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Abstract. Here we survey the theory and applications of a family of methods (correlated electron-ion
dynamics, or CEID) that can be applied to a diverse range of problems involving the non-adiabatic exchange
of energy between electrons and nuclei. The simplest method, which is a paradigm for the others, is
Ehrenfest Dynamics. This is applied to radiation damage in metals and the evolution of excited states in
conjugated polymers. It is unable to reproduce the correct heating of nuclei by current carrying electrons, so
we introduce a moment expansion that allows us to restore the spontaneous emission of phonons. Because
of the widespread use of Non-Equilibrium Green’s Functions for computing electric currents in nanoscale
systems, we present a comparison of this formalism with that of CEID with open boundaries. When there is
strong coupling between electrons and nuclei, the moment expansion does not converge. We thus conclude
with a reworking of the CEID formalism that converges systematically and in a stable manner.

1 Introduction

In his 1997 article on electromigration Sorbello [1] made
the following prophecy:

Farther into the future, we can envision molecular
dynamics simulations of electromigration on sur-
faces, in grain boundaries, and in mesoscopic sys-
tems as well as in bulk crystals. Here, electromi-
gration forces would be computed at each step in
the simulation, and the results would be used in
determining the evolution of all atoms in the sys-
tem. Such an approach could be extended to in-
clude local heating and nonadiabatic effects. At
present, our inability to calculate configuration-
dependent electromigration forces accurately and
efficiently makes the implementation of such a pro-
gram problematical. No doubt, as our understand-
ing of electromigration driving forces continually
improves, molecular dynamics simulations will play
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an increasingly important role in the theory of elec-
tromigration and its technological applications.

Sorbello’s vision of non-adiabatic molecular dynamics
(MD) is pertinent in a number of contexts.

For example, in the field of transport in nanoscale
conductors — the area Sorbello refers to — one wishes to
describe not only the current through a molecular-scale
device as a function of bias and of the precise atomic po-
sitions in the device, but also how current affects the dy-
namics of the atoms: how much Joule heating is there in
the nanoconductor [2], what is its signature back on the
current [3], and can the current drive the ionic subsys-
tem in deterministic ways, so as to generate a nanoscale
motor [4]? The evolution of photoexcited states in conju-
gated polymers often involves departures from adiabatic-
ity, notably the non-radiative decay and hopping of exci-
tons which pass energy from the electrons to the nuclei.
In radiation damage, a problem of central importance is
the transfer of energy from high-velocity ions, shooting
through the material, onto the electronic subsystem that
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leads to damping of the motion of high energy ions — the so
called electronic stopping power — and the reverse process
in which hot electrons return energy to the ions. These
and many other problems require one to develop dynam-
ical simulation methods that go beyond the usual Born-
Oppenheimer approximation (BOA), that lies at the heart
of conventional MD.

There are two aspects to non-adiabaticity. If ions move
sufficiently fast in a finite closed system, the electronic
subsystem may not have time to adjust so as to remain
in the instantaneous ground state (GS), as is assumed in
the BOA. But if electrons depart from the GS, then en-
ergy has been transferred to them: the ions have heated
up the electrons. As we will see in the following, this ef-
fect — sometimes called electronic friction — is captured
by the simplest correction to BOA, namely the so-called
Ehrenfest approximation, or Ehrenfest dynamics (ED), in
which one treats the electron-ion system dynamically, but
one adopts a mean-field picture of the electron-ion interac-
tions, together with a classical approximation to the ionic
motion.

The second failure of BOA is apparent in the following
thought experiment. Suppose we place the electrons in an
excited state, in a molecule or in some other structure, and
we relax the ions while keeping the electrons in the given
excited state. Starting from there, we let go. Superficially,
nothing will happen: electrons are in a stationary state of
the electronic Hamiltonian for the given ionic positions,
and the ions feel zero forces, so they will not move. But
in reality the electronic subsystem can decay in energy
by emitting phonons, through the process of spontenous
phonon emission. This key process — in which excited elec-
trons transfer energy to the ionic vibrations, and which is
responsible for example for local heating in atomic and
molecular wires — is not captured by ED but requires the
introduction of electron-ion correlations at a higher level.

The team of authors on this paper has worked together
for years on the development of non-adiabatic MD tech-
niques that can capture these key corrections to BOA
in a range of systems and problems from transport in
nanowires, to polymers and radiation damage. Our hope
initially was to develop a single method, able to treat all
these problems in the same way. However, in the course
of our work it became apparent that this is in fact not an
expedient course of action because the different processes
involve electron-ion correlations of very different types and
strengths: ED is sufficient for the primary goal of captur-
ing the electronic friction in radiation-damage problems in
metals; in atomic wires progress can be made by going just
a step beyond ED and introducing weak electron-phonon
coupling; for the problems in polymers that we have been
interested in an altogether different approach was needed,
capable of handling strong electron-ion coupling.

In developing these methods our philosophy has al-
ways been to build on the foundations laid by ED as
it has a number of attractive benefits that we did not
wish to lose. ED can be expressed as a set of coupled
time-dependent differential equations that can be inte-
grated forward in time using standard techniques (the

time-dependent Schrédinger equation for electrons, and
Newton’s laws for the ions). This means we do not need
to precompute energy surfaces and then introduce the
transitions by an additional mechanism: once we have the
Hamiltonian and the equations of motion we have all the
information we need. The second benefit is that it is an
implementation of molecular dynamics, so we have trajec-
tories for ions that are immensely helpful for interpreting
the results of simulations.

However, there are situations in which ED is inade-
quate. Its core weakness, noted above, is visible during
simulations of current-carrying wires: it fails to reproduce
the heating of the ions by hot electrons, though it can pro-
duce heating of cold electrons by hot ions (which is why
it is suitable for computing electron friction in radiation
damage simulations). This asymmetry exists because each
ion is treated explicitly, so its fluctuations are visible to the
electrons which can thus identify the ionic temperature.
The electrons, on the other hand, are experienced by the
ions as a structureless fluid whose temperature cannot be
identified through the forces. This is a completely general
property of the Ehrenfest approximation, independent of
the level of description of the electrons.

To remedy the deficiencies of this approach, while re-
taining its advantages, we began by writing down equa-
tions of motions for quantum ions that are highly localised
about classical trajectories. The spread of the ions we
characterised by moments (powers) of the deviations in
the ionic positions and momenta from the mean. Even
the lowest order correction (first moment) allows sponta-
neous phonon emission, and leads to a qualitatively cor-
rect description of Joule heating. The second moments are
needed to compute the change in conductivity resulting
from excitation of ionic oscillations.

As indicated above, the electron-phonon interaction is
so strong in conjugated polymers that the straightforward
moment expansion is no longer suitable. We replace it by
a basis set expansion that is systematically extensible and
robust, while retaining the key features of our method: we
use harmonic oscillator states centred on the trajectory
given by the mean nuclear positions and momenta as it is
still localised in space.

In what follows, results obtained by the methods
sketched out above are presented, along with more detail
about the individual methods.

2 Ehrenfest limit: radiation damage

2.1 The Born-Oppenheimer and Ehrenfest
approximations

The time evolution of a system of electrons and nuclei is
determined by the Schrodinger equation,

ov(r,R,t)

(Te—i—Tn—l—V(r,R))!P(r,R,t):ih PR €Y

where r = (r1,ro,...) is shorthand for the positions of the
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electrons and R = (R, Ra, .. .) for the positions of the nu-
clei. The Hamiltonian includes the electronic and nuclear
kinetic energy operators, T, and Ty, and the full potential
energy of the system V(r, R) = Voo (r)+Ven (r, R)+Vin (R)
is a sum of electron-electron interactions, electron-nuclear
interactions and nuclear-nuclear interactions.

In the Born-Oppenheimer approximation [5,6], the nu-
clei are assumed to move so slowly that the electrons see
them as fixed. The electronic eigenstates ¥;(r; R) and en-
ergy eigenvalues F;(R) for fixed nuclear positions R are
found by solving a time-independent Schrodinger equa-
tion,

HgoWi(r;R) = (Te + V(r, R)) ¥;(r;R)
= El(R)WZ(I‘, R), (2)

in which the nuclear kinetic energy terms have been omit-
ted. The nuclear coordinates R appear parametrically in
equation (2) and thus in the electronic eigenvalues F;(R).

The much slower nuclear motion is obtained by treat-
ing the electronic energy eigenvalue as a potential, either
in a time-dependent Schrodinger equation for the nuclear
wavefunction, or, more often, in a classical simulation
based on Newtonian mechanics. If the electrons are as-
sumed to be in their ground state, the Newtonian nuclei
at R experience forces

F(R) = —~VrE)(R) = —Vr(%|Hgo|%):
= (Y| (—VRﬁBo) [%0)r, (3)

where Vg = (VR,, VR,,...) and the final step used the
Hellmann-Feynman theorem [6,7]. The notation (), in-
dicates an integral over electron coordinates only. Since
Vee is independent of R, V;, is independent of r, and
Ven(r,R) = >~ ven(rs, R) is a sum of one-electron op-
erators, equation (3) simplifies to

F=— / no(r; R) (VRVen(r, R)) d®r — VRVin(R), (4)

where ng(r; R) is the ground-state electron density when
the nuclei are at R.

