A 1+ In

Mmev? mev3

2mev?
1

S

, (26)
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Figure 3. The projectile kinetic energy and atomic number regimes
of electronic stopping theory in an iron target (Z, = 26) showing
order of magnitude thresholds for various effects and corrections.
Bohr’s classical threshold v < 2Z;v, is shown, along with the

thresholds for screening (v < Z]Z/ ? vp) and Barkas (polarization)

(v £ (Z,Z,)"Pwy) effects. The velocity at which shell effects

become important (v < Zg/ 3 vo) and the Bohr velocity, vy, below

which the projectile ion will have very low charge with many bound
states are also indicated. (After Sigmund [39].)

where the second term in parentheses is known as the Barkas—
Andersen parameter and takes the same form as the
dimensionless parameter in the validity criterion (14) for the
Bohr formula (8). I is a logarithmic average excitation energy
Inl = Zj filn(ho;).

Figure 3 shows the thresholds in projectile charge and
kinetic energy per atomic mass unit at which various factors in
the stopping power become important. Griner et al [38] find
that for a 1 MeV amu~! nickel ion in a carbon target, the Bohr
theory gives a stopping power 42% smaller than experimental
results. A Barkas term over-corrects to give a number 28% too
large and further addition of a shell correction gives a result
14% too large. In this case and in many others, the correction
terms are significant and must be taken into account to obtain
good predictions of stopping power.

2.2. Models of the stopping of fast, heavy particles

We have seen in section 2.1.3 that relaxation of the simplifying
assumptions in the theories of Bohr and Bethe necessitates a
series of corrections of considerable complexity. Itis important
to note that this complexity arises even in the simplest case
where we treat projectile particles not only as point charges,
but also as having very low charge (Z; < 2). The theories of
Bohr, Bethe and Bloch are essentially perturbative, going to
second order in the projectile charge Z;. Even with higher
order corrections such as the Barkas term in Z] and the
so-called Bloch correctionin Z}, these theories rapidly become
inadequate for the treatment of heavy ions (Z; > 2) even
at very high velocities. The increasing strength of the inter-
particle interactions means that the fundamental assumption in
any perturbation theory, that the unperturbed evolution (be it
the projectile path or the initial quantum state of the projectile-
target system) is a good approximation to the perturbed

evolution, is invalidated. A number of models developed in
the last decade and designed to treat the stopping of heavy
ions non-perturbatively will be discussed below.

The physics of heavy ion stopping is fundamentally
different from that of light particles. A highly charged
nucleus will attract to itself a charge-compensating cloud of
the electrons of the target medium. There will thus be a
screening of the interaction of the projectile and target particles
and a reduced stopping power. The intruding nucleus may
also carry with it its own electrons in bound states so that the
projectile becomes a compound object. Internal excitations
of the projectile ion will become possible, enabling new
mechanisms for energy loss’. The charge of the projectile
will no longer simply be Z; and may change as the projectile
traverses the stopping medium. Charge-changing processes of
electron capture and ionization open further mechanisms of
energy exchange.

2.2.1. The effective charge of the projectile. The possibility
of bound electronic states of a projectile particle gives rise
to the concept of an effective charge of the intruding ion,
written Zje. It is tempting to model the stopping of heavy
ions by simply replacing Z; with Z] in simpler perturbative
stopping theories. This approach is not without some success
(see section 2.4), but it is not immediately persuasive from a
physical point of view.

There is no reason to assume that the charge state of a
projectile ion will be constant during its flight and though it may
acquire a well-defined mean value in a steady state, this will be
the result of repeated charge-changing processes. Assuming
a fluctuating number of bound electrons Npoung, SO that at any
time the effective charge can be written Zje = (Z — Npound) €,
we will denote the mean effective charge by (Zj)e. The
earliest considerations of effective charge adopted an empirical
definition. Writing a stopping power S(Z;, Z,, v) dependent
on the atomic numbers of the projectile and target and on the
projectile velocity, Northcliffe [18,40] defined an empirical

effective charge (Z ]“)emp

2
[(Z’f)emp] = S(Zy, Z,,v)/S(, Z,v), 27
in which the effective charge is related to the proton stopping
power in the same target. This definition is informed by
the Zf dependence in the stopping equation (5). Yarlagadda
et al [41] compared experimental stopping data for protons
and for carbon and iodine projectiles in a selection of targets
up to Z, = 79 (Au) to show that the quantity (Z]k)emp /Z; is
independent of Z, to within 10%. This suggests some validity
for the effective charge concept and that, depending on the
accuracy that we require, the treatment of projectile and target
may be separable.

Various theoretical definitions of effective charge have
also been considered in the literature. These often take the
form of stripping models in which electrons are considered to
be progressively stripped from the projectile ion as a function

7 Anenhancement of the stopping force attributable to the electrons associated
with the projectile is sometimes referred to as an anti-screening effect.
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of its velocity based on some criterion related to the orbital

velocities or potential energies of the electrons. A Thomas—

Fermi model of the atom, in which electron orbital velocities
2/3 . .

are assumed to be v, ~ Z;" v, gives rise to a much used

stripping criterion [39],

(Z]) gy = (1 — exp(=v/Z{ " v0)) Z1, (28)

in which electrons of the target medium, approaching with a
relative velocity ~v, are assumed to knock slower electrons
out of states bound to the projectile nucleus. Yarlagadda et al
[41] used a similar model and obtained good agreement with
empirical stopping data for ions heavier than chlorine. The
less good agreement for lighter ions is improved by including
corrections in the scaling relation analogous to the Bloch
correction and the Z; Barkas term.

Brandt and Kitagawa [42] note that when a projectile
nucleus carries with it some distribution of bound electronic
charge, an electron of the target medium will experience a
projectile charge that depends on its impact parameter with
the projectile nucleus. Thus, even for a given net charge
(Z1 — Novoma)e, the stopping power will still have a Z;
dependence, increasing with increasing atomic number. To
quantify this effect, they calculate a stopping power for a
projectile of atomic number Z; and fixed ionization Q = (Z,—
Nbound)/Z1 using a Lenz—Jensen model [5] of the projectile
charge density and a Lindhard type model (see section 2.3.2)
with an approximate form for the dielectric function of a free-
electron gas target of number density n.. Writing the stopping
power as S(Z;, Q, n.), the effect of the charge distribution is
then revealed in the quantity

1 [S(Z1, 0.ne)

O\ S(Zi,1,ne) "
If the charge distribution had no effect then we would expect
to see the stopping power vary as Q7 (see (38)). If the target
electrons penetrate the electron distribution of the projectile
they will experience a higher than expected charge and the
quantity (29) will be greater than 1. Experimental data for
ions of boron through to fluorine of fixed charge in (111)
channels in gold reveal the expected effect, that, for example,
S(N>*) > §(C>*) > S(B>*). The qualitative variation of the
stopping power with Z; and Q is well modelled by the theory
of Brandt and Kitagawa [42]. In addition, experimental data
for the stopping of nitrogen in gold, carbon and aluminium
targets over a velocity range 0.7v9 < v < 1.5vy show the
ability of the theory, when combined with a simple stripping
model for Q as a function of v, to capture the behaviour of
the stopping power of light ions that proved problematic in the
theory of Yarlagadda er al [41]. However, the resolution of
the data is not good enough to reveal if variations due to the
target element (modelled via the free-electron gas density n.)
are well captured.

The ultimate aim of effective charge theory is to provide
estimates of heavy ion stopping powers. This is done either by
multiplying some reference stopping power (normally taken to
be that of a proton or alpha particle in the same target medium,
for which comprehensive data are available) by some velocity

(29)
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dependent effective charge or using the effective charge as an
input to a theoretical model of stopping power. Attempts to
formulate such methods will be hampered by the fact that the
mean stopping power over the fluctuating charge state of a
projectile ion traversing a stopping medium, (s(Q)), will not
in general be equal to the stopping power at the mean charge,
s({Q@)). More importantly, as pointed out by Sigmund [43],
success depends on the stopping of heavy ions and the stopping
of the projectile in the reference data set being governed by the
same physical processes. This is unlikely to be the case; we
have no reason to expect that a singly ionized gold ion will
behave in the same way as a proton. Experimental validation
of effective charge theories [41,42] tends to focus on the
high velocity regime, where projectiles will be highly ionized
and poorly screened. Such almost bare particle stopping
is most susceptible to an effective charge treatment, but at
lower velocities the effects of screening and bound states will
become significant. As Sigmund discusses [39], any attempt to
incorporate these effects in an effective charge model is likely
to result in a model so clumsy that a direct calculation of heavy
ion stopping powers, ignoring any reference data set, will be
at least as straightforward.

2.2.2. Non-perturbative models of heavy ion stopping. As
discussed above, a key difference between light and heavy ion
stopping is the strength of the interaction between the projectile
and the electrons of the target medium. In the latter case,
the use of perturbation theories such as Bohr’s and Bethe’s is
questionable and new approaches are needed.

Over the last decade, many researchers have been active in
developing stopping power theories applicable to fast, heavy
projectiles. Various models have arisen, which show good
agreement with experimental data, and there is a significant
volume of relevant literature. Again, we will not attempt a
comprehensive survey and the interested reader should consult
the discussion and references in Sigmund’s book [6]. Instead
we will discuss the general character of a sample of theories
of fast, heavy ion stopping, considering the inputs upon which
they rely and the results they produce and briefly discussing
the way that they work.

The broad aim of all the models that we will consider is to
take a set of input data, derived either from experiment or from
other theoretical calculations, and from this derive a prediction
of electronic stopping power as a function of projectile and
target type and projectile kinetic energy. They aim to achieve
this without the use of any adjustable parameters. Beyond
these common traits, the models that have been developed are
highly diverse; some are quantum mechanical, others classical;
some are based on straight calculations, others require a set of
simulations to be performed.

The binary theory of Sigmund and Schinner [44,45]
adopts Bohr’s classical approach to calculating the scattering
of bound target electrons by a projectile. A non-perturbative
treatment is made possible by exploiting an approximate
equivalence between the interactions of a bare projectile with
a bound electron and of a screened projectile with a free
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electron®. Information concerning the binding frequency of

the jth electron is then encoded in the screened potential,

2
Vr) = —Z‘Tee—m/‘/ v, (30)
where v/w; can be identified as an adiabatic radius for the jth
electron. Each electron is treated separately and the individual
stopping cross-sections summed together. In common with
other non-perturbative treatments, the binary theory treats the
Barkas effect automatically. The screening effect of bound
projectile electrons (as opposed to the screening in (30) used
to represent the effect of the binding of electrons in target ions)
with a radius ag, is incorporated into the potential as

2 2
V) = _Nbounde e—”"i/v _ (Zy — Nbouna)e e_r/a’
r
(€29)]
1 (&)2 L L
a? v a2

Further refinements allow for quantum mechanical corrections
at higher velocities (comparable to the Bloch correction to the
Bohr formula (8)), for shell effects and for projectile excitation
(treated approximately by repeating the calculation and
exchanging the roles of projectile and target). Implementation
of the basic binary theory requires data on the atomic binding
frequencies w; of the target electrons and their relative
strengths (occupations) f;, along with knowledge of the
effective charge (Z1 — Nvound)e-

The full model compares well with experimental data
(from the database of Paul [25], discussed in section 2.4) for a
range of projectiles (3 < Z; < 18) in N, Al, Ni and C targets
over arange of energies from 1 keV amu~! to 100 MeV amu~!.

A second classical scheme, due to Gruner et al [38],
employs the classical trajectory Monte Carlo method to treat a
small number of target nuclei and the projectile nucleus, along
with their associated electrons. The evolution of the system
of electrons and nuclei is calculated using classical equations
of motion for a large number of statistically sampled starting
conditions.

In contrast to the binary theory, the classical trajectory
method does not require a charge state as input, the only input
parameters required being the nuclear charges and the electron
orbital binding energies and their occupations. The recovery of
details of the projectile charge as an output from the simulation
is a stated aim of the technique and recognizes the important
influence of charge on the stopping power. This aspect of
the model better reflects reality, in which projectiles tend to
reach a steady state that is independent of the input charge
state. In addition, because all the constituent particles are
treated explicitly, information about the relative contribution
of various processes to the slowing of the projectile nucleus can
be recovered. In a simulation of a 1 MeV amu~! Ni ion in a
gaseous Ar target [38], 80% of the energy loss is attributable to
target ionization, 12% to target excitation and 20% to electron
capture by the projectile. Projectile excitation is found to

8 There is an intuitive sense to this equivalence, in that the primary effect of the
electron binding is to reduce the energy transfer at larger impact parameters.
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have a contribution of —13% (an accelerating effect) due to
polarization of the projectile electrons by the ionized target.
Comparisons of simulations of a 1 MeV amu~! Ni projectile
in solid carbon give agreement with experiment for the steady
state charge and steady state stopping power to within 2.8%
and 3.7%, respectively.

Non-perturbative quantum mechanical schemes have also
been proposed. Motivated by a desire for economical stopping
calculations with the accuracy of full quantum mechanical
results, Grande and Schiwietz [46] developed the perturbative
convolution approximation (PCA). This calculates the energy
transfer AE from a projectile to the electrons of a target atom
as a function of impact parameter b via an integral over the
electron density p of the target,

AE(b,v) = /dZ/dme(b—u,v)P(ri,Z), (32)

where the convolution integrals are carried out in cylindrical
polar coordinates about a z-axis through the target nucleus and
parallel to the projectile velocity. K (b, v) gives the energy
transfer to an electron at impact parameter b from a projectile
with velocity v. The form of K (b, v), given in [46], is such
as to treat close collisions as free and distant collisions within
the dipole approximation. Inputs required for the model are
the projectile screening function, the electron density of the
target and the oscillator frequencies and oscillator strengths of
the target.

Schiwietz and Grande [47] have also developed an
extension to the PCA called the unitary convolution
approximation (UCA), which implements a Bloch-like
correction and extends the applicability of the scheme to high
Z,. Comparisons of AE as a function of b and of Z; with
intensive quantum mechanical calculations [48] show good
and very good agreement, respectively. Data for the stopping
of oxygen in Al and Si across an energy range from 0.1 to
100 MeV amu~! show good agreement with experiment [49].

Key experimental studies by Blazevic et al [50,51]
provide important data for testing of the non-perturbative
stopping models described above. By separating out the initial
charge states of Ne ions prior to passage through thin carbon
films and measuring their final charge state and energy, it is
possible to determine the cross-sections for charge-changing
processes and the charge dependent stopping power of carbon
for neon. Blazevic et al [50] compare their results for charge
dependent stopping against calculations within the binary
theory of Sigmund and Schinner and the UCA method of
Schiwietz and Grande amongst others. The UCA agrees
almost to within experimental error. The binary theory scales
less strongly with projectile charge than the experimental
results.

We have considered the above theories as examples of
the sorts of models now being applied to calculate stopping
powers of fast, heavy ions. None of these models is ab initio in
character: they take information about the excitation spectrum
of the target as input and focus on the problem of calculating
the collision dynamics and how they will stimulate the given
excitations. Most models (that of Griiner er al being the
exception) also require further input in the form of an effective
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charge of the projectile. The effective charge concept is ill-
defined and, at least in principle, much physics could be
secreted within an appropriate velocity and target dependent
form for an effective charge function. Add in the inherent
complexity of many of the modern stopping models and
it becomes clear that they are theories in the sense that
they provide testable predictions rather than models designed
to yield physical insight. As such, their success should
be evaluated in comparison with that of various empirical
fitting and interpolation models to be discussed below (see
section 2.4).