The electronic eigenvalue Ey(R) is independent of how
the nuclei arrived at R, so the nuclear forces are con-
servative: if the nuclei move around a circuit, returning
to their original positions, the nuclear kinetic and poten-
tial energies return to their initial values, no matter how
rapidly the motion takes place. This means that physical
processes such as electronic friction, which is very impor-
tant in radiation damage at high nuclear velocities, cannot
be simulated using the Born-Oppenheimer approach.

In the Ehrenfest approximation [8], the electronic wave
function ¥ evolves according to the time-dependent elec-
tronic Schrodinger equation

Hgo(r; R)W = m%f. (5)

The nuclear positions are still treated as external parame-
ters, but those parameters change with time and the elec-
tronic wave function responds to the changing potential.

The nuclei still move according to Newton’s laws and expe-
rience forces given by the Hellmann-Feynman expression,

F = (7] (- Vrilo) [0).. (6)

The total energy Fio is the sum of the ionic kinetic
energy and the instantaneous electronic energy F,(t) =

(W|Hpo (R(t)) |#)y. Eiot is still a conserved quantity:
B d 1
= (%: o MaR7, —|—Ee(t)>

.. . d .
=> MR, Ra+ g (B0 |9),

=F R+ (7| (VRﬁBo) 7). - R

+ (U Hpo|P)x + (| Hpo|¥):
= (W]ilW), + (ih¥|F),
=0. (7)

However, when the nuclei move at a finite rate, the time-
varying nuclear potential excites the electrons and Fe(t)
increases as the nuclei move around a circuit. The nuclear
kinetic energy does not return to its initial value and the
nuclei experience non-conservative friction-like retarding
forces.

In practice, the many-electron Schrodinger equation
cannot be solved exactly for large systems and approx-
imations must be made. The most natural framework
within which to approximate is time-dependent density-
functional theory (TDDFT) [9,10], since this can in prin-
ciple yield the electron number density n(r,t) exactly and
thus allow exact calculation of the Hellmann-Feynman ex-
pression for the forces on the nuclei. The great simplifi-
cation afforded by TDDFT is that the electron density is
expressed in independent-electron form,

Ne
n(r,t) = > (), ®)

where the orbitals satisfy a self-consistent time-dependent
one-electron problem with an effective potential that de-
pends on the full history of the electron density n(r,t’),
t' < t, and the initial state of the system. Although
the form of the effective potential is unknown (and un-
likely ever to be known), various simple approximations,
such as the adiabatic local density approximation, may be
used. TDDFT then yields an approximation to the many-
electron Ehrenfest dynamics.

2.2 Accuracy of the Ehrenfest approximation
for simulations of radiation damage

The Ehrenfest approximation is appealing but has sig-
nificant limitations [8,11,12], especially when the nuclear
energy is low. More accurate methods are known [12-14],
but these are too complicated for the large simulations re-
quired to study radiation damage. Because the accuracy
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of the Ehrenfest approximation is in doubt, it is impor-
tant to investigate its validity as a method for studying
electronic friction.

A good understanding of the approximations involved
in Ehrenfest simulations of radiation damage may be ob-
tained by considering a single band of electrons interact-
ing with harmonic phonons [15]. For simplicity we assume
that the electrons are spinless and replace the phonons
by a single localized Einstein mode of mass m and angu-
lar frequency w, but the approach is more general [15]. If
the electrons interact with the Einstein phonon but not
(directly) with each other, the Hamiltonian is

H =Y ekl (k)e (k) + - - ;mwQXQ

2m

k
+) gk ke (K)e (k)X
k.k’

= H0+Hn+ch7 (9)
where ¢7(k) is the creation operator for an electron in a
state of crystal momentum k, e(k) is a one-electron eigen-
value, P and X are the operators for the oscillator momen-
tum and displacement, and g(k’, k) is the electron-phonon
coupling (assumed to be linear).

In the Ehrenfest approximation, the quantized oscil-
lator is replaced by a classical oscillator of frequency w
and the electronic wavefunction evolves according to the
Born-Oppenheimer Hamiltonian

Hpo = Z e(k)éf (k)é (k) + ;mszQ(t)

k
+y gk kel (K)e (k) X (1),

k.k/

(10)

where X (t) = A cos(wt+¢) is the classical displacement of
the oscillator (neglecting for the moment the feedback of
the electrons on its dynamics). The amplitude A is chosen
such that the classical vibrational energy is equal to the
energy of the quantum mechanical oscillator relative to
its ground state. If the expected phonon number of the
quantum oscillator is (N), then

1

2mwQA2 = hw(N).

This result may also be obtained by insisting that the am-
plitude of the classical vibration be that of the centre of
the localized wave packet described by the oscillator co-
herent state with mean phonon number (N). Since the
rate of energy transfer between the electron and phonon
subsystems will be averaged over many vibrational peri-
ods, the phase ¢ is irrelevant and may be set to zero.
Note that the expression for X () neglects the time
dependence of the vibrational amplitude A; this is rea-
sonable in the limit of weak electron-phonon coupling,
when dA/dt < wA. From now on, we further assume that
the electron-phonon coupling is weak enough to allow the
transfer of energy between electrons and phonons to be

calculated using first-order perturbation theory; this turns
out to be a good approximation in most solids.

The perturbative analysis assumes that the electron
and oscillator subsystems are initially uncoupled, so that
the density operator is a product,

o1 (B — =
p= P Z e (Eny—pNe)/ksTe Z pN|{nk};N><{7’Lk};N|,
¢ {ne} N=0
(11)

where E,, = >, e(k)nk is the energy of the N.-electron
state with occupation numbers {ny}, Z. is the electronic
partition function, py is the probability that the energy of
the oscillator is (N + })Aw, and [{nk}; N) = [{nk}) ® |N)
is a product eigenstate of the uncoupled system. For sim-
plicity we assume that the electronic subsystem is initially
in thermal equilibrium at temperature 75, but the phonon
probabilities py are left unspecified.

Fermi’s golden rule may now be used to investigate the
time dependence of the electronic component of the en-
ergy. In the fully quantum mechanical case, the electronic
energy is defined as Try x (p(t)H,), where the trace is over
both electronic and oscillator coordinates; in the Ehrenfest
case, the electronic energy is Try(pe(t)He), where peo(t) is
the density matrix for the electrons only and the trace in-
cludes only electronic coordinates. The Ehrenfest energy
depends parametrically on the time-dependent oscillator
displacement X (t), but we are interested in the large ¢
limit and hence in the energy transfer averaged over many
oscillation periods.

The Fermi’s golden rule expressions for the change in
the electronic energy in the large ¢ limit are [15]

ABM() = T ho (M2 - (V) + e, (12)
AEP (1) = T o ()2~ (N)e], (1)

where the absorption and emission coefficients, 2l and &,
are given by

Ql:/def(e— shw) (1= fle+ Jhw)) A(e),  (14)
¢ = [ defle+ bho) (1 fle— Jw)) A0, (15)

and f(e) = 1/(1 + elc=m/kTe) is the Fermi factor evalu-
ated at the electronic temperature T,. The non-negative
function A(e) depends on the form of |g(k’,k)|?> on the
surfaces for which e(k) = € + fw/2 and e(k’) = € — fiw/2.

Equations (12) and (13) have a simple physical inter-
pretation. The (V)2 and (N)€ terms describe the stimu-
lated absorption and emission of phonons by the electronic
subsystem, at a rate proportional to the mean phonon
number (N). The additional —€ term, which is indepen-
dent of (N) and appears in the fully quantum mechanical
result but not the Ehrenfest result, describes the sponta-
neous emission of phonons by the electronic subsystem.
The only error in the Ehrenfest result is the omission of
this spontaneous emission term.
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Starting from equations (14) and (15), it is easy to

show that
hw
¢ =exp (— kBTc> A (16)
and hence that AEQM(t) = 0 when
1
(N) = (17)

exp (kz%e) -1

Thus, although equation (12) was derived within first-
order perturbation theory, it successfully predicts that
the electronic and oscillator subsystems are in equilib-
rium when the mean phonon number is equal to the Bose-
Einstein factor at temperature T,. In the Ehrenfest ap-
proximation, by contrast, we have

27t
h

2gthw<N> [1 —exp (— kz;ﬂ A, (18)

which is always greater than or equal to zero. The elec-
tronic system therefore gains energy whenever (N) > 0
and the oscillator relaxes inexorably towards its ground
state. The Ehrenfest approximation for the rate of en-
ergy transfer is accurate only when the stimulated emis-
sion term is negligible, € < (N)(2 — €¢), and hence when

AEZ™(t) = 7 hw(N) (%~ €)

1
exp (k'Z“%C) -1

If we imagine that the oscillator is in thermal equilibrium
at some temperature T,, which need not equal T, this
condition becomes T, > T..

Figure 1 shows the time evolution of the electronic en-
ergy of a one-dimensional tight-binding chain of electrons
coupled to an Einstein phonon [15]. The initial electronic
temperature kT, = hw in all cases; the oscillator was
initially in an eigenstate of phonon number N, with N
varying from 1 to 9. Numerical results calculated in the
Ehrenfest approximation (with amplitude A allowed to
vary with time as predicted by the Ehrenfest dynamics)
are compared with analytic perturbation theory results
obtained both with the semi-classical approximation (the
Ehrenfest approximation with a constant oscillator ampli-
tude A) and full quantum mechanics. The semi-classical
results were calculated from the occupations of the elec-
tronic eigenstates without assuming the long-time limit;
the fully quantum mechanical results were calculated us-
ing Fermi’s golden rule and hence in the long-time limit.
The plots are scaled so that the Ehrenfest energy transfer
ends at 1 for all phonon numbers. The non-perturbative
Ehrenfest and perturbative semi-classical energy trans-
fers are indistinguishable, demonstrating the accuracy
of perturbation theory for this example. The Ehrenfest
and semi-classical plots oscillate with time because they

(N) > (19)

Energy Transfer, kg T, =h @
1.2

Ehrenfest —— ‘ ‘ ‘
Semiclassical ~ +
FGR,N =1 -
s FGR,N =3
FGR, N
0.8
=
£ 06
£
23]
<
o 04
<
0.2
0
02 s s s s s s s
0 5 10 15 20 25 30 35 40
® X time
Fig. 1. The evolution of the electronic energy of a one-

dimensional tight-binding chain coupled to a localised Einstein
oscillator of frequency w. The initial electronic temperature
kpTe = hw in all cases. The plots are scaled so that the Ehren-
fest result ends at 1 for all phonon numbers N. The semiclassi-
cal and Ehrenfest results are indistinguishable. As the phonon
number increases, the Ehrenfest energy transfer approaches the
fully quantum mechanical Fermi’s golden rule (FGR) result.
Taken from reference [15].

are not calculated in the long-time limit, but the aver-
age slope of the Ehrenfest/semi-classical energy transfer
agrees more and more closely with the fully quantum me-
chanical result as the phonon number increases.

In summary, the Ehrenfest approximation to AE,(¢)
is accurate whenever the ionic temperature is much larger
than the electronic temperature, or, more generally, when
the ionic kinetic energy is much larger than a typical elec-
tronic excitation energy. This is certainly the case in the
simulations we have carried out, where the electronic ex-
citation energies are a few tenths of an eV and the ionic
kinetic energy is a few keV. Of course, in the latter stages
of a radiation damage cascade such as those described in
Section 2.3, when the ions are moving slowly and the ionic
and electronic subsystems ought to be coming into ther-
mal equilibrium, the Ehrenfest approach will fail: the ions
will continue to cool even in small systems from which the
electronic excitations cannot escape, and the final ionic
temperature will be much lower than the final electronic
temperature. The continued cooling is unphysical, but the
resulting lattice defect structure may be closer to reality
than the defect structure that would have been obtained if
the trapped electronic excitations and ions had been able
to reach thermal equilibrium at a much higher tempera-
ture.

2.3 Simulations of radiation damage with Ehrenfest
dynamics

One challenge in simulating radiation damage phenomena
is the minimum size of the system required to give a faith-
ful representation of the ionic and electronic dynamics; the
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primary knock-on event, if it is of modest energy, produces
a very large ‘cascade’ of displaced atoms. A system of
thousands, if not tens of thousands, of atoms is necessary
if this cascade is not to interfere with itself across the cell
boundaries. Beyond these spatial size constraints, we must
also ensure that the spectrum of possible excitations in the
electronic system is dense enough to correctly capture the
process of energy exchange between ions and electrons: if
this spectrum is too sparse then typical frequencies in the
perturbation to the electronic system arising from ionic
motion may be too small to stimulate excitations between
minimally spaced electronic eigenstates and energy trans-
fer from slow ionic modes will be suppressed.

Given the inherent computational overhead involved in
explicitly modelling a system of quantum mechanical elec-
trons, the above system size constraints point towards the
need for a particularly simple electronic structure model.
With current computational resources, quantitatively ac-
curate TDDFT simulations of radiation damage cascades
are very challenging. Pruneda et al. [16] have simulated
the channelling of protons in a 128 atom super-cell of a
TDDFT model of lithium fluoride. Their results provide
a good starting point for extrapolation to larger super-
cells, but an analysis based on time-dependent perturba-
tion theory [17] suggests that systems of several thousand
atoms are required to converge the calculated stopping
power.

Because the significant approximation inherent in us-
ing a small system can negate the benefits of a quanti-
tatively accurate electronic structure model, we make a
different trade-off in our work. Over the past four years
we have made use of a minimally complex single-s-band
tight-binding model metal [18] to explore a variety of radi-
ation damage phenomena in time-dependent tight-binding
(TDTB) [19] simulations under Ehrenfest dynamics. Us-
ing specially developed code we are able to simulate sys-
tems of over ten-thousand atoms for hundreds of femtosec-
onds [17,20-22].

Simple simulations of a single oscillating ion in a per-
fect crystal of our model metal [17] revealed the consider-
able complexity in the process of energy transfer from ions
to electrons. We found that the effective damping of such
an oscillator is strongly dependent on the local atomic
environment, on the frequency and direction of oscilla-
tion and on the electronic temperature (see Fig. 2). The
richness of this behaviour stands in stark contrast to the
concept of a simple viscous damping force Fyamp = —fVv
often employed to reintroduce some of the effects of ion-
electron energy exchange into classical molecular dynam-
ics (MD) simulations [23-27] and justified with reference
to electronic stopping power theory [28-30].

Using our model, we have carried out large numbers of
simulations of collision cascades in systems of 2016 atoms,
with primary knock-on atom (PKA) energies of up to
2 keV in order to explore the nature of the electronic
excitations stimulated by ionic motion and the effect of
these excitations on the forces experienced by the ions. We
can directly monitor the occupation of the instantaneous
eigenstates of the electronic system during such cascades

161 1 2.5E-14
144 Driving direction A
o ~-[100] —+[010] = [001] A
- - + 2E-14
1.2 7 ~&-[110] = [011] —=-[110]
& 1A - [101] - [111] == [111]
% WA + 15614 —~
- @
¢ =N
< 06 1+ 1E-14
i
0.4
+ BE-15
0.2 ¢
0 T T T 0

[VaY%0 ] [ vavava] [000] [00]

central position (R y/a )

[ Va%0 | [000]

Fig. 2. The damping coefficient 5 computed for different driv-
ing directions for a single oscillating ion in a perfect crystal.
The oscillations are about different fractional positions within
the fcc unit cell, as indicated along the horizontal axis. § is
isotropic only for small amplitude oscillations about the ideal
lattice site. More generally it is dependent on direction and the
position of the atom in the unit cell. The lines are to guide the
eye. (From Ref. [17].)

14 T T
Occupations  +
Original distribution
08 L Best-fit distribution
& 06
=
[
Q
3
[$]
O
(@) 04
02
0 L
-6 -5 -4 -3 -2 -1 0 1

Energy (ev)

Fig. 3. The occupations of the instantaneous eigenstates
around the Fermi level 225 fs into a sample TDTB simula-
tion of a 2016 atom cascade. The excitations are seen to be
well modelled by a best-fit thermal function at T, = 6055 K
despite the lack of thermalizing electron-electron interactions.
The initial temperature of 7. = 300 K is shown for comparison.
(From Ref. [21].)

and we have found that the electronic excitations are well
described by a Fermi-Dirac function at an elevated elec-
tronic temperature [21] (see Fig. 3). The emergence of
a thermal excitation spectrum is unexpected because in
these simulations we chose to switch off direct electron-
electron interactions and Ehrenfest dynamics does not cor-
rectly reproduce the full electron-ion interaction. In fact,
the nature of the ionic motion in a typical cascade is such
that it perturbs the electronic system most strongly at
frequencies that are small compared with the width of the
elevated-temperature Fermi surface. The excitations are
thus almost thermal in the first instance and so, even in
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situations where the time-scale for electronic excitation is
expected to be significantly shorter than that for electronic
thermalization, the assumption of a well-defined electronic
temperature is likely to be valid (such assumptions are em-
ployed in the development of electronic excitation depen-
dent potentials [31]). Because of the lack of spontaneous
phonon emission in Ehrenfest dynamics and hence the lat-
ter’s failure to give rise to a valid electron-ion equilibrium,
we must be careful to avoid attributing the above results
to a direct thermalizing effect of the electron-ion inter-
action. The thermal-looking occupation of instantaneous
eigenstates has recently also been observed in TDDFT
calculations [32].

Our simulation framework allows us to make a direct
test of the validity of viscous damping models of electronic
effects used in classical MD simulations of radiation dam-
age. We have compared the irreversible energy transfer
from ions to electrons in 240 Ehrenfest dynamics sim-
ulations [20] (at ten PKA energies between 100eV and
1keV, in 24 different directions) with the predictions of
three commonly used classical models: a single damping
constant, the low-temperature limit of [23]; a damping ap-
plied only to atoms with kinetic energies above 10 eV [27];
and a local-electron-density-dependent damping [24]. Our
results offer no support for the use of a kinetic energy
threshold, but suggest that a simple damping and, more
so, a density-dependent damping, can do a good job of
reproducing the irreversible energy transfer as an average
over all the atoms and over the duration of a cascade (see
Fig. 4). This success emerges in spite of the complexity
in the detailed behaviour of the non-adiabtic electronic
forces exerted on the ions and revealed in our oscillator
simulations. Separate consideration of the damping co-
efficient required to capture the energy transfer from a
replacement collision sequence (RCS) (in which the ex-
cess cascade energy is shared amongst only a few ions)
highlights the fact that on shorter time- and length-scales
different modes of ionic motion within a cascade may be
damped to very different extents.