Data on the performance of the models against
experimental results demonstrate that the models can
successfully calculate electronic stopping powers across an
energy range from tens of keV amu~! up to tens of MeV amu ™!
for projectile ions in the ‘light” and ‘heavier’ ranges (as defined
in figure 1) in a wide variety of targets. The predictions are
good to within experimental error, which can be as good as 2%
at 50 MeV amu~!, but as bad as 20% at SkeV amu~! [20].

Given the current limits to the precision of experimental
data, and given the nature of the stopping models as predictive
tools, the problem of predicting stopping powers of fast and
intermediate velocity ions could be considered to be solved,
at least for the time being. The practical justification for
further refining stopping power predictions for fast ions is not
immediately clear. In fact, the applications shown in figure 1
suggest a need for more work on the stopping of slower and
heavier projectiles, where the physics is more complicated and
the theoretical and experimental literature much more sparse.

2.3. Models of the stopping of slow, heavy particles

The non-perturbative stopping models aim to provide reliable
predictions of stopping power in cases where the projectile
charge is large and the effects of screening must be taken into
account. A key issue is that of the degree of ionization of
the projectile ion and all the models except that of Griiner
et al require this as an input parameter. Whilst this is less
of a difficulty at high velocities, where stripping models of
effective charge should work reasonably well, as projectile
velocities fall below the Bohr velocity, vy = &2 /h, we see the
appearance of so-called Z;-structure. These oscillations in the
behaviour of the stopping power with Z; are due to the atomic
structure of the projectile and demand a different theoretical
treatment.

In this section we will examine models designed to predict
the stopping powers of slow, heavy ions, with kinetic energies
significantly below 1 MeV amu~'. We will begin by outlining
three older models, which are still very much in use today,
before going on to consider some more recent treatments. The
older models fall into two categories: those which consider
the energy loss as arising from the inelastic interaction of the
projectile and a target atom in binary collisions and those which
consider losses into a continuous electronic system.

2.3.1. Binary models of slow particle stopping. Into the first
category fall two much used models due to Firsov [52] and
Lindhard and Scharff [53]. Firsov ascribed the energy loss
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from a projectile during a binary collision with a target atom
to the exchange of electrons between the atoms. During the
collision, the atoms are considered to form a quasimolecule.
At any given separation, the motion of electrons within the
quasimolecule will cause some electrons previously associated
with the target atom to become associated with the projectile.
This change of identity of an electron will be accompanied by a
change in its momentum, proportional to the relative velocity of
the two atoms. Using a Thomas—Fermi model for the colliding
atoms, Firsov [52] obtained the following expression for the
energy loss in a collision between a stationary target and a
projectile moving with velocity v,

5/3
AE =035 (21 +25)

ao 1+0.16(Z1 + Z2) Pron/ao’

(33)

where r, is the distance of closest approach and ayg is the
Bohr radius /2 /mee?.

Lindhard and Scharff [53] suggested an alternative
formula, again based on a Thomas—Fermi model, but did not
publish a derivation. Tilinin [54] has derived a more general
result by considering the scattering of the electrons of the
target atom by the screened field of the projectile. Use of
the Thomas—Fermi model to obtain quantitative results gives
an electronic stopping power,

8mneetanZ1Zy

S = T
32
(zf/3 + Z§/3)

(E.Z1/Z)—.  (34)
Vo

where vy is the Bohr velocity (vy = ¢?/h) and the function
T is the result of an integral over the electronic densities
experienced during the collision. In Lindhard and Scharff’s
original formula [53], 7 is replaced by a constant &, ~ 1 — 2,
used to obtain an improved fit to empirical data. Indeed,
provided v is not too small, then T ~ 1 and Tilinin’s
formula (34) approaches that of Lindhard and Scharff. The
key feature of (34) is the proportionality of the stopping power
to projectile velocity, a feature shared with the stopping power
implied by Firsov’s formula (33).

Because the models of Firsov and Lindhard and Scharff
both rely on a simple Thomas—Fermi model for atomic
structure, they predict that stopping power will have a simple
monotonic dependence on the atomic numbers of projectile
and target atoms. They thus neglect both Z-structure and
an additional fluctuation in stopping power with target atomic
number known as Z,-structure.

2.3.2. Electron gas models of slow particle stopping. The
second class of models of slow particle stopping treats the
electrons of the target medium as an electron gas. Fermi and
Teller [55] gave an early treatment of the stopping power of a
free-electron gas, pointing out that, since the maximum energy
transfer from the projectile to a target electron corresponds to
the case of a head-on collision, only electrons with velocities
within v of the Fermi velocity vg can take part in stopping.
Their final result is
()

hUF

e2

2meetv

S = ErEe 35
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again giving a stopping power proportional to the projectile
velocity.

Lindhard [56] gave a more general treatment by
considering the force acting on a projectile due to the change in
the electronic density distribution caused by the electric field
of the projectile. The response of the electronic system is
assumed to be characterized by a frequency and wavevector
dependent dielectric constant €(q, w). This corresponds to
allowing the total potential ¢ (x, t) at any point  and time ¢
to depend on the potential due to the projectile ¢proj(x’, ') at
points ' and times ¢’, via the integral equation

o (x, 1) =/ dt//dw/e_'(w—w/,t—t/)¢pmj(:1:/,t/), (36)

where €~! is a linear operator.

relationship becomes

In Fourier space, this

1
¢(q. @) = ———Pproj (¢, ©). (37

(q. 0)
The history dependence introduced by (36) allows for a finite
response time of the electron gas to the potential due to
the projectile. The centre of the screening cloud around
an intruding charge will tend to lag behind, giving rise to
a retarding force on the charge’. Lindhard [56] derived an
expression for this retarding force,

qu % 4
/ a)da)f —qTS{
0 o 4

for a general stopping medium characterized by €(q, w) and
where J{-} indicates the taking of the imaginary part.

Various alternative derivations of the Lindhard result have
appeared in the literature. In particular, Ritchie [58] treated the
problem of finding the induced charge density directly within
first-order perturbation theory, without the need to introduce
a classical electric field. The results obtained are equivalent
to Lindhard’s results using the Lindhard expression for the
dielectric function of a free-electron gas [56].

Lindhard [56] gives results for the limiting cases of low
and high projectile velocities. These results are also derived by
Lindhard and Winther [59] alongside further discussion of the
nature of the excitations of the electron gas. At high but non-
relativistic velocities, the stopping power reduces to the Bethe
formula (18). At low velocities the Fermi—Teller formula (35)
is recovered.

dE  2Z7e?
dx

} L))

1
V2 €(q, w)

2.3.3. Non-linear calculations of electron gas stopping. At
electron densities typical of metals, and at lower projectile
velocities, the perturbative approach behind Lindhard’s
stopping power formula is no longer appropriate and a non-
linear theory must be used. Various approaches have been
tried and the review by Echenique et al [57] contains detailed
discussions of both linear and non-linear treatments of stopping
by an electron gas.

9 Note that at higher velocities v > vy, this simple picture of a retarded
screening response is greatly complicated by the appearance of strong
oscillations in the induced charge density. A full discussion of these so-called
wake effects can be found in the review by Echenique et al [57].
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Figure 4. Calculated results for a proton in a free-electron gas of
varying density (parametrized by the one-electron radius

rs = (3/4mwn.)'/?). The screening length is indicated for linear
response (orange vertical crosses) and non-linear DFT calculations
(red diagonal crosses). Distances are given in atomic units,

ap = 0.529 A. On the right-hand axis are plotted the ratio of the
charge density at the proton position to the background density for
linear response (purple squares) and non-linear DFT calculations
(blue circles). (Data from Almbladh et al [60].)

The deficiency of a linear treatment was highlighted
by Almbladh et al [60] who calculated the screening of a
stationary proton in a free-electron gas using Kohn—-Sham
density functional theory (DFT) [61]. They compared DFT
calculations of the screening length and the relative charge
density at the proton position with linear calculations using
the Kohn—Sham form of the dielectric function. The results
are presented in figure 4 from which it can be seen that
the linear theory underestimates the extent to which charge
piles up around the proton and overestimates the variation
in the screening length (which varies little in the non-linear
calculation). At the lowest density considered, the results
are similar to those for a 1s atomic orbital about the proton,
indicating the importance of bound states at lower electron
densities. One of the key features that emerges in non-linear
treatments is the oscillatory Z;-structure in the stopping power
at low velocities.

Echenique et al [62] calculated stopping powers for ions
with v < vf, the Fermi velocity, in an electron gas within time-
dependent DFT (see section 5.3 for a brief discussion of the
relevant theory). Figure 5 shows the behaviour of the stopping
power for hydrogen and helium nuclei calculated in the non-
linear DFT and the linear response theory. In both cases the
non-linear DFT calculations show a more rapid decrease in
stopping power with decreasing electron gas density, consistent
with the formation of bound atomic-like states that screen
out interactions with the gas. Conversely, high electron gas
densities screen the nuclei so efficiently that bound states
can no longer develop and the linear and non-linear results
converge. A final feature of note is that the stopping power
for He lies below that for H at low electron gas densities. This
is because the higher nuclear charge of He is more effective
at producing bound states and thereby screening the stopping
interaction. Such a feature can never emerge in a linear theory.
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Figure 5. Stopping powers as a function of the one-electron radius
ry = (3/4mn,)'/3. Results for linear response theory are shown for
hydrogen (curve A) and helium (curve B). Results for non-linear
DFT are shown by curves D (hydrogen) and E (helium). (Reprinted
with permission from Echenique et al [62]. Copyright 1986
American Physical Society.)

Echenique er al used their calculated stopping powers
along with the theoretical equivalent of the empirical
definition (27) to calculate the effective charge on a projectile
as a function of atomic number Z; at several electron gas
densities. Clear oscillations are present (see figure 6), which
at low density follow the pattern expected from consideration
of atomic structure, with deep troughs occurring at Z,
2, 10, 18, corresponding to stable filled shells. At higher
densities, more effective screening means that higher nuclear
charges are necessary in order to form bound states and the
pattern shifts upwards in atomic number. Calculations for Z;
dependence of the stopping power of ionsin (1 10) and (1 1 1)
channels in silicon up to Z; = 20 show good agreement with
experiment.

Arista [63] has presented results for velocity and
Z,-dependent stopping based on calculating the transport
cross-section from the phase shifts for free electrons scattering
off a screened projectile ion. A variety of screening functions
are used and are adjusted in order to satisfy the condition that
the total charge of the screening cloud cancels the residual
charge (Z; — Nyouna)e of the ion. Calculations of the stopping
power of bare ions for Z; = 1 and Z; = 7 show that, whereas
for the lower charge the results of Arista’s model are very
similar to the linear dielectric results, for the higher charge
the non-linear theory gives a significantly (60%) reduced
stopping power. Again, this is typical of the overestimation
of stopping power that results from perturbative treatments of
highly charged projectiles.
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Figure 6. The effective charge Z} of point charge projectiles as a
function of atomic number Z, in a free-electron gas from non-linear
DFT. Results for a variety of electron densities labelled by the
one-electron radius ry = (3/4wn,)"/? are shown. (Reprinted with
permission from Echenique et al [62]. Copyright 1986 American
Physical Society.)
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Figure 7. The Z,-structure in the stopping power for bare ions in a
free-electron gas of density equivalent to that in carbon at several
projectile velocities (given in units of vy). (Reprinted with
permission from Arista [63]. Copyright 2002 Elsevier.)

Arista’s calculations of the Z; dependence of stopping
powers at various velocities show strong Z-structure for v <
vg, which is all but washed out with rising velocity by v & 2
(see figure 7). The positions of the minima shift upwards with
increasing velocity as it becomes harder to form bound states.
Comparison of calculations of stopping power for a carbon
target at a projectile velocity of v = 0.8vy with experimental
data shows good qualitative agreement with the positions of the
peaks and troughs in the Z;-structure up to Z; = 40 and good
quantitative agreement of stopping powers up to Z; ~ 20.

14
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2.3.4. Atomic environment dependence of electronic stopping.
Beyond considerations of projectile and target type and
projectile velocity, we might also expect the stopping power
felt by a projectile to depend on the positions of the surrounding
target ions. Electron gas models like those discussed above
clearly exclude all such effects. Models that treat stopping as
a consequence of energy transfer in binary encounters between
the projectile and target ions can potentially yield some form
of environment dependence through the impact parameter
dependence of the energy transfer: indeed, the provision of
such information is a stated aim for the binary theory and the
UCA discussed in section 2.2.2. But these treatments will
miss environmental dependence of a many-atom nature, such
as we would expect to become increasingly important at lower
velocities.

Campillo et al [64] and Pitarke and Campillo [65] have
derived an expression for a position dependent stopping power
within the linear response approximation using a response
function calculated with time-dependent DFT (see section 5.3).
Comparison of stopping powers calculated for aluminium with
equivalent calculations for a free-electron gas at the same
density show an enhancement in the stopping power of 7% in
the former case at low velocities (v < vg). This enhancement
can be attributed to band-structure effects and, given that
aluminium is free-electron-like, can be interpreted as a lower
bound for the importance of such effects in metals generally.

Campillo et al [64] calculated the stopping power of
protons at v = 0.2vy along (100) and (1 11) channels in
aluminium as a function of impact parameter with the channel
walls. They found variations of up to 20% around the average
stopping power.

Another model that yields an environment-dependent
stopping power is that of Dorado and Flores [66], who used
a linear combination of atomic orbitals (LCAO) [67] model
to study helium projectiles in alkali metals. Calculations of
the stopping power of He in a (100) direction in sodium
as a function of the position of the trajectory in the plane
perpendicular to the channel show variations of up to 100%
around the average value. This variation is much stronger than
that found by Campillo ef al. We should note that no direct
experimental validation is possible in either case.

2.4. Empirical models of electronic stopping power

If our primary aim in modelling electronic stopping is to predict
stopping powers for arbitrary projectile energies and arbitrary
combinations of projectile and target, then the most direct
approach is to interpolate and extrapolate from the range of
available experimental data. In following this route we lose
much opportunity for physical insight, but as a practical tool for
providing inputs to other calculations the approach has merit
and is still much used (for example in the molecular dynamics
simulations considered in sections 4 and 5).

The potential success of empirical fitting methods is
indicated by useful scaling relations in the behaviour of
experimental stopping power data.  Figure 8 illustrates
how data sets for different targets and projectiles can be
superimposed via some simple transformations, leaving the
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Figure 8. A demonstration of how simple scaling relationships (b)
can capture much of the behaviour of the electronic stopping power
(a) for a variety of projectile and target combinations. The scaling
of stopping power by 1/Z? is informed by the prefactor in the fast
particle stopping theories (6), (8) and (18) and the normalization of

the particle velocity by 1/ le/ Yis suggested by the Thomas—Fermi
scaling of electronic velocities. (Data are from the database of
Paul [25].)

fitting process to capture the underlying shape of the stopping
power curve as a function of projectile energy and any residual
structure in the data.