As Ehrenfest calculations are reasonably inexpensive,
we foresee an expansion in interest in non-adiabatic cal-
culations of this kind—be they TDDFT simulations with
hundreds of atoms, or Tight-Binding simulations with or-
ders of magnitude more. The simplicity of the Ehrenfest
approximation equations provides an ideal platform for
investigating non-adiabatic electronic effects in radiation
damage, ion channelling, sputtering, or indeed any other
system where a higher ion temperature than electron tem-
perature allows for the neglect of spontaneous phonon
emission.

3 Ehrenfest limit: excited states of polymers

3.1 Introduction

Conjugated polymers have become an important class of
functional materials for a wide range of optoelectronic ap-
plications, from which polymer-based solar cells [33] stand
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Fig. 4. (a) Scatter plots of the irreversible energy transfer cal-
culated by three different classical models against the energy
transfer found in simulations with Ehrenfest dynamics. The
data are scaled by the energy transfer found by each method
at 200 fs, so that a perfect match between a classical method
and the Ehrenfest results would appear as a straight line of
gradient 1. (b) The damping coefficient as a function of PKA
energy calculated for each of the three classical models under
test. The larger solid symbols are an average across all PKA
directions except for the (110) direction. Best-fit damping co-
efficients for the RCS simulations in the (110) direction are
shown by open symbols. Lines are included as a guide for the
eye. (Results from Ref. [20].)

out as one of the most promising new devices. While ex-
perimental progress has been made at a good pace over
the last couple of decades, the fundamental processes gov-
erning the photophysics of conjugated polymers remain
poorly understood. In order to understand properly the
operation of a polymer photovoltaic device what is needed,
just as for the metallic systems described in Section 2, is
an understanding of the complex response to an initial
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excitation event; rather than a primary knock-on, how-
ever, the event is now an electronic excitation following
the absorption of a photon.

A theoretical description is challenging, since these sys-
tems exhibit both strong electron-electron and electron-
nuclear interactions arising from the system of electronic
m-orbitals. The coupling of the electrons to the nuclear
degrees of freedom results in a rich variety of nonlinear
excitations [34,35], such as solitons and polarons, a char-
acteristic feature which establishes an important distinc-
tion between conjugated compounds and inorganic semi-
conductors. On the other hand, electron correlation effects
have a drastic influence on the electronic structure, play-
ing a crucial role in determining the relative energetic or-
dering of the electronic states [35], which explains why not
all conjugated polymers luminesce. Together, electronic
interactions and electron-nuclear coupling are fundamen-
tally important for the description of the behaviour of
conjugated systems.

A detailed understanding of the photoexcitation pro-
cess, and of the steps following photoexcitation, requires a
non-adiabatic treatment of the electron-nuclear dynamics,
and a proper description of excited electronic states and
interchain interactions, for which the role of many-body ef-
fects is large. Some of these ingredients have often been ne-
glected in photoexcitation dynamics calculations [36-46].
In particular, most studies which include electron-electron
interactions have ignored the singlet character of the pho-
toexcited state [43-46], by restricting the wavefunction to
the form of a single Slater determinant.

In this section, we present a non-adiabatic molecular
dynamics method which allows for the coupled evolution
of the nuclear degrees of freedom and of multiconfigura-
tional electronic wavefunctions [47,48]. We work at the
Ehrenfest level; in other words, we show how to implement
equations (5) and (6) with a ¥ that explicitly includes
electronic correlations, in contrast to the independent-
particle scheme used in Section 2.3. However, we retain the
important simplification of including only the most rele-
vant electronic orbitals in our model (in this case, the 7-
states). The proposed scheme is devoid of self-interaction
issues, and effectively establishes a compromise between
efficiency and accuracy, which enables the study of large
systems. Furthermore, it is designed to take into account
the appropriate spin symmetry of the electronic wavefunc-
tion, thus allowing us to distinguish between singlet and
triplet excited states, which exhibit quite different proper-
ties. The formalism is applied to semiempirical single- and
double-strand models of a prototypical conjugated poly-
mer, in order to highlight the crucial effects of Coulomb
interactions and interchain coupling on the dynamics of
low-lying excitations in conjugated polymers.

3.2 Formalism

If the electronic part of the Hamiltonian only contains
one-body operators, the solution of equation (5) is enor-
mously simplified because the individual single electron

wavefunctions evolve independently according to the time-
dependent Schrodinger equation. However, when two-
body operators are present, as in the case of semiempir-
ical models which include electron-electron interactions,
further approximations are required. A suitable approach
is the multiconfigurational time-dependent Hartree-Fock
approximation [47]. Within this method, the electronic
wavefunction is written as a superposition of Slater de-

terminants,
V) =Y Cala)

with fixed expansion coefficients, Cy. The spatial parts
of the single-particle orbitals, ¢;, which are used to build
each configuration in equation (20), are then optimised
according to the Dirac-Frenkel time-dependent variational
principle [47,49,50],

(60| (H - ihgt)sm + <<I§I - ihgt)mam =0, (21)

which must be satisfied for arbitrary variations, d&, of the
approximate many-body wavefunction, ¥.

For general open-shell states [51-53], this procedure
yields the set of optimal equations of motion [47]

(20)

— nYEv

TL
ZPA o

(i)

ihlg, ) = Prlo),  (22)

where the shell @ gathers groups of orbitals with the same
Fock operator,

N ~ 1 ~ N
Fr=T+ SN v (20t 5, - UK,

L%

(23)

Prisa projector onto the subspace spanned by shell p,

pr = Z |pi, ) (D, ],

o

(24)

and n* = 0, 1,2 its occupation number. In equation (23),
the operator T collects all the one-electron interaction
terms, Jh and Kh denote the usual Coulomb and ex-
change operators [49,50], and a*¥, b*” are numerical co-
efficients (or state parameters) speciﬁc to the particular
form of the wavefunction [51-53].

For instance, in the case of an open-shell singlet (i.e.,
a photoexcited state), all the doubly occupied orbitals be-
long to the same shell (conventionally labelled by p = 1),
whereas the singly occupied orbitals stand in separate
shells (indexed by p = 2,3). In this case, the state pa-
rameters are given by

(25)

Q

Il
—
— =
— =

For an open-shell triplet state, there are only two occupied
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shells (u = 1 gathers the doubly occupied orbitals, and
i = 2 the singly occupied ones), and the state parameters

read
11 11
= (11): »=(12):

Notice that we also consider the subspace of unoccupied
orbitals as a proper shell (labelled by 1 = 0), even though
its Fock operator is undefined (this is, however, irrelevant
since it is always premultiplied by zero).

It is now clear that this approach is capable of distin-
guishing between singlet and triplet excited states, as ev-
idenced by the different shell structures that arise in each
case. Additionally, the devised scheme incurs a computa-
tional cost that is comparable to that of the widely used
time-dependent Hartree-Fock approximation [50], thus al-
lowing for the study of large systems. The set of differen-
tial equations that govern the evolution of the coupled
electron-nuclear system [Egs. (6) and (22)] may be ef-
ficiently integrated numerically using, e.g., an 8th order
Runge-Kutta method with adaptive step-size control, due
to Dormand and Prince [54].

(26)

3.3 Application to the dynamics of low-lying
excitations in conjugated polymers

3.3.1 Effect of Coulomb interactions

The effect of Coulomb interactions on the dynamics of
conjugated polymers is best illustrated by comparing the
evolutions of the lowest singlet and triplet excited states in
a single polymer strand. To this end, we consider a linear
chain with fixed ends, described by the Hamiltonian

HZﬁSSH+Hc. (27)
The first contribution is the Su-Schrieffer-Heeger (SSH)
Hamiltonian with a Brazovskii-Kirova-type symmetry-
breaking term, given by [34,35]

Hsgp = — Zti (éjgéi-l-l,a' + ELLUéw)

1,0

+ 2]1\4 ;pf + 12{ D (wipn —wi)?,

%

(28)

where ¢! (é;) creates (annihilates) a m-electron with spin
o at site i, M and p; denote the nuclear mass and mo-
menta, respectively, K is the elastic constant due to the
o-bonds, u; the displacement of site 7 from its equidistant
position, and

t, =tog — a(ui+1 — ’U,i) + (—1)i+1te (29)
is the nearest-neighbour transfer integral, with ¢y denoting
the hopping integral for the undistorted structure, o the
electron-phonon coupling constant, and t. the extrinsic
transfer term, introduced to lift the ground state degen-
eracy.

Table 1. Model parameters appropriate for cis-polyacetylene.

Parameter Value
ro, A 1.22
K,eV A2 21
M, eV fs2 A=2 1349.14
a, eV A7L 3.2
to, eV 2.1
te, €V 0.05
U, eV 4.1
164 34

The second contribution in equation (27) models long-
range Coulomb interactions, and can be written as [35]

T [

1 . )
+ > Vig(hi = 1)(A; — 1),
QA

(30)

where U denotes the screened onsite Coulomb repulsion

energy,
= fig =Y ¢l tio, (31)
and U
Vij = (32)
V1 (Brij /r0)?

is the Ohno potential [35,55], with r;; denoting the dis-
tance between sites ¢ and j, o the average bond length,
and 3 the ratio between the onsite and intersite repulsion
energies.