Two popular fitting schemes are those of Ziegler et al [5],
embodied in the SRIM code'® [68] and of Paul and Schinner
[69,70], implemented in the MSTAR code [25]. The approach
of Ziegler et al is based on scaling proton stopping powers,

S(Z, =1, Z,, v), by an effective charge fraction y such that
S(Z1, Zy,v) = Z3y*S(Z, = 1, Z, v). (39)

The proton stopping powers are calculated using the local
density approximation of Lindhard and Scharff [71], which
writes the stopping power of a target medium as an integral
over the electron density of the medium, n.(x),

S(Z,=1,2Z5,v) = fda:n(m)S(Zl =1,n.(x)), (40

where S(Z; = 1, n.) is the stopping power for a proton of
a free-electron gas of constant density n. calculated using

10 SRIM stands for “the stopping and range of ions in matter’.
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dielectric stopping theory. Hartree—Fock models of the target
atoms are used to determine n.(x). Empirical fitting finds its
way into the model via an adjustment to the calculated proton
stopping powers in the form of a fitted empirical factor varying
between 1.0 and 1.2. A further empirical fitting function is then
used to determine the state of ionization of the projectile and
this provides the basis for a calculation of the effective charge
fraction y from theoretical considerations.

Paul and Schinner [69, 70] take stopping data for helium
as their experimental reference and fit the quantity,

S(Z1. 2>, v)/Z}
S(Z1 =2, Z2,v)/ )%

Stel = (41)
as a function of Z; and v. A three parameter fitting function
of prescribed form is used to fit data at each value of Z;. The
parameters themselves are then fitted as functions of Z; to yield
a universal fitting scheme.

In [72], Paul and Schinner compare experimental data
for stopping of carbon projectiles in amorphous carbon
targets with the prediction of various empirical fitting and
theoretical models. The fitting models of Ziegler et al
and Paul and Schinner give an understandably good match,
whilst the binary theory of Sigmund and Schinner [44,
45] performs similarly well over the full projectile energy
range from 1keVamu~' to 100MeVamu~'. The UCA
(unitary convolution approximation, see page 31) of Grande
and Schiwietz [49] performs well at higher energies, but
significantly underestimates the stopping power for projectile
energies below 1 MeV amu~!.

In this section we have considered a variety of models
for the energy transfer from ions to electrons when the ions
are sufficiently energetic to be moving ballistically through a
stopping medium. In this regime, the quantity of interest is the
electronic stopping power and it is the aim of most models to
provide reliable predictions thereof.

We have seen that the complexity of the physical problem
to be solved varies considerably over the range of possible
projectile energies, with many more factors to be taken into
account at lower energy. The simpler problem of the stopping
of fast particles (v > vg) of low charge (Z; < 2) was tackled
first and with most success by the research community and
continues to attract the bulk of theoretical and experimental
attention. In contrast, models of the stopping of slow ions
are less well established. This is, at least in part, justified by
the relative dominance of nuclear stopping at lower projectile
velocities, but even in this regime we still expect a net energy
transfer from ions to electrons in most situations of interest.
We should note that the majority of practical applications
shown in figure 1 lie squarely within the low velocity
regime.

At very low velocities (v < 0.1vp) the stopping power
formalism may no longer provide an appropriate treatment
in many cases. In radiation damage collision cascades in
particular, a separation of electronic and nuclear losses into
two force-like terms looks questionable and a direct simulation
of the energy exchange processes, taking into account both ion
and electron dynamics explicitly, may be called for. Some
approaches of this type will be considered in section 5.
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3. Models of electron—-phonon coupling

The electronic stopping power theories, which model the
interaction of ions and electrons via a force on the ions
opposing their velocities, are derived assuming that each
ion’s motion can be treated independently. Either a single
ion moving through some continuous stopping medium is
considered or the ionic motion is regarded as a sequence of
binary collision interactions, occurring independently of the
surrounding ions. These approximations make sense when
ions move with high velocities, interacting only fleetingly with
surrounding ions except when a collision takes place and their
interactions are then dominated by the strong binary interaction
forces at close approach. Later on in a collision cascade,
however, the initial PKA energy will be shared amongst many
ions, all moving in complicated motion relative to one another.
At some stage, the cascade may resemble a molten region of
the target material. The forces on a given ion will not be
dominated by those from any single neighbour and a many-
atom treatment will be necessary. At still later times, the lattice
of the target material will have largely healed and we must
consider the collective motion of a thermally excited set of
ions, representable as a superposition of phonons.

Radiation damage theory has traditionally treated the
exchange of energy between ions and electrons in these later,
lower energy stages of a cascade as a separate problem from
that of electronic stopping. This electron—phonon coupling
regime has given rise to its own body of theory, working
with a different set of approximations, but it is important to
realize that the physics of all the energy exchange processes
is fully captured by the time-dependent Schrodinger equation
(TDSE) for a set of interacting quantum mechanical nuclei
and electrons. Indeed, as we will discuss in section 5,
appropriate approximations to the TDSE can, in principle, give
rise in a single simulation framework to all the phenomena
treated by electronic stopping and electron—phonon coupling
theories. However, the practical and theoretical challenges in
implementing such a framework on the time and length scales
of typical radiation damage phenomena are huge. Information
and insight provided by theoretical models of the electron—
phonon coupling regime thus remain important for informing
and validating the various methodologies used to capture
energy exchange processes in atomistic simulations at lower
ion energies.

Our account of the theory of electron—phonon coupling
will be briefer than that of the theory of electronic stopping
given in section 2 for three reasons. First, whilst the study of
electron—phonon coupling is an entire research field in itself, it
is of much broader relevance than simply to radiation damage
phenomena. Much of the literature is concerned with the
concept of the electron—phonon coupling in general (see, for
example, [73] or [74] for excellent accounts). Here we will
focus on the work that directly addresses or informs atomistic
simulations of radiation damage.

Second, as we shall see, experimental and theoretical
estimates of numerical measures of electron—phonon coupling,
generally calculated as a rate of energy transfer between
the electronic and ionic subsystems per unit volume per
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degree temperature difference, can vary over several orders
of magnitude in a given material. This stands in stark contrast
to the high precision with which electronic stopping powers
can often be measured and reduces the direct usefulness of
the data for parametrizing atomistic models. As discussed
in sections 4.4 and 5.1, the large uncertainties often prompt
researchers to explore a broad range of values for the electron—
phonon coupling in their simulations, rather than relying on any
one particular estimate from the literature.

Third, attempts to incorporate the effects of electron—
phonon coupling into atomistic simulations are still at an early
stage and even somewhat controversial. Thus far, only very
simple, single-parameter models have been tried (sections 4
and 5.1) and it is far from clear how the true energy exchange
in the events modelled in such simulations relates to the
circumstances treated in experimental and theoretical studies
of electron—phonon coupling. As a specific example, several
simulation schemes incorporate electron—phonon coupling as
a simple drag force (similar to a stopping power) assumed to
act on lower energy ions. This force acts on ions individually,
completely ignoring the collective nature of the motion that
lies at the heart of theoretical treatments of electron—phonon
coupling. Such drag forces are also assumed to apply up to
cascade energies at which the target material may be molten
and a description in terms of phonons may be inappropriate.
When the term ‘electron—phonon coupling’ is applied in
radiation damage theory it should be regarded as referring to
the rate of exchange of energy between electrons and ions in
general below some energy threshold, rather than specifically
to the interaction of electrons and a well-defined phonon
system.

For the reasons given above, we will focus our discussion
on the few theoretical treatments of electron—phonon coupling
that have been heavily cited in the radiation damage literature
and have been important in the development of atomistic
radiation damage models.

3.1. The importance of electron—phonon coupling in
radiation damage

A short time after a thermal spike has formed, when almost
all atoms over an extended region of size ~1000A are
significantly excited, but few atoms are moving ballistically
through the target medium, we can regard our system as
being composed of an excited ionic subsystem interacting
with an electronic subsystem. The electrons will likely be
initially much cooler than the ions and so will in the first
instance act as a heat sink. Because of the relatively high
electronic thermal conductivity, any energy transferred from
the ions to the electrons can be rapidly transported away and
the electronic subsystem provides an important mechanism
for cooling the ions. Depending on the energies involved, and
on the balance between the rate of energy exchange between
ions and electrons (i.e. the strength of the electron—phonon
coupling) and the electronic thermal conductivity, this cooling
might be rapid enough to inhibit the production of defects early
in the evolution of the displacement spike or it may act to
quench in defects as the system returns to equilibrium.
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This balance between the rates of energy exchange and
energy transport was investigated by Flynn and Averback [75].
They considered a thermal spike formed by depositing an
energy Q into a spherical region of the target of radius . The
energy per ion is thus Q(ro/r)3, where ry is the Wigner—Seitz
radius''. Writing the energy per atom in terms of an ionic
temperature 71, i.e. as 3kg 71, we can consider the evolution of
the thermal spike as it grows and cools to be described by

1/3
r(t)oc( Q ) ro-

3kgTi(1)

Energy exchange between ions and electrons will occur when
electrons are scattered from state to state by imperfections in
the crystal lattice, emitting or absorbing phonons. A measure
of the rate of this scattering is the distance travelled by an
electron between scattering events, the electron mean free path,
Amfp- In the harmonic approximation, when the ions are not
much displaced from their equilibrium lattice sites, this can be
written

(42)

roTo

= fofo. 43
Ti(r) @3

Amfp where Amgp < ro,
where Tj is the ionic temperature at which A, = ro. Tp thus
encapsulates information about the strength of the electron—
phonon coupling, with a low value corresponding to a strong
coupling (a high rate of energy exchange). Values for Ty can
be calculated from the electrical resistivity using formula [76]
Amtp = (92 x 107"° Qm?)(ro/ pe(Trer)ag), where pe(Trer) is
the electrical resistivity at a reference temperature Tre¢ and ag
is the Bohr radius. Comparing the mean free path to the size

of the thermal spike
3 <3kB ) T

T12/3(t) :

A mfp

= 44

r() 0 @
Flynn and Averback point out that because Ay, has the stronger
dependence on ionic temperature, there will always be some
point in time at which the thermal spike has cooled sufficiently
that Ay, > 7. At this point, heating of the electrons by the
lattice will be very inefficient. The critical factor then is 7j.
For a material with strong electron—phonon coupling and so
a low value of Ty, heating of the electrons by the lattice will
tend to remain effective for longer times and the electrons will
tend to remain in equilibrium with that lattice throughout the
development of the thermal spike.

To quantify the likely variation in the behaviour of real
metals, Flynn and Averback present a picture of electrons
diffusing out of the thermal spike, acquiring an energy kg ®p
with each scattering event, where Oy, is the Debye temperature.
If escape involves a random walk with on average (r/).mfp)2
scattering events then the electrons will acquire a temperature
T. = Op(r /)\,mfp)z. Equilibration of the electrons with the
ions, T, = Tj, will therefore be possible whilst the thermal
spike remains above a critical temperature,

(45)

! Defined as the radius of the spherical volume equivalent to the volume per
atom in the solid, i.e. %nrg = 1/n, for a number density of atoms n,.
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which has a very strong dependence on 7y. Flynn and Averback
[75] quote values for Ty of 4.5 x 10*K and 1.5 x 10*K for
copper and nickel, respectively. These imply corresponding
values for T, of 2 x 10° and 300 K, suggesting very different
behaviours for the two metals.

3.2. Two-temperature models

A particularly simple picture of the interacting electronic and
ionic subsystems emerges if we assume that though they are
out of equilibrium with one another, they are each internally in
an equilibrium state, so that the state of the combined system
can be parametrized by an electronic and an ionic temperature,
T. and T, respectively. Such two-temperature models have
been widely explored and form part of some of the atomistic
simulation schemes [8,9, 77-80] to be discussed in section 5.

Assuming an initially hot ionic system, the two-
temperature model will be valid provided the rate of
thermalization of the electronic subsystem is significantly
higher than the rate of energy transfer into the subsystem.
Since electron—electron interaction time scales are typically of
the order of a few hundred femtoseconds'2, whereas electron—
phonon interaction time scales vary between tens and hundreds
of femtoseconds'? the approximation may be invalid in many
cases. Infact, as we discuss in the context of some results from
recent simulations [14] in section 5.4, the above condition can
be considerably relaxed because the mode of excitation of the
electronic subsystem is such that it remains close to equilibrium
with a steadily rising temperature.

We can represent the evolution of a two-temperature
model using coupled heat flow equations for the evolving
spatial temperature distributions 7¢(x, ¢) and Ti(x, t),

]
ce(Te)ETe(m, 1) = Valke(Te, TI)VccTe]_gp(Te, [T, —T1l,
(46)
d
CI(TI)ng(x, 1) = Vi (T) Vo Thl + gp(Te, THI[Te — Til,
(47)

where c. and c; are the electronic and ionic heat capacities
per unit volume and «. and k1 are the electronic and ionic
thermal conductivities, respectively. g, (T, Ty) is the electron—
phonon coupling (measured in Wm™ K~! or dimensionally
equivalent units).

By extending the arguments of Flynn and Averback [75],
Finnis e al [83] develop a scheme to estimate the value of g, in
different metals. This scheme will be discussed in section 3.4.
Their numerical solutions of (46) and (47) reveal the much
more rapid cooling of the ionic subsystem in nickel when
compared with copper (see figure 9) and suggest an important
role for electron—phonon coupling in determining collision
cascade dynamics.

12 For example, Del Fatti et al [81], in femtosecond laser experiments, find
time scales of 350 fs in silver and 500 fs in gold.

13 The time scale of the electron—phonon interaction can be calculated as the
ratio of the electronic heat capacity per unit volume and the electron—phonon
coupling constant (defined below). Using experimental data from Qiu and
Tien [82] gives values of 650 fs for copper (weakly coupled) and 64 fs for
vanadium (strongly coupled).
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Figure 9. The evolution of the ionic temperature given by the
coupled equations (46) and (47) for values of g,, the
electron—phonon coupling constant, for Cu and Ni. (Reprinted with
permission from Finnis et al [83]. Copyright 1991 American
Physical Society.)

3.3. The electron—phonon drag

Finnis et al [83] consider how the two-temperature picture
could be incorporated into an atomistic simulation. Noting
that the ionic thermal conductivity will generally be small,
they simplify (47) to

dn

O (48)

=21, - 1.

C1
This equation then gives the rate at which energy should
be removed from (or injected into) the ions in an atomistic
simulation due to their interaction with the electronic
subsystem. Ideally, the required energy change of the ionic
system would be effected by the excitation or de-excitation
of the physically correct phonon modes, but such a process
is computationally expensive. Instead, approximate methods
such as uniformly scaling (up or down) the ionic velocities
or applying a force parallel to the velocity are generally
used. Energy transfer from electrons to ions is also often
implemented using a stochastic force. Finnis et al adopt the
use of a damping force, defined for the ith ion, with velocity
v; as

F, = —Biv. (49)

This force does work on the ion at a rate of —p; vl.z, which can
be equated with the rate of energy transfer due to the electron—
phonon coupling 3kgd7;/dt = (gp/c1)(Te — T1), where we
have introduced a temperature per ion, T;. If we further equate
the thermal energy associated with 7; with the ionic kinetic
energy, 3kgT; = m; vi2 for ions of mass m;, then we can write
the drag coefficient 8; corresponding to the electron—phonon
Ti - Te

coupling as
(%)

In the case where the ions are hotter than the electrons 8; will
be positive and will provide a drag force that removes energy

_ 8pmi
C1

Bi (50)
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from the ions. In the opposite case of 7. > T;, a negative f;
will provide an accelerating force. In a practical simulation
scheme, 7; can be replaced by an average 71 over some coarse-
grained cell of the ionic system [8]. Finnis ef al [83] point out
that if one is calculating the ‘ionic temperature’ 7; of an ion it
is necessary to deal with the singularity at 7; = m;v?/3kg = 0
for momentarily stationary ions. They do this by making the
substitution 7,' — {T? + (T./20)%}~"/2, where the factor
of 1/20 is chosen to be compatible with their simulation
time-steps.