The model parameters are chosen so as to reproduce
known experimental data for cis-polyacetylene. This is ac-
complished by allowing tg, «, U, and [ to vary, while
keeping the remaining parameters fixed at their SSH val-
ues [34,40]. The model predictions for the optical gap,
band width, and ground state dimerisation (for a given
chain length), are then fitted to the expected values ob-
tained from the SSH model. To avoid falling in the SSH
minimum (i.e., U = 0), we also fit the experimentally
observed value for the exciton singlet-triplet splitting,
A = 0.7 eV [56], a quantity that is only nonzero when
Coulomb interactions are included. The best choice is re-
ported in Table 1 (for more details see Ref. [48]). Although
this set of parameters only applies to cis-polyacetylene,
the results should be qualitatively valid for other conju-
gated polymers with nondegenerate ground states.

Initially, the ionic momenta are set to zero, and the
displacements are chosen so as to minimise the ground
state potential energy. This is achieved using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [57]. Notice
that the electronic subproblem requires a self-consistent
field calculation to be performed at each iteration. We
found that a limited-memory variant of the BFGS strat-
egy [58] with exact line searches, based on an exponential
parameterisation of the wavefunction [53], works quite well
for general open-shell states. A HOMO — LUMO excita-
tion with the appropriate singlet or triplet shell structure
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is then set up, which requires an additional self-consistent
field run in order to obtain the orbital coefficients at ¢t = 0.
The initial conditions thus obtained are then propagated
by numerical integration of the equations of motion.

Figure 5 shows the time evolutions of the staggered
bond order parameter, or dimerisation [34,40],

(_1 i+1

=",

(Wi1 + uim1 — 2uy), (33)
obtained for the lowest singlet and triplet excited states in
a 200-site cis-polyacetylene chain. As can be seen, in both
cases the lattice relaxes to form a single local deformation,
a characteristic signature of a polaron-exciton [40,48].
There is an almost periodic behaviour, with alternating
peaks and troughs, which corresponds to a continuous in-
terchange of the positions of the single and double bonds
at the middle of the chain. The periodicity of this dynam-
ical process is not significantly different in both cases. It
is clear from Figure 5 that the width of the peaks is much
smaller for the triplet state. Additionally, the dimerisa-
tion in the region of distortion reaches values substantially
higher in this case as well. Thus, triplet excitons are much
more localised than singlet excitons, and they are accom-
panied by an enhanced lattice distortion.

3.3.2 Effect of interchain coupling

The role of interchain interactions in determining the el-
ementary excitations of conjugated polymers has been
largely ignored in dynamical calculations, although it is
widely agreed that it may be of fundamental importance.
Indeed, there is considerable evidence that the nature of
the species produced upon photoexcitation critically de-
pends on the interchain coupling strength [59,60]. To in-
vestigate the effect of interchain coupling on the dynamics
of photoexcited conjugated polymers, we consider a sys-
tem of two parallel chains with fixed ends, described by
the Hamiltonian

EI = ﬁl + H2 + -E[interu (34)

where H; and Hy are of the form of equation (27), and

Hintcr =—tr Z (éjlgéiQU + é;‘rzgéilo)

(i1,i2),0

+ Z ‘/i1i2 (ﬁll - 1)(ﬁ12 - 1)

11,12

(35)

models the interchain interactions. In the above expres-
sion, i, runs over sites of chain ¢ (¢ = 1,2), the symbol

(ir,ip) €ANS that the sum is restricted to pairs of neigh-
bouring sites in the opposite strands (i.e., sites facing each
other), and ¢, denotes the interchain hopping integral.
This quantity is calculated as a function of the interchain
distance, d, using

(36)

Dimerisation (A)

Dimerisation (A)

Fig. 5. Time evolutions of the dimerisation pattern, obtained
for the lowest singlet (a) and triplet (b) excited states, in a
200-site cis-polyacetylene chain.

which provides a value of ~0.2 €V at a distance of 5 A,
typical of dense conjugated polymer films [46]. Notice that
the nuclei are constrained to move only along the chains.

As in the previous section, the various model param-
eters are taken as those appropriate for cis-polyacetylene
(see Tab. 1). The initial conditions are obtained by consid-
ering the chains to be uncoupled, so that the required min-
imisations can be performed separately for each strand.
The ionic momenta are set to zero, and the initial displace-
ments correspond to the minima of the ground state po-
tential energy surfaces (which are found using the BFGS
strategy, as in the previous section). The orbital coeffi-
cients are obtained by setting up a HOMO — LUMO
photoexcitation on the first chain, while the second one
remains in the ground state. The interchain coupling is
then turned on, and the initial conditions are propagated
via numerical integration of the equations of motion for
Hamiltonian equation (34).

Figure 6 shows the time evolutions of the dimerisation
pattern, calculated for a system of two coupled 120-site
cis-polyacetylene chains, considering two different regimes
of the interchain coupling strength. As can be seen, when
the interchain distance is large, the lattice relaxes to form
a single local deformation, which is essentially confined
to the first strand. Indeed, in this weak coupling limit,
the distortion of the second chain slowly builds up, and
within the investigated time window is only a small frac-
tion of that observed for the first strand. On the contrary,
in the strong coupling case, the lattice distortion quite
rapidly becomes evenly spread out across the two chains.
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Dimerisation (A)

Dimerisation (A)

24070

Fig. 6. Time evolutions of the dimerisation pattern, obtained
for a HOMO — LUMO photoexcited state, in a system of two
coupled 120-site cis-polyacetylene chains. The photoexcitation
is initially localised on the first chain, and two different regimes
of the interchain coupling strength are considered: (a) weak
coupling (d = 15 A), and (b) strong coupling (d =5 A).

A mirror-like pattern is obtained, with two separated lo-
cal deformations (one on each strand) of about the same
amplitude. Not surprisingly, the interchain energy trans-
fer takes place at a much faster rate in the strong cou-
pling regime, as shown in Figure 7. These results suggest
that interchain interactions are fundamentally important
in governing the ultrafast processes of exciton hopping
and dissociation into polaron pairs, which ultimately de-
termine the intra- or interchain character of the states
produced upon photoexcitation.

3.4 Summary

We have presented a non-adiabatic molecular dynamics
method, which allows for the coupled evolution of classi-
cal ions and of multiconfigurational electronic wavefunc-
tions. The proper spin symmetry is captured, thus provid-
ing a powerful tool to study the dynamics of photoexcited
states, and highlight the differences between singlet and
triplet excited states.

The formalism was employed to demonstrate the ef-
fect of electron-electron interactions on the dynamics of
low-lying excitations in conjugated polymers, by compar-
ing the evolutions of the lowest singlet and triplet excited
states, which can only differ when Coulomb interactions

a
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Fig. 7. Time evolutions of the energy of the first (red lines)
and second (blue lines) chains, E, = (¥|H,|¥), obtained for the
same system as Figure 6, in the (a) weak coupling (d = 15 A),
and (b) strong coupling (d = 5 A) limits of the interchain
coupling strength.

are considered. Our results show that triplet excitons are
much more localised than singlet excitons, and they are
accompanied by an enhanced lattice distortion.

The role of interchain coupling on the dynamics of pho-
toexcited conjugated polymers was also addressed. Our
findings show that interchain interactions have a dras-
tic effect, and are fundamentally important in governing
the ultrafast processes of exciton hopping and dissociation
into polaron pairs. Indeed, it was shown that the intra- or
interchain character of the photogenerated species crit-
ically depends on the interchain coupling strength, in
agreement with experimental results [59,60].

4 Low order CEID: excitations in current
carrying nanonwires

4.1 Introduction

We now turn to situations where the essential behaviour is
not captured by the Ehrenfest approximation. The inter-
play of electronic and ionic motion in nanoscale conduc-
tors is one of the principal areas of interest in molecular
electronics. The inelastic scattering of electrons by nuclei,
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and the subsequent motion of the atoms, has a strong in-
fluence on the transport properties of nanoscale devices,
while the effects of Joule heating and electromigration
place major limitations on their stability.

The motion of the nuclei induced by the electrons man-
ifests itself as inelastic signals in current-voltage spectra.
Inelastic electron tunnelling spectroscopy (IETS) [61] can
be used to probe the vibrational spectrum of molecules,
embedded between two metallic contacts, by passing elec-
trical current through them. At low bias, an elastic tun-
nelling current is observed, in which the electrons do not
gain or lose energy when travelling from one contact to
the other. If the applied voltage exceeds fiw, where w is
the angular frequency of the lowest vibrational mode in
the molecular device that can exchange energy with an
electron, an additional conduction channel opens in which
an electron can travel between the plates and enter an
empty state with a reduced energy, the energy lost being
equal to one quantum of vibrational energy in the sample.
By increasing the voltage, additional channels open up
corresponding to higher vibrational frequencies, or possi-
bly multi-phonon processes. These inelastic features are
observed as resonant peaks in the second derivative of
current with respect to voltage (d?I/dV?). For ballistic
atomic wires, the conductance of the system reduces at
voltage thresholds associated with the vibrational modes
of the system [62-64]. Again, inelastic scattering channels
are opened as the bias matches the energies of various
phonon modes in the device; however, now electrons are
back-scattered, leading to dips in d?I/dV?2.