3.4. Models of electron—-phonon coupling

Various analytical models for calculating the electron—phonon
coupling g, have been proposed. One of the most physically
transparent is due to Finnis et al [83] and arises from an
extension of the analysis by Flynn and Averback [75]. We
will consider their derivation and compare the result with other
commonly cited analyses.

Finnis et al [83] once again consider an electron with
mean free path Aynp, = 7970/ 71 acquiring energy kg®p in
each of a series of collisions with lattice distortions. If the
local electronic temperature is 7, and the electronic density of
states at the Fermi level is D(gg) then ~kgT. D(ef) electrons
will be able to participate in the energy exchange, given
the requirements of quantum mechanical exclusion. The
scattering rate will be vg/Angp, Where vg is the Fermi velocity,
and so the rate at which electrons acquire energy will be

dE. k3OpD(ep)vp T T,
dr '

ro T() (5 1)
Finnis et al then turn this into a net rate of energy transfer by
letting Ty — (71 — T.). Whilst this gives an energy transfer
that vanishes as required when 71 = T, there is no physical
argument to support the substitution. 71 appears in (51) as the
temperature determining the rate of scattering of electrons by
ions and we would not expect this scattering rate to go to zero
at equilibrium between electrons and ions. What we would
expect to go to zero is the net average energy transfer associated
with such collisions, and in (51) the temperature determining
this is ®p. The above comments not withstanding, we will
continue to follow the analysis given by Finnis et al and write
for the electron—phonon coupling,

k3®pD T
I pD(ep)vp e 52)
roTo
corresponding to a damping coefficient,
30 i (T —T.
p = e °), (53)
w2roTycr T;

where, again, c. and ¢y are the electronic and ionic heat
capacities per unit volume and the density of states D(eg) has
been subsumed into ¢, = (72/3)k3 D (¢g)Te.

Finnis et al [83] undertake some preliminary simulations
in copper and nickel using their damping scheme. Their results
are inconclusive about the effect of electron—phonon coupling
on the residual defect population, but similar schemes have
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been used on a larger scale by other researchers [8, 78, 84-86]
and we will discuss them in detail in sections 4 and 5.

Various more formal treatments of the electron—phonon
coupling exist in the literature [17, 87, 88], but they all reduce
to a form similar to (52), with different numerical prefactors
depending on the extent to which they contain details of
the true electronic and lattice structures. These treatments
all begin by considering the general case of a quantum
mechanical ionic subsystem characterized by phonons of
energy /€2, (q) and momentum 71q populated according to a set
of occupation numbers A (q, s), where s indexes the phonon
branch. This system is coupled to a quantum mechanical
electronic subsystem of electronic states of energy ¢, (k) and
momentum 7k with occupations f (e,(k)), where v is a band-
index. At equilibrium the f(e(k, v)) will have a Fermi—Dirac
distribution and the A/ (q, s) a Bose—Einstein distribution. If
we consider the case of an electron scattering from state (k, v)
to state (k’, v") with the emission or absorption of a phonon
(g, s), then we must ensure energy conservation &,/ (k') —
&,(k) = hQ,(q) and momentum conservation k' — k = gq.
A Fermi’s golden rule (FGR) analysis [32] (first-order time-
dependent perturbation theory) treating the lattice distortion
due to the phonons as a perturbation gives an expression for
the rate of the transfer of energy Zw and momentum q from
the ions to the electrons [17],

F(g®) &) YD 8200k -ha

s kv k)W
x8(ey (k') — &, (k) — hQ (@) Viwrrv (g, )|

X {f(su(ki)[l — flew(KNIN (g, s)

— flen )L — fe, ()N (g, 5) + 11}, (54)
where Vi, (g, s) is the coupling matrix element between
electronic states (k, v) and (k’, v') due to the lattice distortion
by phonon mode (q, s). The first term in braces corresponds
to the stimulated absorption of a phonon and the second term
to stimulated and spontaneous emission of a phonon. The rate
of energy absorption by the electrons can then be written as

= fdwha)zr(q, w).
q

The task now is to find suitable approximations to
formulae (54) and (55). Kaganov et al [88] approximate the
electronic system as a free-electron gas and find in the case
of a hot electron—ion system not too far out of equilibrium,
i > Op, |T1 — T.] < Ti, an electron—phonon coupling
constant,

dE.
dt

(55)

_ menev;

& = 6t.T. ’
where T, = Apgp/vr is the electron—phonon scattering time
and vy is the speed of sound in the lattice. Equation (56) has

the same form as the result (52) due to Finnis et al [83] and
the two formulae are made equivalent by the transformation,

(=)

(56)

2 10872
E— ﬁ [
6

2

Te2
TiOp’

(57)
Z
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Table 1. A sample of experimental and theoretical estimates of the electron—phonon coupling g, from the literature. All data given in units
of 10’ W m™3 K~'. See main text for a discussion of the trends and variation in the values.

Theoretical Experimental
Equation (52) Equation (56)

Finnis Gao et al Wang et al  Qiu and Qiu and

etal [83] [84] [89] Tien [82] Tien [82]
v 4803* 183 648 523 £37
Cr 179 45 42+5
Fe 1815.0 119
Ni  3164.1 1714.5 107
Cu 81.9 40.1 (36.4%) 12.7 14 48+0.7
Ag 9.4* 3.34 3.1 2.8
Au 14.2* 23 2.6 2.8+0.5
w 27.6 27 26+ 3

# Calculated by the present authors using the approach of Gao et al

where z is the number of valence electrons per atom in the
free-electron gas of Kaganov et al [88].

An analysis by Koponen [17] yields an expression for the
energy transfer rate

dE.
dr

= 47 D(er) / dw o F () (hw)* (N (Ty) — N(T.)},
(58)

where N(T) is a Bose-Einstein distribution at temperature
T for the phonon occupations. The derivation of (58) is
too involved to admit a simple discussion, but the important
point is that the so-called spectral function a®F (w) is an
experimentally measurable property of a metal, encapsulating
the information about the electronic and phonon densities of
states and the coupling matrix explicitly present in (54).

3.5. Estimates of electron—phonon coupling

As a demonstration of the uncertainty involved in selecting
a numerical value of the electron—phonon coupling for use
in an atomistic simulation, we give a selection of literature
estimates of g, in table 1. Included are values calculated by
Finnis er al [§3] using (52) and values calculated using the same
formula by Gao et al [84]. These differ by approximately a
factor of 2 due to the choice of values for 7.

Also included are theoretical values calculated by Wang
et al [89] and Qiu and Tien [82] using formula (56) due
to Kaganov er al [88]. The large differences in the values
for chromium and vanadium are due to differing assumptions
about the number of valence electrons contributing to the free-
electron gas density: Wang et al assume n, = n,; Qiu and
Tien assume a variable ratio 0.5 < ne/n, < 2.0.

The large difference between the values for nickel
calculated using (52) and (56) is due to the presence of the
electronic density of states at the Fermi level in the former. This
is particularly high in nickel (compared, say, with copper) and
thus implies a large electron—phonon coupling. This band-
structure dependent effect is absent from the free-electron
based formula (56).

Experimental values of g, were tabulated by Qiu and
Tien [82], derived from short pulse laser heating experiments
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(see [90,91] for examples, [92] for a review) in which excess
energy is injected into the electronic system by a laser pulse
of ~100 fs duration and the system monitored as it relaxes to
equilibrium. These values show much better agreement with
calculations using (56) than with those using (52), despite the
presence of more band-structure dependent effects in the latter
formula.

Overall, the values of electron—phonon coupling obtained
by each method show a variation of several orders of magnitude
between gold (weakly coupled) and vanadium (strongly
coupled). Such variation implies the possibility of strong
material dependent effects on the later stages of cascade
development.

The relative variation in the experimental values between
copper and vanadium is best reproduced by formula (52)
as implemented by Finnis et al [83] and Gao et al [84].
Formula (56) used by Wang et al [89] is only able to capture
the variation if the number of valence electrons is varied. Qiu
and Tien [82] use such a variation, but the justification for, for
example, setting n, = 2n, for vanadium, but n, = 0.5n, for
its neighbour chromium is not clear.

Equally importantly, for any given material, the estimated
values of g, vary by over an order of magnitude and it is not
clear which value should be adopted as a parameter in any
particular simulation scheme.

4. Implicit incorporation of electronic effects in
atomistic simulations

In the following two sections we will examine the various
methods which exist for incorporating the effect of the
electronic system into simulations of radiation damage. Such
methods fall into two broad classes depending on how the
electrons are modelled and we will treat each in turn. To date,
the bulk of effort has focussed on methods from the first of these
classes—those which treat the electrons implicitly within a
simulation of ion behaviour. A second class of methods which
incorporate an explicit model of the electrons has recently
begun to be explored and offers much opportunity for future
work. These methods are considered in detail in section 5.
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4.1. Experimental benchmarks

The main aim of most simulations of radiation damage is to
establish as accurately as possible the primary state of damage
at the end of the relaxation phase and the factors that influence
it. In considering the validity of the various approaches we
will need to bear in mind the extent to which experimental
verification is possible. We will not consider the methods used
to obtain such experimental data (see Averback and Diaz de la
Rubia [15] for a review), rather only the types of information
available. These are the following.

Range distributions. The perpendicular distance from the
surface at which an intruding ion comes to rest is known as
its range and the standard deviation of the range is referred
to as the straggling. Large quantities of experimental data
on both quantities are available, but as Ziegler et al [5] point
out different experimental techniques involve different biasing
factors and often use slightly different definitions of range and
straggling. The data available for model fitting thus exhibit
broad scatter in many cases.

Mixing. The ionic mixing parameter {py is defined as

(X?)
n, 7.

i =

: (X% =Y [R;(t) — Ry ()P, (59)

where {R;(t)} are the ionic positions at some time ¢ during
a cascade, {R;(0)} are the corresponding initial positions, 7,
is the ionic number density and 7; is known as the cascade
energy and is defined as that portion of the initial PKA energy
available to cause atomic displacements (i.e. it excludes energy
lost to the electrons). ¢py is normally given in units of ASev!
and uncertainty in the experimental measurements is around
10-20% [93].

Displacement threshold energy. The displacement threshold
energy (or just threshold energy), Eq, is defined as the energy
required to make a stable Frenkel pair. In crystals this
energy will vary with direction, typically being significantly
lower along close-packed directions. For a few materials the
direction-dependent threshold energy surface has been mapped
experimentally (see King et al [94] for an example in copper).
Average threshold energies, measured using polycrystalline
samples, are available for a broad range of materials [15].

The threshold energies, and particularly the threshold
energy surfaces when available, are used for calibrating the
short range repulsive portion of interatomic potentials in MD.
After such a fitting to the data for copper in King et al [94],
Foreman et al [95] found a good match to the shape of the
experimental threshold energy surface from their simulations.
King and Benedek [96] obtain good qualitative agreement with
an unfitted Born—Mayer potential.

Damage function. The damage function v(7) is the number
of defects produced by a PKA of energy 7. Damage functions
are often expressed in terms of a damage efficiency, &pp,
defined via

v(T) = &pp(T)vre(7), (60)
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where vgp is the Kinchin—Pease damage function (see (61) and
discussion in section 4.2). Wallner et al [97] give experimental
data for which they claim a maximum error of 15%, though this
excludes further possible errors involved in their calculations;
they rely, for instance, on data for the incremental resistivity
due to an additional Frenkel pair, which are known only to
within £25% and are not expected to be additive at higher
damage concentrations.

Clustering and defect distributions. Various methods exist
for mapping out the distribution of defects in experimentally
irradiated samples. Though all have their limitations (they
might be sensitive to the effects of the surface of a small
sample for instance) they can be used to build up a picture
of typical defect distributions in different materials. The
distributions and data on clustering provide support for the
ability of classical MD to reproduce the correct broad patterns
of behaviour.

Lengths of replacement collision sequences. The length of
a typical replacement collision sequence (RCS) in a cascade
simulation will be sensitive to the details of the interatomic
potential and so experimental measurements of RCS length can
be useful for calibration. Such measurements are not possible
directly, but RCS lengths can be inferred by various means. As
an example, Wei and Seidman [98] give a distribution of RCS
length resulting from 20 keV self-irradiation of tungsten.

4.2. Damage functions

Before the availability of general purpose computers flexible
enough to perform simulations of radiation damage events,
predictions of damage relied on analytical approaches. We
can view many of these approaches as cascade simulations in
thought-experiment form, allowing expressions for the damage
function, and range and straggling distributions to be derived.

The most well known of these expressions is the so-called
Kinchin—Pease damage function, vgp(7). Kinchin and Pease
[99] considered the case of a PKA of initial kinetic energy 7
initiating a series of collisions within a solid. The cascade is
imagined to develop via a sequence of rounds of collisions,
with each round doubling the number of ions involved in the
cascade and the initial energy being shared via hard sphere
collisions. The probability distribution for the energy transfer
in such collisions is uniform between zero and the maximum
possible for the projectile to target mass ratio: a simple form
permitting an analytical solution for the energy distribution of
all the atoms in the cascade in a given round of collisions.
In a given round, any ions with energy between one and two
times the displacement threshold energy, Eq4, will be displaced
themselves, but will not go on to displace further atoms. Thus
the total number of atoms displaced in the cascade can be
calculated as a sum over the energy distribution in all collision
rounds. The final expression is

VKpP (T) = (6 1)

2Eq
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Various extensions and refinements to this expression have
been proposed, but the most widely adopted is the Norgett—
Robinson—Torrens (NRT) expression, also sometimes referred
to as the modified Kinchin—Pease damage function. An
obvious deficiency of (61) is the lack of any account of
electronic energy loss. In fact, in some applications vgp is
allowed to saturate above some energy 7 to take account
of the fact that at high energies the energy loss from an ion
is predominantly to electrons, but this modification is crude.
Instead, Norgett et al [100] propose a revised form of the
damage function
kT

(7)) = —,

3E] (62)

where 7 is that portion of the PKA kinetic energy not lost to
electronic excitations (calculated using the universal functions
of the LSS theory, see Lindhard et al [101]). The factor x
is the displacement efficiency, designed to take account of
the possibility of recombination of some of the Frenkel pairs
formed in the cascade. Norgett et al propose a universal value
of k = 0.8 based on a series of simulations carried out by
Robinson and Torrens [102].

4.3. Binary collision models

Expressions like the Kinchin—Pease (61) and NRT (62) damage
functions result from considering radiation damage events
as a series of isolated binary collisions. An alternative
to addressing such a process analytically is to carry out
large simulations within the same approximation and directly
observe the damage produced. This approach is called the
binary collision approximation (BCA).