The simplest approach to such phenomena is lowest-
order electron-phonon scattering theory, i.e. the Fermi
Golden Rule (FGR). This includes the first-order correc-
tions to the electronic system from the electron-phonon in-
teraction, which is treated as a perturbation. Phenomena
such as the injection of power in the vibrational modes of
atomic wires and corrections to the current-voltage spec-
trum which arise from the presence of inelastic electron-
phonon scattering can be captured at a qualitative level
within this framework [65]. First-order perturbation the-
ory however cannot be expected to handle the limit of
strong electron-phonon coupling, or the effects of multiple
scattering.

An established method of generalising the FGR to in-
clude higher-order processes is non-equilibrium Green’s
function theory (NEGF) [66,67]. It is conventional to con-
sider only lowest-order Feynman diagrams in the expres-
sion for the self-energy and to expand the Dyson equation
in a Born series in the free Green’s functions. If the elec-
tronic Green’s function used in the Dyson equation and
in the calculation of the self-energy are the same, one ob-
tains the Self-Consistent Born Approximation (SCBA).
SCBA has been applied to inelastic transport both in
model systems [68,69] and, together with first-principles
electronic-structure calculations, in realistic atomic chains
and molecular-wire systems [70-72]. The Green’s func-
tion method can be applied also in the time domain,
in order to take account of transient effects and the re-
sponse of the system to dynamical driving fields [73,74].

However, the computational complexity introduced by the
two-time Green’s functions and self-energies has limited
this method to simple model applications.

One of the advantages of using dynamical methods as
a basis for electronic transport calculations is that the in-
terplay between electrical properties and atomic motion
can be simulaneously addressed within a single simula-
tion. Conventional Born-Oppenheimer molecular dynam-
ics simulations enable the calculation of current-induced
corrections to atomic forces. However, in such simulations
the scattering of electrons from ions is purely elastic and
the electronic structure for a given ionic geometry remains
in a steady state, by construction.

As outlined in the introduction, the Ehrenfest dynam-
ics do include some of the non-adiabatic effects that arise,
for instance, in radiation damage, where the energy trans-
fer is mainly from excited ions into electrons. However,
in nanoscale conductors, the effects of inelastic electron-
ion interactions arise primarily from the transfer of en-
ergy from excited current-carrying electrons and “cold”
ions — the Ehrenfest approximation cannot capture such
phenomena.

The original formulation of CEID [13,75] starts for-
mally from the full electron-nuclear Hamiltonian erI,
which may be partitioned as He = HV) (R)+Ti+ Hi(R),
where R is the set of ionic position operators, ﬁc(Ne) is
the Ne-particle electronic Hamiltonian, which includes the
bare electron-ion interaction, 77 is the ionic kinetic-energy
operator, and H; is the bare ion-ion interaction potential.
We make the ansatz that the coupling between the elec-
trons and ions is weak, and that ionic fluctiations about
the mean (classical) ionic trajectory are small, which al-
lows us to make a Taylor expansion of the Hamiltonian
in powers of the fluctuations AR about this mean trajec-
tory R:

Her ~ HY(R) + Hi(R) — (FW)(R) + Fi(R)) - AR

+;(K<Nc>(R) + Ki(R))(AR)? + T1.

This Hamiltonian is inserted into the full quantum Li-
ouville equation ﬁel = (ih)_l[flel,ﬁel], and by tracing
over the ionic degrees of freedom, a set of coupled, many-
electron equations of motion for the Ne-electron density
matrix, and the set of electron-ion correlation operators,
is obtained. In order to obtain a closed set of equations,
we again work to lowest order in the electron-ion coupling,
which leads to the following decoupling or mean-field ap-
proximation for the second-moment quantities:

(37)

fiz = Tri{ AR, AR, pe} = (AR, AR, p{Ne)

1 N ~ . .
)22,1/1/’ = 2TI'I{(APVARV’ + ARV’APV)ﬁeI} (38)

Q

S (AR AR
5\2,1/1/’ = TI'I{APVAPV/ﬁeI} ~ <APVAPV'>/3‘(3NC)7 (39)

where AP = P— P. The resultant, now closed, set of equa-
tions are many-electron equations of motion, which are
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reduced to one-electron form by tracing out all electrons
except one. This requires an extension to the Hartree-Fock
approximation to the two-electron density matrix, which
takes account of the non-idempotency of the density ma-
trix in the presence of electron-ion correlations. This pro-
cedure is described in reference [13] and leads to a set of
equations of motion for the one-electron density matrix pe
(with the particle number suppressed), and the electron-
ion correlation matrices f1,, = ’I‘rIT‘l"eg,,,Ne{AR,,ﬁeI}, A\, =
TrITrc,Q...NC{API/[)cI}-

This method was first applied to current flow in a finite
atomic chain, with a single dynamical ion [13]. The on-
set of phonon excitation by the current-carrying electrons,
and subsequent response of the electron gas to the increase
in the effective cross-section of the ion, were observed.
Moreover, the characteristic dip in the second derivative of
current with respect to voltage was observed, at a voltage
which matches the Born-Oppenheimer phonon frequency
for the single ion, with the scaling of the position of the dip
and its height with the mass of the ion in agreement with
the FGR; both should scale as M /2. It was also shown
that the CEID equations, for a single dynamical ion, re-
produce the rate of power dissipation by excited electrons,

as well the electron-phonon scattering rates predicted by
the FGR.

4.2 CEID with electronic open boundaries

The initial applications were for finite systems, and hence
restricted to limited timescales. A missing feature, there-
fore, was the ability for the simulation to reach a steady
state under transport conditions. To do this, it is neces-
sary to invoke open boundary conditions for the electrons
to maintain current flow over extended timescales.

Open-boundary methodologies which work with time-
dependent wavefunctions [76], or with time-dependent
Green’s functions [74], are not compatible with the present
formalism. Since CEID is formulated in terms of the one-
electron density matrix and density-matrix-like electron-
ion correlation operators, an open-boundary method com-
patible with CEID must utilise the machinery of the den-
sity matrix. Furthermore, to enable the simulation to be
undertaken efficiently, the imposition of spatial and tem-
poral locality is made, which eliminates the necessity of
undertaking non-local “memory” integrals.

The open-boundary method used is that described in
reference [2]. In its simplest realisation, the system con-
sists of three finite, although potentially very large, regions
which we denote as L, C, and R, and which we can think
of as the left lead, a central “device” region, and a right
lead respectively. The extension to more than two termi-
nals is straightforward, but will not be considered at the
present. The label S is used to refer to the combined LCR
assembly. The defining concept of the method is that each
site (or orbital basis state), located in regions L and R,
is weakly coupled to an external probe. Probes attached
to sites in L(R) are maintained at an electrochemical po-
tential 17y, with a corresponding electronic Fermi-Dirac
distribution fr(g)(E).

The open-boundary equations of motion for the one-
electron operators pe, fl,, A, in S read

'Lh(j: [ﬁcaQ]_F/i(q) +D(q)aq:ﬁcv,&u75\u (40)
where A@ denotes the electron-ion dynamical scattering
terms, and D@ denotes the open-boundary driving terms.
These driving terms are

D) = St p, — po X

- (41)
D) = $Fj, — i, 5 (42)
DO = 5}, — N\, 5 (43)
where
> = iiI;PL F iI;PR
S<(E) =il fL(E)Py, + il fr(E)Pg
GE(E)=(E - Hy— 5% +iA)™! (44)

where Hy is the phonon-free one-electron Hamiltonian and
PL( r) denotes the projection (identity) operator in region
L(R).

These equations are obtained by making two approx-
imations. The first is to take the wide-band limit in the
external probes. This makes the electrode-lead coupling
strength I' an energy-independent parameter and the ex-
traction terms (the first two terms in Eq. (41)) temporally
local. The second approximation is the introduction of a
dephasing mechanism, characterized by an energy scale A
and a dephasing time 74 = h/A!. The goal of the dephas-
ing mechanism is to break the coherence between injec-
tion into L(R) and subsequent scattering in C. This has
the effect of making the injection terms (the second two
terms in Eq. (41)) independent of the dynamical scatter-
ing in C. In the absence of this decoherence mechanism,
the correct Green’s function in the injection terms would
contain a self-energy describing the scattering in C. The
cost of this dephasing mechanism is that the Fermi-Dirac
distributions in the probes are replaced by effective dis-
tributions with an energy broadening ~2A, resulting in a
corresponding loss of energy resolution. In the absence of
electron-ion scattering, setting A = 0 generates the exact
unbroadened elastic steady-state solution for the multiple
probe battery, which in turn gives arbitrarily close ap-
proximations to the conventional two-terminal Landauer
steady state.

4.3 Applications

The initial application of this approach [2] was to the ex-
ample previously considered, a single quantum-mechanical

1" An alternative view of the the introduction of the param-
eter A is discussed in reference [2]. In that view, A in effect
broadens the energy spectrum of incoming electrons from the
external probes.
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Fig. 8. Vibrational energy of a single dynamical ion of M =1
amu in a perfect atomic chain at various voltages, with corre-
sponding currents. Curves from bottom to top correspond to
voltages from 0 to 1 V. From reference [2].

dynamical ion in a perfect atomic chain. The character-
istic inelastic correction to the current-voltage spectrum
was clearly observed, in agreement with both previous
finite-system CEID calculations and with low-order per-
turbation theory. Moreover, the heating and equilibration
of the dynamical ion with the current, and the effect of
the increasing ionic cross-section on the electron gas, were
demonstrated.

A perfect atomic chain is characterised by an essen-
tially energy-independent transmission function, with a
perfect transmission of one. In that case, the expressions
for the power and conductance drop above the inelastic
threshold, given by FGR, simplify considerably, allowing
for the analytical estimation of the size of the drop and
the maximal heating of the oscillator. Situations in which
the transmission function has a strong energy dependence
within the bias window for conduction are significantly
more complicated, and lead to situations where the in-
elastic effects described are no longer simple functions of
the bias, but become very sensitive to both the applied
voltage and the energetics of the system.

An archetypal example of this is a resonant molecule.
An electron within a resonant level, characterised by an
energy width §F, will have a lifetime ¢ ~ h/6E. If the
lifetime of the electron in the resonance is sufficiently
large, an itinerant electron may undergo multiple electron-
phonon interaction events, which can lead to a significant
excitation of the vibrational modes of the molecule, and
can have a large non-linear effect on the conductance of
the molecule. The effects of multiple electron-phonon scat-
tering cannot be adequately described within lowest-order
perturbation theory. In contrast, diagrammatic perturba-
tion theory, which goes beyond FGR by summing up scat-
tering events to produce an effective self-energy, can de-
scribe, in principle, the effects of multiple electron-phonon
interactions.

Diagrammatic perturbation theory based on the SCBA
for the phonon contribution to the self-energy constitutes

Fig. 9. Linear trimer weakly coupled to two one-dimensional
electrodes. t1 is the nearest-neighbour hopping matrix element
in the metal electrode, t2 is the electrode-trimer hopping inte-
gral, and t3 is the intra-trimer hopping integral.
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Fig. 10. The elastic transmission as a function of energy
for the resonant trimer system considered in the text. For
the present set of parameters, the resonance of width AE ~
0.54 eV is centred at the Fermi level.

a suitable scheme for examining the effects of multiple
scattering, as it sums the lowest-order electron-phonon in-
teraction diagrams (those of the Born Approximation) to
infinite order. On the other hand, the CEID method by
construction captures low-order electron-ion interactions,
and due to the dynamical manner in which the method is
applied, the CEID equations of motion should go beyond
perturbation theory, and be able to sum up coherent con-
tributions from multiple electron-phonon scattering events
beyond lowest order.

The system considered is illustrated in Figure 9,
namely a linear trimer “molecule” embedded between two
one-dimensional gold electrodes. Only the central atom
(with mass M = 1) of the trimer is free to move. The pa-
rameters of the system are provided in reference [3]. With
the present parameters and considering a half-filled elec-
tronic band, a resonance of width ~0.54 eV centered at the
Fermi energy appears in the elastic transmission function
(Fig. 10). Based on considerations of the electron Fermi
velocity and the geometry of the resonance, we expect
multiple electron-phonon interactions in the time inter-
val corresponding to this width, and therefore this sys-
tem constitutes a suitable scheme to compare the CEID
methodology within the SCBA solution.

The current-voltage spectra obtained for the two meth-
ods are shown in Figure 11, together with the second
derivative of the inelastic contribution to the current. The
vibrational energy of the ion is maintained at its zero-
point value. The inelastic contribution to the current is
obtained by taking the total current, as predicted by each
method, and subtracting the elastic background. It is clear
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Fig. 11. Current-voltage spectra and second derivative of

inelastic current for the trimer system, where the vibrational
energy of the ion is maintained at its zero-point value. From
reference [3].

that both methods capture the inelastic feature at the
correct voltage (eV = hf2y, where 25 ~ 0.31 fs~! is the
Born-Oppenheimer vibrational frequency of the ion), with
a similar overall drop in the conductance. The drop in con-
ductance arises because of the high conductance of the sys-
tem at the Fermi level, where it behaves as a metal. The
feature obtained within the SCBA is significantly narrower
than that in the CEID calculation, primarily because of
the limitations of the CEID open-boundary scheme. In
contrast with the SCBA calculation, the Green’s func-
tion which appears in the injection terms of the equa-
tions of motion in the CEID calculation does not contain a
phonon contribution to the electronic self-energy, although
it does contain the contribution from the embedding in the
multiple-probes. However, the ability of both methods to
predict similar conductance spectra indicates that there is
an inherent similarity in the physical picture obtained via
the two approaches.

The trimer system explored here exhibits two notable
characteristics with regard to the heating of its vibrational
mode. The effective phonon occupancy obtained at high
voltages (eV > h()y ) is significantly higher than that ob-
tained in a ballistic atomic chain. Furthermore, the time
taken for the vibrations to equilibrate with the electron
gas is long; as an example, for a voltage of 1 V, the equi-
libration time is approximately 4 times that for an ion of
the same mass in a ballistic chain. These two properties
arise from the resonant nature of the system, in particu-
lar, the presence of a resonance at (or around) the Fermi
energy, and can be described qualitatively within FGR.
In order to investigate these effects explicitly, a series of
CEID calculations at a variety of biases were undertaken.
Figure 12 shows the current and total vibrational energy
as a function of time for various applied voltages.

Above the inelastic threshold, three main features
emerge. For voltages considerably greater than hf2y, the
total energy of the oscillator reaches values much higher
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Fig. 12. Total vibrational energy of a single dynamical ion
as a function of time and corresponding electronic current, for
various biases, within the CEID approach. From reference [3].
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Fig. 13. The adatom system discussed in the text.

than the upper bound eV/2 obtained for a single oscilla-
tor in a ballistic system. In addition, the time taken for
the ion to equilibrate with the electrons increases rapidly
as the voltage increases. The third feature is that, at suf-
ficiently high voltage, the current traces “cross over”, an
indication of the onset of negative differential resistance.
This last feature is of particularly interest for application
purposes: it is possible to conceive of a system, for in-
stance, that could use this feature as a way of limiting the
maximum current that can pass through a device. These
results, although obtained from a model geometry, show
that if the voltage window engulfs an electronic resonance,
with the resultant quasi Fermi levels of the electrodes ly-
ing in regions where the electronic density of states is low,
then both greatly enhanced phonon relaxation times and
local heating in the resonant structure may occur, with a
resultant loss of mechanical stability.

In reference [77], a system exhibiting converse be-
haviour was examined. The presence of a specific feature,
namely a Fano anti-resonance, in the transmission func-
tion of the system, leads to a situation where the rate
of heating is significantly suppressed compared with the
systems considered above. Furthermore, by increasing the
applied bias, the coupling between the current-carrying
electronic structure and the nuclei (in the present case,
only one dynamical ion is considered) is increased, which
leads to an increased rate of energy transfer from hot nu-
clei to the electrons, resulting in current-assisted vibra-
tional cooling.

The system considered (illustrated in Fig. 13) consists
of a one-dimensional perfect atomic chain with a light
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Fig. 14. The elastic transmission function for the adatom
system. The feature of interest is the anti-resonance centered
at the Fermi level Er = 0.

adatom (labelled a) bonded to a single atom in the centre
of the chain (c¢). The adatom is constrained to move in
the direction perpendicular to the chain and is the only
atom allowed to move. The transmission function of this
system (Fig. 14) clearly shows a node at the zero of en-
ergy (which for the present parameters coincides with the
Fermi energy). This feature arises from the destructive
interference of incident and reflected electronic waves, as
they propagate across the a—c complex.

To examine the response of the adatom vibration to
the current, a series of CEID calculations were undertaken,
varying the initial excitation of the vibrational mode. In
the upper plot of Figure 15, the oscillator is initially in
its ground state, and hence the effect of the current is
to inject energy into the vibration. Since the oscillator
is not connected to any other vibrational modes, its en-
ergy increases until it equilibrates with the electron gas.
In the lower plot of Figure 15, the oscillator is initially in
an excited state (corresponding to a initial phonon occu-
pancy Npi ~ 2), and there is a decrease in the oscillator
energy at low bias. This is physically straightforward to
understand: in a sense, the oscillator is “hotter” than the
current-carrying electrons, and has to cool down in or-
der to be in thermal equilibrium. However, as the bias is
increased, the initial rate of cooling increases, indicating
that an increase in current facilitates the thermal relax-
ation of the oscillator. As the bias is further increased,
a crossover at which the rate of cooling has a maximum
can be clearly seen. This phenomenon of current-assisted
cooling acts as a stabilising mechanism for the system, by
helping to reduce the vibrational energy of the adatom.
The resultant model device thereby constitutes a notional
current- (or bias-) controlled cooling fan for the hot ion.

In reference [78], the effect of electron-phonon inter-
actions on the conduction properties of disordered one-
dimensional systems has been considered. Such systems
may be expected to have significant energy dependence in
their electronic structure and, as a result, these systems
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Fig. 15. Vibrational energy (left) of the adatom at various
biases as a function of time with corresponding current traces
(right), for Npi)'l‘,i“al = 0 (upper plot), and for Npi)'l‘,i“al ~ 2. From
reference [77].

may exhibit complex electron-phonon scattering events.
These structures therefore constitute a rigorous exami-
nation of the CEID methodology. Figure 16 shows the
elastic conductance of one of the chosen systems. In this
case, the zero-bias elastic conductance is in the intermedi-
ate regime between the tunnelling and ballistic limits. The
conductance-voltage spectrum shows strong variation as a
function of bias, with the characteristics of a system with
a weak resonance at the Fermi level.