Simulations in the BCA begin with a PKA with some
initial kinetic energy 7p moving through a simulation cell
containing other ions. This PKA moves in a straight line at
constant speed until it comes within range of another ion, at
which point it is considered to undergo a collision with that
ion. The velocities of the projectile and the target ion after the
collision are calculated using the theory of simple scattering
under an assumed potential. If the kinetic energy transferred
from projectile to target is 7 and the projectile is left with
kinetic energy 7, then there are four possible outcomes from
the collision:

(i) Tt > Eq, T, > Ey: the target atom joins the cascade and
both atoms go on to undergo further collisions.

(ii) 7 > Eq, Ty < E¢y: the target atom joins the cascade and
the projectile replaces the target at its lattice site.

(iii) 7; < Eq4, T, > Ecy: the target atom remains on its lattice
site and the projectile proceeds on a modified trajectory to
undergo further collisions

(iv) Ty < Eq4, Ty < E¢y: the target atom remains on its lattice
site and the projectile becomes an interstitial atom.

The cut-off energy E.y is a simulation parameter chosen to
improve the results and need not take the same value as the
displacement threshold energy Eq.

Various different features have been incorporated into the
basic BCA scheme since the earliest simulations by Yoshida
[103]. A clear distinction exists between models of amorphous
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targets (see the early work of Oen et al [104, 105]) and more
computationally demanding treatments of crystalline lattices.
In the former case, target ions are generated for collisions
with cascade ions based on a random spread around some
mean free-flight path. In the latter case, a search for collision
partners must be made within the lattice surrounding the
cascade ion path. Early simulations using the BCA in ordered
lattices [106—108] provided the first means of exploring the
anomalies discovered in experimental range distributions in
polycrystalline targets [109] and attributed to ion channelling.

Animportant feature of BCA simulations is their relatively
low computational cost. Because they treat ionic collisions in
a very simple way and because the description of the target
material is effectively generated ‘on the fly’ in the vicinity of
cascade ion paths, it is possible to simulate large numbers of
cascade events up to very high PKA energies and to generate
good statistics for the damage distribution. This feature of the
BCA has ensured its continued use alongside more realistic, but
much more computationally costly, MD methods, even up to
the present day. Well developed codes have been widely used,
including the SRIM code [68] for simulations of amorphous
targets and MARrRLOWE [102] for the treatment of crystalline
targets. Results from the latter were used to determine the
displacement efficiency, « in the NRT expression (62).

However, the BCA has some major flaws. Whilst
simulations can provide defect distributions if the initial and
final positions of the cascade ions are recorded [110, 111],
there is no inbuilt mechanism for recombination of interstitials
and vacancies to take place. The simplest way to allow
for such healing is to define a recombination radius within
which Frenkel pairs will be eliminated. Beeler [112] has also
explored the possibility of defect annealing by allowing for a
phase of diffusive defect motion following the conclusion of
the cascade. More generally, we cannot be confident that the
cascade evolution, and therefore the damage distribution, is
realistic, because of the approximation of treating only binary
interactions. This approximation gets worse at the lower ion
velocities at which the final damage state is formed. This
problem is highlighted by differences in the BCA literature in
the way that the cascade evolution is followed. Which collision
should be considered next at any particular time? When should
multiple collisions be deemed to occur simultaneously? And
how should cascade evolution be allowed to interact with
existing defects given that the ‘true’ chronology of the cascade
is uncertain?

From the point of view of this review, a key issue is the
incorporation of electronic effects within the BCA. Many of
the earliest simulations made no attempt to take into account
the loss of ionic kinetic energy to the electrons. Later schemes
such as those in MARLOWE and SRIM incorporate an energy
loss into the calculation of the projectile and target velocities
following a collision. The collisions are still treated elastically
within the centre of mass frame, but an energy loss is calculated
using the models of Firsov [52] or Lindhard and Scharff [53]
(see section 2.3.1), which then influences the final trajectories.

It is not immediately obvious that such a means of
incorporating electronic effects will give the correct cascade
behaviour.  In particular, when the predominant mode
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of evolution involves glancing collisions (in the case of
channelling) or very efficient energy transfer from projectile
to target (in the case of an RCS) we might expect a more
sophisticated treatment to be necessary. Whilst the outcome
of BCA simulations agrees well with experimental results for
ion range and straggling distributions, such statistics afford
only a crude view of cascade behaviour; it is not clear to what
extent such agreement is the result of the fitting of the values of
the many empirical parameters within the simulation schemes.

4.4. Molecular dynamics with drag

An obvious improvement over the BCA would be to include
in the cascade simulation an explicit representation of the ions
and the forces between them. Classical molecular dynamics
(MD) implements just such an improvement and, contingent on
a good choice for the interionic force model, allows for much
more realistic simulations of radiation damage and for the study
of more complex phenomena. Computational power has been
sufficient for the MD simulation of collision cascades since the
1960s (see Gibson et al [113] for an early example and various
reviews [ 114, 115]). In the early simulations, electronic effects
were ignored.

Since the 1990s various models have explored the use
of a viscous drag force, opposed to the ion velocity and
proportional to its magnitude, to represent the effects of energy
transfer to the electrons in both the electronic stopping and the
electron—phonon coupling regimes. Such a force is clearly
consistent with the slow particle stopping models discussed in
sections 2.3.1 and 2.3.2 for the electronic stopping power and
also conforms to the model proposed by Finnis et al [83] for
the electron—phonon coupling (see section 3.3). We are thus
considering ions moving under an equation of motion,

M;R; = F; — BiR;, (63)
where F; is the force on ion i of mass M; due to the other
ions under the chosen interatomic potential. R;, R; and R;
indicate the ion position and its time derivatives and §; is the
drag coefficient. In the simplest models §; is chosen to be a
constant for all ions.

Nordlund et al have made extensive studies [93,116—
118] of the effect of electronic stopping power on the primary
damage state. Their MD simulations use embedded atom
model (EAM) potentials [119], adjusted to give correct melting
temperatures and joined at distances of close approach to
a repulsive potential (chosen according to the specification
of Ziegler et al [5]) to improve the handling of energetic
collisions. The electronic stopping power is incorporated as
a frictional force, proportional to ion speed with constants of
proportionality drawn from the SRIM code [5] and assumed
to act only on ions whose kinetic energy 7; exceeds 10eV:

Bi=8
=0

7; > 10keV,
T; < 10keV.

(64)

No clear reason for the kinetic energy cut-off is offered,
except that the Lindhard form for the stopping power is only
considered valid down to this velocity range.
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In addition to this, a kinetic energy cut-off in the damping
force will ensure that the long-term steady state of the ionic
system has a finite temperature rather than all the ions being
damped to zero velocity. However, the approach to this steady
state will be unphysical. Rapid repartitioning of the initial
PKA energy 7pka amongst all the N, ions will probably take
the average kinetic energy per ion, ~7Tpga /2N, (assuming
equipartition between kinetic and potential energy), below the
threshold within the time scale of the simulation. Statistical
fluctuations will then repeatedly take some ions above the
threshold until the ultimate steady state, in which the average
total kinetic energy is 5 eV is reached. The temperature of this
steady state, 71 = 2(5eV)/3kgN,, though it would take an
extremely long time to reach in practice, is thus system size
dependent.

A common theme in the publications of Nordlund et al
is a conclusion that the electron—phonon coupling, not taken
into account in their model, has only a minor effect on the
primary damage state. In [116] and [93] a comparison of the
mixing parameter from simulations of ion beam mixing with
data from experiments in several metals and semiconductors
is carried out. This shows that much of the difference in
behaviour between pairs of metals expected to have very
different electron—phonon coupling strengths (e.g. Cu and Ni,
and Au and Pt) is accounted for by the MD model without the
effect of electron—phonon coupling. Nordlund et al conclude
that the interionic potential (and hence the melting point and
elastic properties) has the dominant effect on the extent of
mixing and its variation between materials, and therefore
electron—phonon coupling strength must play only a minor
role. A detailed MD simulation study of the effect on the
primary damage state of material properties and choice of
potential is to be found in [93]. Similar conclusions are
drawn by Zhong et al [118], who compare defect yields in
the self-bombardment of tungsten between simulation and
experiment, claiming agreement within ~30% for a model
omitting electron—phonon coupling effects.

However, even if an MD model without electron—phonon
coupling were to replicate the experimental results perfectly,
this would not necessarily indicate the unimportance of
electron—phonon coupling. Such models tend to contain
various parameters, whose calibration is ultimately based on
experimental data. When comparison of simulations is made
only with high-level characteristics of real cascades, it is
conceivable that the fitted values for these parameters might
compensate for the lack of electron—phonon coupling to yield
broadly correct behaviour. The details of the cascade evolution
might nevertheless be inaccurately captured.

Before we discuss the above results further, we will
consider the complementary work of Bacon et al [84,85].
In [84] an MD model of @-iron using a Finnis—Sinclair potential
[120] is augmented with a frictional force to represent the
effect of electron—phonon coupling. The simulations focus on
the evolution of the cascade once a molten region has formed
and the effect of the coupling strength on the defect yield is
analysed. A range of values of coupling strength are tested,
varying between zero and a value ten times that found for Ni
in [87], and including the values for Cu and Ni calculated by
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Figure 10. The evolution of the radius of the molten zone in
cascade simulations in a-Fe. Increasing the electron—phonon
coupling strength dramatically increases the rate of cooling of the
cascade. (Reprinted with permission from Gao ef al [84]. Copyright
1998 IOP Publishing.)
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Figure 11. The number of Frenkel pairs produced in cascades with
various PKA energies as a function of electron—phonon coupling
strength. (Reprinted with permission from Gao et al [84].
Copyright 1998 IOP Publishing.)

Finnis e al [83]. The strength of the electron—phonon coupling
is observed to have a dramatic effect on the rate at which the
molten zone shrinks (see figure 10) and a less strong, though
still significant effect, on the number of Frenkel pairs produced
(figure 11).

The apparently contradictory conclusions concerning the
importance of the electron—phonon coupling strength can be
reconciled if we note that the claim by Nordlund et al of
agreement to within ~30% between experiment and MD
excluding coupling [118] is overstated. In the case of a 20 keV
impact the simulations produced 123 vacancies compared
with 81 measured via field ion microscopy (FIM). At 30keV
the data were 63 vacancies in the simulations to 125 in the
experiments. As apercentage of the experimental results, these
figures suggest a discrepancy of ~50%, leaving ample room
for a significant contribution from electron—phonon coupling.
Indeed, this is consistent with the change in the Frenkel pair
yield observed by Gao et al [84] (and illustrated in figure 11)
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when the coupling strength is varied from zero to the value
associated with nickel.

As pointed out by Nordlund er al [93], there is still
considerable uncertainty as to how electron—phonon coupling
should be treated in MD simulations of radiation damage. If
we add to this the scarcity of experimental data against which
to validate coupling models and the uncertainties in those data,
then there is clearly a need for more work in this area. More
realistic treatments of the interaction between electrons and
ions could help to resolve this issue (see section 5).

4.5. Electrons as a heat bath

In addition to providing a mechanism for ionic energy loss,
we also expect that the electrons in a metal will function as
a heat bath, exchanging energy with the ions and enhancing
the rate of energy transport away from the cascade region.
Caro and Victoria [121] identify two key problems in MD
simulations of radiation damage, which remain no matter how
accurate the interatomic potentials become. These are the
treatment of inelastic scattering and the need for a description
of electronic thermal conductivity (see also [2]). In order to
better capture the effect of electron—phonon coupling, they
propose a treatment of the electrons as a Langevin heatbath,
such that the ions obey the modified equations of motion,

M;R; = F; +n,(t) - Bi R, (65)
where B; is a drag coefficient and 7, () is a stochastic force,
distributed with probability P (1)

m =0, (@) -nt")) =2pkeTed(t — 1),
P(n) = Qr (n*) " exp(—n*/2(n*)).

Caro and Victoria note that a wide range of theoretical
treatments yield a stopping power proportional to velocity, so
that equation (65) could, in theory, describe both the electronic
stopping and the electron—phonon coupling regimes, provided
some means were found to account for the difference of up to
several orders of magnitude in the value of 8 between the two
(see section 3).

The method proposed by Caro and Victoria adopts
the density dependent stopping power formalism of Ziegler
et al [5] (see (40) on page 42), assuming that the higher
average electronic density experienced by an ion moving
ballistically in the stopping power regime compared with an
ion oscillating about its equilibrium position can correctly
account for the variation in damping. Such a model can
be efficiently implemented within MD simulations that make
use of EAM potentials in which a measure of local electron
density is readily available. The form of g is determined
empirically to match the linear response theory of Kitagawa
and Ohtsuki [122] at high density and results derived from
density functional theory by Echenique er al [123] at low
density. The best fit is found to be

(66)

Bi = Alog,y(ap,” +b), (67)

where p; is the electron density experienced by an ion at R; and
A, @ and b are constants whose values are givenin [121]. Caro
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and Victoria emphasize that there is no physical justification
for this density dependence of the damping; it is simply a best
fit to other models across a range of p.

Pronnecke et al [124] used the Caro and Victoria model in
a set of simulations of 55 296 atoms in copper. They simulated
initial cascade energies of 2.5 and 5.0keV with electron—
phonon coupling included and excluded in each case, making
four simulations in total. Even the weak coupling in copper is
found to reduce the duration of the cascade and decrease the
extent of mixing significantly.

An acknowledged deficiency of the original model in [121]
is the handling of the dependence of the stochastic force
n(t) on electronic temperature. Under Langevin dynamics
the fluctuation dissipation theorem states that at equilibrium
n o /T, and so in general some model for the evolution of the
electronic temperature distribution is required. To avoid this
need, Caro and Victoria assume that the rate of heat transport by
the electrons and the strength of the electron—phonon coupling
are such that the electronic system functions as a perfect heat
sink, remaining at the target ambient temperature throughout
any simulation. This is the case with the simulations in
[124]. Unfortunately this assumption precludes any electronic
heating, excluding the possibility of the electrons acting to
anneal out defects and making it unlikely that the model will
correctly describe cascades in metals with strong electron—
phonon coupling.

Rectifying these deficiencies requires a change in the
way that simulations deal with the electronic system, moving
beyond merely attempting to capture its effect on the ions and
towards an explicit model of its evolution.

5. Explicit treatment of electrons

Our consideration of the work of Caro and Victoria [121] in
section 4.5 serves to highlight the limitations of attempting to
treat electrons only implicitly via their effect on ion behaviour.
Only relatively simple phenomena can be captured and often
only with the sacrifice of physical content. Just as the explicit
treatment of ion trajectories in classical MD simulations
revealed a richness of behaviour uncaptured within the binary
collision approximation, so we might expect that the full role
played by electrons in radiation damage will be revealed only
by their explicit treatment.

In this section we will introduce a variety of models that
explicitly model the behaviour of electrons within simulations
of radiation damage in metals. The range of work that
we consider spans the state of the art in handling electrons
as classical degrees of freedom within large-scale cascade
simulations and recent successes in exploring the effect of
quantum mechanical electrons on ion dynamics. We will also
examine some further techniques that may soon be rendered
applicable to radiation damage problems by advances in theory
and computational resources.

5.1. Electrons as an inhomogeneous heat bath

Duffy and Rutherford [8, 9] have developed an extension of the
model of Caro and Victoria, which better captures the effect
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of electron—ion interactions on ion dynamics by including a
representation of the electrons as an inhomogeneous heat bath.
The ions obey a Langevin equation of motion as in (65),

M:R; = F +m;(t) — Bi R,

but in this case the mean squared magnitude of the stochastic
force n;(¢) is varied throughout the simulation cell with the
local electronic temperature.

The form of the damping coefficient g; is also different
from that used in [121]. The effect of electron—phonon
coupling is represented by a constant 8, applied to all ions
and the electronic stopping power is modelled via a second,
usually much larger, constant 85 applied to ions moving faster
than some threshold velocity v,

Ri Z U,

lgi =,3p+,35
:ﬂp

Values for f; are taken from the SRIM code [5] (Bs/M; =
1 ps~! for bee iron) and a variety of values for Bp is explored
0.05ps~! < Bp/M; < 30 ps™1). vy is set to correspond to an
ionic kinetic energy of twice the cohesive energy.

The electronic temperature distribution is coarse-grained
into cells of around 340 ions and evolved according to a heat
diffusion equation,

) (68)
R; < v,.

T,
a1

Ce =V« VT,) — gp(Te -T)+ gsT]/a (69)
where c. and k. are the electronic heat capacity and thermal
conductivity. 7Ty is an ion temperature defined as an average
over the N atoms of the coarse-graining cell as

1
N, cell lz

3
—kgTh =
!

1 s
EMi R; (70)
and TI’ is the equivalent average over only those N/, atoms
with R; > v. The second term on the right-hand side in
(69) is thus the usual source term corresponding to energy
exchange between ions and electrons via the forces — 8, R; and
1;. The third term on the right-hand side in (69) is an additional
source term corresponding to the electronic stopping force
—BsR;. The values of gp and g are chosen to maintain energy
conservation in the exchange between ions and electrons.

Duffy and Rutherford refer to this model as an
inhomogeneous Langevin thermostat. They give a full
description in [8] and present preliminary results for a small
number of cascade simulations. In [9] they add a further
refinement by enlarging the spatial extent of the electronic
system to ten times that of the ionic MD simulation, thereby
enhancing the ability of the electrons to transport energy out
of the cascade region. They apply a 300 K thermostat to the
boundaries of the enlarged system.

Rutherford and Duffy use this enhanced model to simulate
10keV cascades in iron, modelled using the magnetic
interionic potentials of Dudarev and Derlet [125]. They
explore the effect of electron—phonon coupling on cascade
development by varying B, across the large range of values
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Figure 12. The number of stable defect pairs at the conclusion of
the cascade simulations as a function of electron—phonon coupling.
The plotted measure is related to the damping coefficient by

X = Bp/M;. The inhomogeneous thermostat, which allows for
feedback of energy from the heated electron to the ions, results in
prolonged annealing and a reduced defect yield. Note that the
electronic stopping power (Bs/M; = 1ps~!) is only applied in the
inhomogeneous case. (Reprinted with permission from Rutherford
and Duffy [9]. Copyright 2007 IOP Publishing.)

found in the literature (see section 3.5). The overall trend for
the effect of electron—phonon coupling on the number of stable
defect pairs formed is for an increase at moderate values of 8,
due to freezing in the distribution of point defects and for a
decrease at high B, because the removal of energy from the
cascade reduces the size of the cascade and hence the number
of point defects created.

A comparison between the use of a spatially varying
electronic temperature and simulations using a homogeneous
Langevin thermostat at 300 K (the perfect heat sink of Caro
and Victoria [121]) shows that the former tends to reduce the
stable defect yield across the full range of B, (see figure 12).
Comparison of the maximum number of defects (most of which
will heal) formed during the simulations shows that at moderate
and high B,, inhomogeneity in the thermostat tends to increase
the size and duration of the thermal spike (see figure 13). These
effects can be understood as the result of the elevated electronic
temperatures developed in the cascade region; the feedback of
energy to the ions prolongs the thermal spike, increasing the
peak defect yield, but also allowing for prolonged annealing,
reducing the final stable defect yield.

We note that care should be taken in interpreting figures 12
and 13 for lower values of the coupling (8,/M; < 1ps™h).
In the simulations using a homogeneous thermostat, the
electronic stopping power is omitted (8; = 0) meaning that
the effect of allowing the electrons to heat up is properly
disentangled from that of a higher average damping only when
Bo > Bs.

In [9] the evolution of the electronic and ionic temperature
distributions during cascade simulations is plotted and the
effect of the electron—ion interaction can be seen in the
dramatically faster decrease in the ionic temperature for

high .
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Figure 13. The peak number of (mostly unstable) defects measured
during the cascade evolution as a function of electron—phonon
coupling (x = B,/M;). Athigh coupling, the use of an
inhomogeneous evolving electronic temperature distribution is seen
to enhance the degree of ionic mixing. The cascade is prolonged by
the feedback of energy from electrons to ions. As in figure 12, no
simple interpretation of the data for y < 1ps~! is possible.
(Reprinted with permission from Rutherford and Dufty [9].
Copyright 2007 IOP Publishing.)

Duffy et al [78] find a further application for their model
in simulating the formation of damage tracks around high
energy channelling ions. They take an MD cell of around
one million ions, coupled as in [9] to a much larger electronic
system. The electronic temperature in a central cylindrical
region 2.52 nm across is elevated to 7.5 x 10* K to represent the
energy that would have been transferred from an ion traversing
the region and experiencing a stopping power of 10keV nm~!.
These simulations thus examine the thermal spike model of
channelling ion damage and the authors explore the sensitivity
of the defect yield not only to the value of the electron—phonon
coupling, but also to values of the electronic specific heat and
thermal conductivity. The defect yield is highly sensitive to
Bp» with higher coupling resulting in a greater number of stable
defects. Increasing the electronic thermal conductivity &, from
the experimental value for Fe rapidly reduces the stable defect
yield by reducing the size of the molten region. This result
is consistent with experimental data for the track formation
behaviour of a variety of metals (see [78]). However, the
very low sensitivity to electronic specific heat found in the
simulations is in contradiction to the experimental evidence.

Care should be taken in the comparison of these
simulations with experiments on different metals because the
same Fe potential is used in each case. The simulations
therefore fail to take account of the variation of other material
properties that will affect the experimental results: melting
point in particular would be expected to have a large effect on
defect yield. Also, the heat capacity and stopping power are
not independent material properties. The heat capacity will
be proportional to the electronic density of states at the Fermi
level, D(er), and the stopping power, being dependent on the
number of available electronic transitions from occupied to
unoccupied states, will tend to be proportional to [D(ep)]>.
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Ivanov and Zhigilei have developed a similar model for
an MD simulation of ions coupled to an evolving electronic
temperature distribution. They apply their model to the study
of melting in nickel films induced by short laser pulses [126]
and the velocity of the melt front in nickel and gold [127]. The
main difference between the work of Duffy e al and that of
Ivanov and Zhigilei is the manner by which energy is returned
from hot electrons to cooler ions. In the latter case this is
implemented by making the damping term proportional to the
difference between the local electronic and ionic temperatures
(averaged over a coarse-graining cell),

Bi o< (T — To). (71)

It is thus possible for the drag force to accelerate ions in the
presence of hotter electrons.

Duvenbeck et al [77,79, 80] have developed a model in
which the work done by a drag force on the ions acts as a source
of heat in a diffusional model of electronic temperature. The
aim of the work is to explore the behaviour of the electronic
temperature at the surface in simulations of sputtering events.
However, since the authors do not include a mechanism for
return of energy from electrons to ions, rejecting this as
a second-order effect, their model represents only a partial
coupling of electron and ion evolution.

The model presented by Duffy et al is a significant advance
over earlier classical MD simulations with simple Langevin
dynamics at a fixed thermostat temperature. Even though
the techniques discussed in the rest of this section provide
a more realistic model of the electronic system, available
computational resources will restrict simulations of large
collision cascades (of hundreds of thousands of atoms or more)
to using some sort of augmented MD model for the next decade
atleast. The inhomogeneous Langevin thermostat, then, can be
seen as an important first step towards a molecular dynamics
scheme optimized to capture the effects of the exchange of
energy between electrons and ions. Initially, the primary role
of more sophisticated models will be to identify and calibrate
the necessary refinements to such a classical scheme.

We therefore lay out the key remaining gaps in the model
of Duffy et al as a useful guide for future work in the field:

Thermal properties of electrons.  As Duffy et al acknowledge,
their treatment of the electronic thermal conductivity and heat
capacity is only at the simplest level, with a fixed room-
temperature value for the former and a tanh(7,) form for
the latter, saturating at 3kg per atom for high 7.. Many
processes of radiation damage are such that the electrons and
ions are strongly out of equilibrium, both within and between
the subsystems, for significant periods of time and so more
sophisticated treatments of heat transport might be required.

Ivanov and Zhigilei [126, 127] implement a temperature
dependent thermal conductivity of a form that tends to k. ~
T./ Ty at low temperatures and to k. ~ Tg/ 2, characteristic of
a low density plasma, at high 7.

Energy transfer from ions to electrons. Various ad hoc forms
for an electronic damping of ionic motion have been proposed,
but all have in common the fact that the damping force is

27

proportional to and directly opposed to the ionic velocity. Such
forms are justified by an appeal to a large body of supporting
literature, both experimental and theoretical. However, the
theoretical work is carried out only within approximations
that would be expected to yield a linear damping result and
experiments are severely restricted in what they can measure.
Neither has anything to say about the magnitude or importance
of deviations from perfect linearity and opposition to velocity
of the force on the ions due to the electrons.

Furthermore, most schemes make a distinction between
the electronic stopping power regime and the electron—phonon
coupling regime, between which a large difference in damping
is expected. Bacon ef al [84, 85] and Nordlund et al [93, 116—
118] choose to ignore one or the other regime entirely, Caro
and Victoria propose an ad hoc fitted form based on local
electronic density to accommodate both regimes and Duffy
et al incorporate each via a separate constant force. We
reiterate that the same physics of electron—ion interactions
underlies energy transfer in both regimes [17]. The distinction
between electronic stopping and electron—phonon coupling
is normally drawn in terms of the correlation between the
motion of different ions (small in the former case, large in
the latter). But a molecular dynamics simulation, with its
explicit treatment of ionic motion, contains full information
about such correlation. This means that it should be possible
to find a scheme that accounts for variation in the damping
force in a physical way. The investigation of radiation damage
with more advanced models should help to inform the design of
such a scheme, incorporating a local environment and velocity
dependent, anisotropic electronic damping force.

Ensuring the correct dynamics. Several potential problems
arise with the inclusion of a spatially varying electronic
temperature. The first of these is the correct handling of the
boundary conditions on the electronic subsystem. In the first
incarnation of their model [8], Duffy ef al chose the same size
for the electron and ion systems. All the energy transferred
into the electrons was therefore trapped in a small region,
resulting in anomalously high electronic temperatures which
were only slowly reduced by the 300 K thermostat on the
boundary. In later work [9] the electronic system is greatly
enlarged, allowing for diffusive transport of energy out of
the ionic MD region, but the system is still finite in extent
and bounded by a simple 300 K thermostat. In fact, Duffy
et al identify three phases in the evolution of the maximum
electronic temperature: a rapid rise, followed by a rapid fall-
off dominated by electronic heat diffusion, followed by a final
slower decay. It is not clear, but it is possible that the change in
behaviour between the fast and slower decay is simply due to
the establishment of a fairly uniform electronic temperature,
with further cooling dominated by the thermostat.

A second issue is the handling of the temperatures outside
the region of the MD simulation. Duffy et al implicitly
assume that the ion temperature remains equal to the electronic
temperature in the embedding region. In reality the ions will
tend to remain cooler than the electrons, but will gradually
heat up. In effect they provide a spatially varying bath for the
electronic temperature in the embedding region and another
heat sink, in addition to the boundary thermostat.
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5.2. Adding quantum mechanical electrons

In the rest of this review we will consider a variety of simulation
methodologies able to better capture the complex physics
of radiation damage in metals. These methodologies vary
widely in their complexity, but none of them can be claimed
to provide a means for directly simulating radiation damage
cascades over realistic time and length scales. Advances
in computational resources will gradually render models in
each step up the ladder of complexity applicable to direct
simulation, but in the meantime the models should primarily
be viewed as exploratory tools. This is not to belittle their
importance. Whilst the inhomogeneous Langevin thermostat
of Duffy et al captures much of the important physics in
a phenomenological way, there remain many unanswered
questions about the interaction of ions and electrons. Only
by answering these questions can we hope to build more
realistic molecular dynamics models. And an excellent way of
answering them is by undertaking simulations in a framework
of more sophisticated physics.

A non-relativistic quantum mechanical system of N,
nucleiatpositions R = {R, Ry, ..., Ry,} and N electrons at
positions » = {ry, rp, ..., ry,} is properly described at time ¢
by a many-body wavefunction ® (R, r, ¢). This wavefunction
will evolve under a Hamiltonian H (R, r), which we assume
to have no explicit time dependence, according to the time-
dependent Schrodinger equation,

R 3
HR. MR, 7.1) =ih ®(R.7.1). (72)

H (ﬁ, r) incorporates terms corresponding to the kinetic
energy of the nuclei, T,(R), the kinetic energy of the electrons,
f"e(r), and to the electrostatic interaction energy of the nuclei
with each other, \Zm (R), the electrons with each other Vee (r)
and the nuclei with the electrons Vne(R, 7),

H(R, ) = Ty(R)+To (1) + Van(R)+Vee (1) + Ve (R, 7). (73)

Solution of this full problem is computationally impossible for
any system of appreciable size and progress can be made only
by making simplifying approximations.

Most practical simulation schemes begin by making the
semi-classical approximation, choosing to treat the relatively
massive nuclei as classical particles. This then reduces the
problem to one of calculating the evolution of the quantum
mechanical electronic system, described in general by a many-
body wavefunction W (r, t), under an electronic Hamiltonian,

he(r; R(1)) = To(r) + Vee (1) + Vi (75 R(1)) + Van (R), (74)

where the coordinates of the classical nuclei now enter as
parameters in the electronic dynamics and determine the time
dependence of the Hamiltonian. V;,(R) is the interaction
energy of the classical ions and is included to cancel a
singularity in the electronic energy. In turn, the nuclei
will respond to forces due to the electrons derived from the
Hellmann-Feynman theorem [128],

F.(R,t)=— / dr [W(r, D]* Vghe(r; R(1)) W(r, 1). (75)
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Of course, solution of the full many-body electronic
problem still remains a challenge formidable to the point of
computational intractability, and so the rest of the task of
implementing a semi-classical simulation scheme consists in
finding a suitable approximation to W (r, #) and its evolution,
., 0 A
1h§lll(r, 1) = he(r; R(t))W(r, t). (76)
Before we consider some specific examples of such
schemes, we will briefly examine the dynamics of a semi-
classical system. To make our analysis transparent we will
choose to work in the basis of many-electron instantaneous
eigenstates of the electronic Hamiltonian he. Working from
now on in the Dirac notation we will denote the eigenstates by
{] ¥ (¢) )} and their eigenvalues by {e;(¢)} so that we have

he(r, RO ¥j(r; R(D)) = &;| ¥;(r; R1)).  (77)

We now expand our many-electron wavefunction in terms of
these eigenstates,
(W(r,0) =Y ajne” Iy R())), (78)

J

where the phase-factor exp[—(i/h) [ &;dr] is inserted for
algebraic convenience. The expansion coefficients are given
by

aj(t) = eI (g (s R(1)|W (7, 1)). (79)

Directed by the expression for the Hellmann—Feynman
force (75), we consider the quantity

(Vi IVRhe| Y} ) = Vre;8i; + (Vi | W) + &5 (i | VaY;),
(80)
Where we have used the fact that &, is Hermitian. By the

orthogonality of the eigenstates, (y; |¥;) = §;;, we have
Ve((Yil¥;) = 0 = (VrYi |¥;) = —(¥i | VRY;) and so

we can write the Hellmann—Feynman force as

F,=— Z |a;|*Vre;
i

+Y afa;(e; — g)e/M @@= (y | Gy ).

iJj

81)

Inserting expansion (78) into the time-dependent Schrodinger
equation (76) and premultiplying by (¢, (r; R(t)) | yields the
time evolution of the expansion coefficients,

0 . oR

. — _ . G/h) [(si—epydt 2% .

S () = ;a, (D/DIEEINZE (| V), (82)

where we have made use of the chain rule, dv;/dt
(VrYj) - R.

If we consider starting our evolution at time f#; with
the electronic system in its ground state, say |V (r,fy)) =
| ¥1(r; R(t)) ), such that a;(#p) = &;1, then (82) gives a
picture of the evolution in which the nuclear motion stimulates
transitions to excited states at a rate determined by the non-
adiabatic coupling vectors (y; | Vr¥j). These coupling
vectors also appearin (81), where we can see that the electronic
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Figure 14. A schematic representation of the variation of the
energies £, , and occupation probabilities |a; | of a pair of energy
eigenstates as a function of an ionic coordinate R. We are assuming
that R is changing sufficiently quickly that non-adiabatic transitions
within the system are stimulated. As the probabilities evolve, the
potential energy surface Egy, traversed by the Ehrenfest system is a
weighted average, representative of neither eigenstate. (After [129].)

forces on the nuclei can be decomposed into motion on a
set of potential energy surfaces {g;(R)} corresponding to
the instantaneous eigenstates {|v; )} occupied according to
the evolving expansion coefficients {a;(#)} and a set of non-
adiabatic forces given by the second term in (81). These
non-adiabatic forces act in the direction of the non-adiabatic
coupling vectors and the ionic motion will do work against
them equal to the electronic excitation energy implied by the
changing expansion coefficients.

5.2.1. Surface hopping versus Ehrenfest dynamics. Most
semi-classical simulation schemes implement the electronic
evolution (82) with some approximate treatment of the
electronic wavefunction. The nuclei are evolved under forces
which include those given by (81). Such a scheme is referred
to as Ehrenfest dynamics and is a mean-field approach in
the sense that the ions move on a linear combination of
the potential energy surfaces corresponding to the electronic
energy eigenstates. A possible flaw in Ehrenfest dynamics
becomes apparent if we consider the case of an excited
eigenstate that has a very different shape to the ground state.
We can regard the |a; (¢)|* as representing the probability that
at time 7 the electronic system has been excited into the ith
eigenstate. Ehrenfest dynamics will correspond to motion on
some weighted average potential energy surface (illustrated
schematically in figure 14), which is representative of neither
the ground state nor the excited state.

We could instead consider a dynamical evolution in
which the nuclei all remain on a potential energy surface
corresponding to a single electronic eigenstate. The evolving
values of {|a; (t)|*} are then used to determine the probability
that the electronic system should undergo a discrete ‘hop’ to a
different eigenstate, changing the potential energy surface on
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which the nuclei move. This is the surface hopping method of
Tully and Preston [130].

Chief amongst the issues that a practical surface hopping
algorithm must address are, first, the mechanism for adjusting
the nuclear energy in order to conserve total energy when
a hop takes place and, second, how (and how frequently)
to select which hops are made. A reasonably strong
consensus has been reached on the second issue, with
most surface hopping implementations adopting the so-called
fewest-switches approach [131]. The first issue is more
complex, but there are strong arguments for adjusting the
kinetic energies of the nuclei by altering the components of
the velocities parallel to the non-adiabatic coupling vectors,
since this is the direction in which the non-adiabatic forces,
corresponding to the electronic excitations, lie. Problems can
arise when there is a finite probability of an electronic transition
whose energy exceeds the kinetic energy of the ions parallel to
the non-adiabatic coupling vectors. Often such transitions are
simply disallowed by the algorithm.

Several features of the surface hopping approach make
it unsuitable as a means of simulating radiation damage in
metals. First, such simulations will tend to involve large
numbers of atoms and so calculating the electronic forces
on the nuclei (as gradients of the eigenstate potential energy
surfaces) may become prohibitively expensive depending on
the model of the electronic system used. This fact, along
with the stochastic nature of the method, which means that
it is necessary to follow a large number of trajectories in
order to adequately sample the hopping probabilities, restricts
the successful use of surface hopping to simulations of small
systems (e.g. molecular reactions [132] and the interaction of
atomic clusters [133]). Second, the large number of electrons
involved will lead to a dense spectrum of electronic eigenstates
meaning that a large number of hopping probabilities must be
calculated and sampled, again increasing the computational
overhead.

Since in a metallic system we would not expect to see
large differences in the shape of the potential energy surfaces
corresponding to electronic eigenstates close in energy, the
Ehrenfest dynamics method, with its mean-field treatment,
currently represents a better compromise between accurately
representing the evolution of coupled quantum mechanical
electrons and classical nuclei and limiting the computational
overhead. © We consider several examples of Ehrenfest
dynamics simulations of radiation damage events below, each
adopting a different model of the electronic system.

5.3. Time-dependent density functional theory

Time-independent density functional theory (DFT) is well
established as a method for calculating the ground state
electronic energies of a large variety of systems [61] to within
a few tens of an electron volt per atom. The fime-dependent
version of the formalism (TD-DFT) is a more recent innovation
[134] and allows the calculation of certain excited state
properties, in contrast to standard DFT. Access to information
about excitations of the electronic system makes possible the
linear response calculations discussed in section 2.3.3 and also
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opens up the possibility of determining the evolution of a
system of electrons under a time-dependent Hamiltonian.

The formalism of TD-DFT is broadly analogous to that
of standard DFT. It can be shown that, for a given initial
many-body electron state Wy = W(r,t = 1), the electronic
densities p(x, 1) and p'(x, t) corresponding to evolution of ¥
under external potentials V (z, t) and V'(x, t), respectively,
will be different provided the potentials differ by more than
a function of time only (here x is a position vector in three-
dimensional space and the electron density corresponding to
W(r,1)is given by >, fd'r 8(x — )|V (r, 1)|%). This is the
Runge—Gross theorem [134], the time-dependent version of
the Hohenberg—Kohn theorem [135]. Once a particular choice
is made for W, then a given external potential determines a
unique density p (x, t) and itis possible to write any observable
of the electronic system as a functional of p(z, t).

It can then be established, that for a system of N,
interacting electrons evolving under a potential Vi (x, 1),
there exists a unique potential Vg (x, ) that, when acting
on a fictitious system of N, non-interacting electrons, yields
the same time-dependent density. The evolution of this
fictitious system is governed by the time-dependent Kohn—
Sham equations,

.0 v?

17’5%(% 1= (—7 + Verr (, t)) vi(x, 1), (83)
for a set of N, single-particle wavefunctions {y; (x, 7)}. We
thus have a way of calculating the evolution of a set of
interacting electrons, provided we have a way of determining
the correct Vg (x, t).

More information about the theory and application of
TD-DFT can be found in the many reviews on the subject (see,
for example, [136, 137]).

The application of TD-DFT to direct simulation of
radiation damage events is hampered by the computational
complexity of the method. First, the calculation of the
electronic forces on the nuclei requires that time-dependent
one-electron orbitals be calculated to high precision, which in
turn demands many basis states per atom. Second, calculation
of the electronic Hamiltonian is inherently time consuming,
requiring many three-dimensional spatial integrals over the
basis states (six-dimensional in cases where non-local pseudo-
potentials are employed in a local basis).

We are aware of only one example in the literature of an
atomistic radiation damage simulation using TD-DFT. Pruneda
et al [138] examined the case of protons and anti-protons
penetrating the insulator lithium fluoride. Experimental data
for the electronic stopping power of LiF for various penetrating
particles suggest the existence of a threshold effect [139—
141]. Below a certain velocity (0.1 vy for protons in LiF)
the electronic stopping power drops nearly to zero, violating
the standard dE/dx o v behaviour. This threshold effect
is attributed to the existence of the band gap, which implies
a minimum energy for excitations in the target material, in
contrast to the case of metallic targets.

Pruneda et al [138] undertake a series of simulations in
a4 x 4 x 4 unit cell lattice of LiF (128 atoms) in which all
the atoms are frozen at their perfect lattice sites and a proton
or anti-proton is constrained to move down the centre of a
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Figure 15. Electronic stopping power dE /dx as a function of
particle velocity from time-dependent DFT simulations of
channelling in LiF. The results for protons are shown as filled
circles, anti-protons as empty circles. The crosses show results for
protons when extra basis states are added along the channelling
particle’s path. The inset and other data are discussed in [138].
(Reprinted with permission from Pruneda et al [138]. Copyright
2007 American Physical Society.)

[110] channel at a fixed velocity. The simulations use the
siesta TD-DFT code [142] with the adiabatic local density
approximation (ALDA) to the exchange-correlation energy.
The results of the simulations for projectile velocities up to
0.6 vy are shown in figure 15 and a threshold effect at around
the velocity suggested by experiment is clearly evident. If we
regard the channelling particle as a periodic perturbation to
the extended electronic system, with a frequency determined
by the passage of the particle from one cell to the equivalent
point in the next [143], then we can understand the threshold
velocity as corresponding, via the passing frequency, to the
minimum possible excitation in the electronic system, in this
case the band gap.

Above the threshold, the stopping power at a given
velocity will be dependent on the number of transitions
within the electronic system with energies corresponding to
the frequencies characteristic of the ionic motion. Such
frequencies will often be very low—an iron atom with a kinetic
energy of 100eV typical of a collision cascade will have a
velocity v = 0.19 A fs~! and, assuming a characteristic atomic
separation of d = 210\, we obtain a characteristic excitation
energy of 2mhv/d = 0.4eV. The number of transitions
available will be dependent on the size of the system simulated
(for low frequency excitations it will be proportional to the
square of the electronic density of states at the Fermi level)
and the number of bands and k-points, and so we must be
wary of finite system size effects when drawing quantitative
conclusions from simulations in small systems. These system
size effects will be a particular problem in any attempt to use
TD-DFT to study radiation damage, because the computational
complexity of the method will restrict simulations to very small
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cells. The mere fact that TD-DFT is able to accurately predict
excited state energies is not enough to ensure accuracy in the
calculated values of quantities which, like stopping power,
involve transitions between states in a possibly extremely
sparse eigenspectrum. So, whilst the accuracy of the calculated
threshold velocity might be very good, depending as it does on
a specific feature of the band structure, the calculated stopping
powers above the threshold might be unreliable.

Pruneda et al state that their 128 atom super-cell with
calculations at a single k-point was chosen after ‘convergence
tests’, but also make it clear that the values found for the
stopping power were not converged. They attribute a residual
factor of ~2 discrepancy between their calculated stopping
power and experimental values (after making an adjustment
for the channelling geometry) partly to a ‘finite-basis saturation
effect at high velocities’. They experiment in the case of proton
stopping by augmenting the basis set of the target with extra
hydrogenic basis states every 0.5 A along the projectile’s path
and find a ~75% enhancement in the stopping power. These
results correspond better to experiment, but the justification
for adding the extra basis states is unclear. Indeed, any
augmentation of a finite-basis set, so long as the added basis
states were coupled to the ionic motion, might be expected
to increase the stopping power by increasing the number of
excitations through which the electrons could absorb ionic
energy. We discuss finite system size effects further in
section 5.4.

Pruneda et al also point out that errors in the electronic
structure will yield discrepancies in the calculated stopping
powers. Whilst these discrepancies will be dwarfed by finite
system size effects in this case, they will be an ongoing problem
until improved models for the fully time-dependent exchange-
correlation energy are available.

Despite the foregoing discussion, there is no fundamental
reason why simulations of small collision cascades (up to a
few hundred moving atoms) should not be undertaken with
TD-DFT at the present time. Improvements in computational
power will gradually increase the size of systems which
can be modelled and such simulations could yield further
valuable information about band-structure dependent effects
in radiation damage.

5.4. Time-dependent tight-binding (TDTB)

Time-dependent density functional theory is highly restricted
in the size of systems that it can simulate, because of the
computational complexity of the underlying description of the
electronic structure. By choosing a more approximate model
we can trade off the accuracy of the electronic structure for
an ability to simulate much larger systems for much longer
times. Semi-empirical tight-binding (SETB) models offer just
this compromise.

Semi-empirical tight-binding can be regarded as an
approximation to the local orbital implementation of density
functional theory'# in which the real space integrals needed
to calculate the Hamiltonian matrix elements and the overlap
of basis states are replaced with parametrized functions (for

14 This latter type of model is sometimes referred to as ab initio tight-binding.
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details see [119,144,145]). The effects of the exchange-
correlation term are implicitly included in these parameters.
The parameters of SETB models are then derived either
from experimental data or via recourse to more sophisticated
models, such as DFT. A time-dependent form of SETB has
been derived by Todorov [146] using a Lagrangian formalism.

Recent work by Mason et al [147] has explored the effect
of electronic excitations in simulations of radiation damage
in metals using a simplified tight-binding model. Whilst
there exist tight-binding models with parametrizations that
reproduce electronic structures with high accuracy [148], such
models require large numbers of basis states per atom. This
makes them too unwieldy for use in large simulations and
also hampers attempts to interpret the dynamical evolution
of the electronic system. At this stage in the effort to
understand the quantum mechanical nature of non-adiabatic
energy exchange between ions and electrons in radiation
damage processes it will be helpful to focus one prong of attack
on capturing the behaviour of simple systems on the largest
possible length and time scales. Mason et al justify their choice
of simplified TDTB dynamics as being the simplest possible
way to introduce an explicit system of quantum mechanical
electrons into an atomistic simulation. In any case, band-
structure dependent effects will still appear in the system
dynamics, and whilst the tight-binding band structure is not
an accurate representation of any real metal, the dependence
of aspects of the dynamical evolution on well-defined features
of the band structure can still be quantified and understood.

Mason et al [147] adopt the single s-orbital tight-binding
model of Sutton et al [149], selecting a parametrization that
reproduces the mechanical and structural properties of copper
along with a metallic electronic structure. The model uses a
basis of orthogonal local orbitals {| )};V;l centred on the N,
atoms at positions R = {R;, R, ..., Ry,}. The non-self-
consistent Hamiltonian for the electronic system is written as

he(R(1)) = Z la)y (IRa(t) = Rp(0)]) (B, (84)
ap

where fze is now a one-electron Hamiltonian and where
y(|lx|) are hopping integrals varying as an inverse power
of the internuclear separation |x|. The electronic system is
represented by a single-particle density matrix 6(¢), which is
initialized at time ¢, to be

plto) = Y f(ei(to); T i (R(19)) ) ¥i(R(t0)) |, (85)

where {| ¥; (R(t)) )} are instantaneous eigenstates of fze (t) with
eigenvalues {¢;(t)} and f(e; u, T) = {expl(e — w)/ksTc] +
1}~ is a Fermi—Dirac distribution at temperature T,, chemical
potential ;. The evolution of this density matrix is given
by the Liouville equation, equivalent to the time-dependent
Schrodinger equation,

9 ~
ih——p(1) = [he(R(®), p()]. (86)

Electronic forces on the ions are given by the Hellmann—
Feynman theorem (the independent electron equivalent of (75))
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Figure 16. The damping coefficient 8 corresponding to the average drag force on a single oscillating ion in a perfect lattice. B is shown as a
function of driving frequency for different initial electronic temperatures. At low frequencies, finite-size effects are evident in the erratic

behaviour of the plots. Above Q2 ~ 100rad fs~' the oscillator energy exceeds the finite band-width of the TB model, no electronic transitions
can be stimulated and the damping force goes to zero. (Reprinted with permission from Mason et al [147]. Copyright 2007 IOP Publishing.)

to give an ionic equation of motion,
ME() = ~VrVi(RO) = Tr { 50) Vrho R0)] . 67)

where Vi, is a repulsive ion—ion interaction and it is assumed
(for notational simplicity only) that all the ions have the same
mass M. Tr{-} indicates a trace over a complete basis of
the electronic system, easily computable in the local orbital
basis. Now (86) and (87), along with the definition of the
Hamiltonian (84), form a closed set of equations for the
dynamics of the semi-classical system of ions and electrons.

The time-evolved density matrix 6(r) encapsulates all the
information about the quantum mechanical electronic system
and allows all quantities of interest to be calculated. In
addition, by constructing an adiabatic density matrix pg(z),
which represents the state the electronic system would be
in if the ions had traversed their paths infinitely slowly, we
can calculate the irreversible transfer of energy from ions to
electrons,

AE=Tr [(30) = b he(RUD].  (88)

Mason et al [147] have explored the energy transfer
response of a 1120 atom perfect lattice super-cell of their model
to a single forced oscillating ion as a function of the frequency,
position and direction of the oscillator and of the electronic
temperature. The energy transfer in each case gives a measure
of the coefficient 8 of the drag force on the oscillating ion
(cf the discussion in sections 4.4 and 3.3, in particular (63)).
The results of these oscillator simulations are reproduced in
figures 16 and 17 and reveal that in general the damping
coefficient is a tensor quantity dependent on the local atomic
environment, the velocity of the moving ion and the electronic
temperature.

Reference [147] also contains a detailed treatment of the
effect of finite system size on the calculated energy transfer. A
time-dependent perturbation theory analysis shows that, in any
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given system, the irreversible energy transfer to the electrons
is only well behaved for a finite time. The key issue is the
degree of resolution of the energy transitions stimulated by the
oscillating ion. The time-energy uncertainty relation suggests
this should vary as ~ 7/t and at some point the resolution
will become so fine that the oscillator can no longer stimulate
transitions within the discrete spectrum of the finite system.
This problem is a general one, which needs to be carefully
addressed in any semi-classical simulation in a finite system.
Despite the complexity of the most general form of the
damping coefficient § demonstrated by Mason et al [147], we
might still hope that a simple velocity independent damping
force (analogous to a stopping power linearly proportional to
velocity) would do a good job of representing the average
effect of electrons on the ion dynamics in collision cascades.
Le Page et al [150] examine this possibility by undertaking a
series of 240 cascade simulations with the model of Mason
et al [147]. Simulation cells of 2016 atoms with periodic
boundary conditions are used to simulate cascades with a
range of PKA energies from 100eV to 1keV in 24 different
directions. By calculating the work done as an integral over
the ionic trajectories for different models of the damping force
and comparing it with the irreversible energy transfer (88),
le Page et al test the validity of various MD-with-damping
simulation schemes. Figure 18 shows the results and it is clear
that they offer strong support for the use of a simple velocity-
independent damping coefficient as a first approximation to
the true non-adiabatic force. Importantly, the model of Caro
and Victoria [121] (see section 4.5) gives an improvement
over a simple damping in certain circumstances. The density
dependence of their model goes some way to capturing the
factor of 2 increase found in the damping of replacement
collision sequences in the simulations of le Page et al [150].
The results offer no support for the use of a lower kinetic energy
cut-off for the application of the damping force of the type
implemented by Nordlund et al [93, 117] (see section 4.4).
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Figure 18. Plots of the irreversible energy transfer from ions to electrons in semi-classical (TDTB) simulations of collision cascades. Data
from 24 simulations at PKA energies of 100 ev (left panel) and 1 keV (right panel) are shown. In each plot, for each simulation, the energy
calculated according to one of three classical damping models is plotted against the energy transfer from the TDTB simulations. Top row:
simple fixed damping model with no cut-off. Middle row: fixed damping applied above a 10 eV ionic kinetic energy cut-off (cf the
discussion of the work of Nordlund ef al [93, 116—-118] in section 4.4). Bottom row: the local electron density dependent model of Caro and
Victoria [121] (see section 4.5). (Reprinted with permission from le Page et al [150]. Copyright 2009 IOP Publishing.)

An advantage of the approach of Mason et al is that the
nature of the electronic excitations stimulated by ionic motion
can be analysed in detail. Race et al [14] apply the method to
study several hundred cascades in 2016 atom super-cells with
PKA energies from 1keV up to 50keV. They find that the
spectrum of electronic excitations is well described by a Fermi—
Dirac distribution at an elevated temperature (see figure 19),
even though the electron dynamics in the simulations do
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not include the direct electron—electron interactions able to
thermalize a non-equilibrium distribution'>. This property of
the excitation spectrum can be attributed to the characteristic

15 In reality the electron—ion interactions would also act to thermalize the
electronic system. However Ehrenfest dynamics does not include the effect
of spontaneous phonon emission (see section 5.5) and so in this case the
electron—ion interaction cannot produce thermalization of the electrons at a
fixed electronic energy.
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Figure 19. The occupations of the instantaneous eigenstates around
the Fermi level 225 fs into a sample TDTB simulation of a 2016
atom cascade. The excitations are seen to be well modelled by a
best-fit thermal function at 7, = 6055 K despite the lack of
thermalizing electron—electron interactions. The initial

temperature of 7, = 300 K is shown for comparison. (Reprinted
with permission from Race et al [14]. Copyright 2009 IOP
Publishing.)

spectrum of the ionic motion. Even for a 50keV cascade,
most of the transitions stimulated are small on the scale of the
width of the Fermi-Dirac distribution and so the evolution of
the excitation spectrum takes the form of a one-dimensional
diffusion in energy space. This strong evidence for a well-
defined electronic temperature justifies an assumption made in
two temperature models (see sections 3.2 and 5.1) often used
to simplify the development of excitation-dependent potentials
for use in MD simulations of hot materials [151]. It will also
greatly simplify efforts to devise and implement an augmented
MD scheme that correctly treats energy exchange between ions
and electrons.

Information about the effect of electronic excitations
on the interionic forces is also available and in principle
the direction and magnitude of the non-adiabatic force
(given by the second term in (81)) can be analysed in
detail. Studies by Race et al [14] of the effect of the
electronic excitation on the average bond strength in evolving
cascades show that significant changes may occur in situations
where electronic temperatures above 10000K develop (see
figure 20). Classical MD simulations of such processes might
then need to make use of electronic temperature-dependent
potentials.

Whilst the simulations so far undertaken by Mason et al
[14, 147, 150] have been of low energy cascades, there is no
reason that their model or one similar should not be applied
to much higher energy phenomena. One possibility would
be to carry out simulations like those of Pruneda et al [138]
(discussed in section 5.3) of high energy channelling ions, but
in the much bigger system sizes made possible by the simpler
treatment of electronic structure. Such large-scale semi-
classical simulations are currently the only way to search for
excitation phenomena dependent both on the detailed atomistic
evolution and on the quantum mechanical nature of electrons.
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Figure 20. The percentage reduction in the average magnitude of
the attractive electronic force with rising temperature in a TDTB
model. Data shown are the following: (red) squares, reduction in
the force found in cascade simulations up to 50 keV PKA energy,
plotted against the best-fit temperature to the excited electronic
system. (Purple) circles, the calculated reduction in the force based
on the temperature dependence of the bond orders in a perfect
crystal. (Blue) crosses, the change in force found for an electronic
temperature in a static system distorted to reflect the ionic positions
during cascade simulations. (Reprinted with permission from Race
et al [14]. Copyright 2009 IOP Publishing.)

5.5. Correlated electron ion dynamics (CEID)

The approximation of the ions as classical particles, inherent
in Ehrenfest dynamics (ED), prevents the equilibration of the
electronic and ionic subsystems. ED accurately reproduces
the transfer of energy from excited ions into cooler electrons.
However, it fails to produce thermal equilibrium between
electrons and ions as the spontaneous emission of phonons is
suppressed by the mean-field approximation [152—157]. This
asymmetry exists because each ion is treated explicitly (so their
fluctuations are visible to the electrons which can thus identify
the ionic temperature) while the electrons are experienced by
the ions as a structureless fluid whose temperature cannot be
identified through the forces. This is a completely general
property of the Ehrenfest approximation, independent of the
level of description of the electrons.

The inability of ED to reproduce spontaneous phonon
emission and so give the correct long-term behaviour of a
system of ions and electrons is not always a problem in
simulations of radiation damage. Inthe early stages of collision
cascades and in phenomena such as channelling, the initial
conditions of the combined system place a large excess of
energy in the motion of the ions. The predominant mode of
energy exchange is therefore from ions fo electrons, exactly
the process that ED can model well [156].

However, many key open questions in radiation damage
centre on the electron—phonon coupling and the effects of
energy exchange in both directions as the electrons and ions
approach equilibrium. Modelling the effect of the electrons
in quenching in or inhibiting the formation of defects in
the displacement spike is critically dependent on a correct
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potential to include much of the key physics of energy exchange between ions and electrons. Such models are informed by analytical
stopping power and electron—phonon coupling theories and by the results of simulations with more complex models.

treatment of the full electron—phonon coupling, including
spontaneous emission of phonons.

Correlated electron—ion dynamics (CEID) is a systematic
method for extending ED so as to reintroduce the correct flow
of energy from the excited electrons back to the ions. This is
achieved by including small quantum fluctuations in the ionic
trajectories through a low order moment expansion [153, 154].
This allows the ions to probe the response of the electrons
to small changes in their trajectory from which information
about the internal state of the electrons can be determined.
The moments correspond to powers of the instantaneous ionic
positions and momenta relative to the mean values for the
trajectories. The first moment gives us heating [153], while
the second moment is needed to introduce the scattering of
electrons by heated ions [154]. In order to capture strong
non-adiabatic effects the formalism has had to be reworked
to make the expansion stable. This has been achieved by the
introduction of an efficient basis set expansion [158].

The ability of CEID to describe correctly the transfer of en-
ergy between electrons and ions over a wide range of electron—
phonon coupling strengths has now been demonstrated: it
has been applied to heating in current carrying nanowires
[153, 154,159, 160] and simple two level systems [158]. Thus
in principle it can be applied to problems in radiation dam-
age, including the equilibration stage after the initial cascade
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formation. Just as for ED, we anticipate that CEID will be used
to inform much simpler and computationally efficient models
for large-scale simulations. An intermediate step might be to
use CEID to support simple corrections to ED simulations to
enable them to reach thermal equilibrium. However, the com-
plexity of CEID calculations and their memory requirements
are much larger than for ED, which currently makes even refer-
ence simulations very expensive. Reducing the computational
burden is an ongoing research topic.

6. Concluding remarks

Our aim in this review has been to outline and explain the
various ways in which electronic effects can be incorporated
within atomistic simulations of radiation damage in metals
(see figure 21). We began by discussing the theoretical
treatments of electronic stopping power and electron—phonon
coupling. From our point of view these represent a means
of understanding and quantifying the role of electrons in the
various events that make up a radiation damage process. They
tell us about how ionic collision dynamics are altered when
excitation of the electrons is taken into account or how a
ballistically moving ion will lose energy to the surrounding
electron gas.
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Moving on we considered various approaches to the
simulation of radiation damage, in which a series of
interactions between classical ions is allowed to unfold
dynamically according to some approximate physical model.
We discussed the various ways in which electronic effects have
been incorporated into these simulations, always informed by
stopping power and electron—phonon coupling theory. The
electrons might make themselves felt as an inelastic loss
in ionic collisions (as in the BCA) or they might manifest
themselves as a viscous medium providing a drag force on the
ions, or as a stochastic force, buffeting the ions and returning
energy to them. We discussed the application of such models
and what has been learnt from them—above all, that defect
yields can be materially affected by the electrons.

Yet in discussing the full range of stopping power theory
we saw how the effect of electrons becomes increasingly
complex as we consider slower or heavier ions. With this
increasing complexity the literature becomes increasingly
sparse, in contrast to the comprehensive treatment of fast, light
ions. The theories of slow ion stopping, all yielding a stopping
force proportional to ion velocity, are not expected to remain
valid down to the energies involved in many damage scenarios
of technological importance. Somewhere in the murk of
this low energy regime, only dimly lit by experimental data,
analytical theory switches its attention to the electron—phonon
coupling. The interactions of ions and electrons are treated
within a different set of approximations to produce estimates
of the rate of energy exchange that are, as we saw, inconclusive.
The various different theoretical treatments conflict with one
another and with experiment. This uncertainty, along with the
expected low energy failure of stopping theory, demands new
approaches to investigating electronic effects.

There are several reasons that we might expect simple
theories to fail in the low energy regime that encompasses
much of the evolution of a radiation damage cascade. When
ions move more slowly it is harder to view the evolution of the
cascade as a series of separable binary encounters. Equally we
expect that nuclear and electronic energy losses will become
correlated and that it will no longer be valid to treat the electrons
as a homogeneous stopping medium. At lower velocities
too, the excitations of the electronic system stimulated by the
ionic motion will approach the energy scale of details in the
electronic structure. These factors point the way towards the
latest generation of atomistic models of radiation damage. We
concluded our review by considering models that combine a
dynamically evolving set of ions and an explicitly represented
system of quantum mechanical electrons. Such models allow
for the possibility of incorporating the effects of electronic
structure and of the many-body nature of the cascade evolution.
We presented the results of simulations undertaken to date
within such a framework.

Finally, we gave some thought to the future of radiation
damage simulations. As available computational resources
improve, new techniques, incorporating some of the effects
of the quantum mechanical nature of the ions, will become
useful in investigating radiation damage phenomena. Such
effects must be taken into account in a full description of
the later stages of a collision cascade when hot electrons
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may be in contact with cooler ions. At the same time
the semi-classical techniques discussed above will become
applicable to ever larger length and time scales, ultimately
allowing for quantitative investigations via the simulation
of full cascades within an accurate model of the electronic
structure. In the short-term, however, the main role of
more advanced techniques will be to inform the design of
better classical models allowing the impact of electronic
excitations on systems of millions of atoms to be more fully
explored.
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