Figure 17 shows the fractional difference between the
total conductance, including electron-phonon interactions,
and the elastic background conductance, as a function of
voltage, for the CEID calculations and the lowest-order
expansion of the SCBA (denoted LOPT in the figure).
A notable physical feature is that the zero-bias conduc-
tance evaluated with inelastic interactions included is dif-
ferent from the elastic background. This corresponds to
the renormalisation of the bonding in the disordered struc-
ture, due to the polaronic emission and reabsorption of
virtual phonons by the electrons. Furthermore, by includ-
ing the so-called “Hartree” term in the LOPT calculation,
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Fig. 16. The elastic conductance-voltage spectrum for a model
one-dimensional disordered system. From reference [78].
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Fig. 17. The fractional difference between the total conduc-
tance and the elastic conductance, as a function of voltage,
within the LOPT and CEID formalisms, for a model one-
dimensional disordered system.

a term conventionally omitted from many applications of
the SCBA procedure, the agreement between the two sets
of calculations at low bias improves. The CEID results are
affected by the limited resolution afforded by the present
open-boundary scheme. However, the picture obtained via
both methods is qualitatively similar.

4.4 Conclusions and outlook

One of the principal advantages of the present CEID
method is that it enables the simultaneous evaluation
of the electronic current, along with the current-induced
forces and subsequent motion of the nuclei, all in a real-
time framework. This flexibility enables us to carry out
accurate real-time simulations of nanoscale junctions un-
der nonequilibrium conditions.

There exist several additional phenomena which pro-
vide potential avenues for future research. These include
the extension of the CEID methodology to include the
effects of heating and lattice dissipation, as well as ther-
moelectric effects. A more sophisticated open-boundary
method, which should improve the energy resolution of the
calculations, is currently under development in order to
enable the simulation of inelastic electron-ion interactions
in realistic geometries. In addition, the implementation of
more sophisticated and more accurate electronic-structure
methods is a goal of future research.

5 Connection between CEID and NEGF

In the previous section we compared the predictions of
the CEID approach to those of the NEGF technique and
found that they are similar in many situations. But what
is the precise physical connection between the two? The
CEID formalism is developed by expanding the electron-
ion quantum Liouville equation in powers of the devia-
tions in the ionic positions and momenta from the mean,
in which decoupling approximations are applied to trun-
cate higher-order correlation functions in order to obtain
a closed set of equation of motion for electron density ma-
trix [13,75]. There are two restrictions on CEID: first, it
is assumed that the electron-ion system is described in
terms of an ensemble with a fixed total number of elec-
trons; second, the CEID methodology lacks a systematic
scheme to make corrections to decoupling approximations
used in it, so that its accuracy can be improved. In an
alternative approach, Wang and Kantorovich [79] derived
equations of motion of classical particles moving through
a medium composed of quantum particles (e.g. nuclei
immersed in electrons), based on a rigorous nonequilib-
rium statistical-mechanical treatment in which no factor-
ization of the density operator is allowed. This formal-
ism assumes a general nonequilibrium ensemble that al-
lows for a variable total number of electrons, and its ac-
curacy can be improved systematically by making high-
order (with respect to the inverse of ionic mass) correc-
tions. However, physically speaking, it loses the quantum
nature of nuclei; mathematically speaking, it is too com-
plicated to use in simulations. To lift the restrictions on
CEID, while retaining its advantages, a new formulation
of CEID [80] has been developed recently by using equa-
tions of motion for a set of nonequilibrium Green’s func-
tions that are closely linked to the dynamical variables
in the CEID method, which builds a rigorous connection
between two well-known approaches to inelastic electron
transport in atomic-scale devices: nonequilibrium Green’s
function (NEGF) theory with the self-consistent Born ap-
proximation (SCBA) [68,72,81] and CEID. In this section,
we shall introduce the NEGF formulation of CEID and
compare CEID and SCBA analytically.

5.1 Formulation

We consider an infinite open system of noninteracting elec-
trons linearly coupled to a single quantum oscillator. The
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electrons are described in terms of the second-quantized
field operators ¥(r) and ¥*(r). The full Hamiltonian is
then written as

H= /dr![l+ (—22 V24V (r )) w(r)

p? 2 +

+ [QM + 2KX ] X/drF(r)!'/ (r&(r) (45)
with X = R — Ry. The first two terms form the free-
particle Hamiltonian Hy, and the last term describes the
electron-phonon interaction H®. Here V(r) is the lat-
tice potential and F(r) is the electron-phonon coupling
strength. Ry and K are the equilibrium position and the
spring constant of the harmonic oscillator respectively.

If the electrons and phonons are decoupled at t = —o0
(i.e. if H® = 0), the unperturbed electron subsystem is
presumed to settle in the Landauer steady state, which is
described by a statistical operator py, [80].

We now define three contour-ordered Green’s functions

G(rt,r't") = (ih)~! <Tc1/)H(rt)1/)E(r’t/)> (46)
Lu(rt, o'ty = (ih) " {TeXg (O)vu (rt)f (') (47)
Da(rt,r't") = (ih) ™ {Te Pu (t)u (rt)h; (F't))  (48)

where (--+) = tr(po---). In view of the grand-canonical
structure of py [80], an ensemble with a variable total
number of electrons is thus under our consideration. The
contour C' runs from ¢t = —oo to t = 400 along the up-
per branch and then returns to t = —oo along the lower
branch. Here ¢y (rt) and ¢ (r't') are the fermion field
operators in the Heisenberg picture, and the electron co-
ordinate r implicitly includes a spin label.

The nonequilibrium Green’s functions defined above
can be related to CEID quantities in a straightforward
manner

pe(r,tir’ t) =
w(rtlr' t) =

—ihG=<(rt,r't)
—ihl s (rt, r't)

<w§(r't>wH<rt>> (49)
(W (') (rt) X u (1))

0)

(5
A(r, t|r! t) = —ih LS (rt,r't) = <z/JH(7" t)p (rt) P ( t)>
(51)

Parallel to the CEID procedure [3], our aim is to derive
equations of motion for these single-time CEID quantities.
This can now be achieved by the relation

a(r tlr' t) = —ihtlin;l/ (B + 0) A(rt, r't)] = (52)
where o is a CEID quantity and A is the correspond-
ing nonequilibrium Green’s function as defined in equa-
tions (49)—(51). Thus, the equations of motion for the
CEID quantities are now obtained from those for the
corresponding nonequilibrium Green’s functions. With
the standard equation-of-motion technique [80], it is
straightforward to derive the equations of motion for
Green’s functions (46)—(48). This generates higher-order
Green’s functions. We tackle these by the following decou-
pling procedure, in which a higher-order Green’s function

is expressed approximately as a product of lower-order
Green’s functions:

Ly (rt,r't") = (ih) ™ (Te X5 () gm (rt) g (r't)
~ Crr(t)G(rt,r't") (53)
Iy, (et 't = (i) " N (TeXu (O (rt) g (') Xu ()
~ ihD(t,t")G(rt,r't") (54)

Art, r't') / droF(ro) (Teah (rot) s (rot)
X (rt)g (r't'))
/ droF(ro) (w3 (rot) s (rot))
x (Tetn () (r't))
= [ dro (i ut)on(re)
x F(ro) (Tovu (rot) v (')
i / droF (ro)pe (ro, )G (rt, 7't')
_ ,’h/drope(r,t|r0,t)F(r0)G(r0t,7“'t')
(55)

(v (rt) (7't))
(Pr ()X 1 (1)) (Tetn (rt) g (r't))

ih
= Cpr(t)G(rt,r't') — Z2 G(rt,r't") (56)

Iy, (rt,r't) = (ih) " (T Pu () (rt) o (') Xu (t'))
~ (TcPy () Xy (t)) G(rt,r't)) (57)

Dy (rt,r't") = (ih) ™ (T Pu () Xu
~ (ih) ™!

where D(t,t') = (ih) " (Te X (t)X
phonon Green s function, Cgrg(t)
3 (Pr(H)Xnu(t) +XH( )Pr

g (t')) is the dressed
= hD<(t,t), and
(t

Cpr(t) = )). This results in
the CEID equations:
o= lheopd = - Rl (58)
Pe = ip e Pe h s
e e [F] § (59)
n= ih es M RR Pe M
. 1
A= ih [he, Al + tr(peF)pe + 9 {F7 pe} — peFpe

1
- ihCPR [F,pe] — Kp (60)

where h.(r) = —;”; 2 +V(r). The CEID equations al-

ways ensure the conservation of electron number: (N.) =
trpe = 0, due to the cyclic invariance of the trace (see
Eq. (58)).

The present CEID equations are identical to those de-
rived in references [3,13], except that in the previous ki-
netic equation for A [3,13], there is no tr(p. F')p. term, and
a uFp term appears, due to higher-order corrections to
the Hartree-Fock decoupling for the two-electron density
matrix in equation (55). However such corrections are not
considered in the present formulation and consequently
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Fig. 18. Diagrammatic illustration of equation (54): (a)
zero- and second-order noncrossing diagrams in the exact
Iy, (rt,r't'); (b) the diagrammatic representation of the CEID
decoupling approximation for I, (rt,r't"). The thick (thin)
straight line represents dressed (bare) electron Green’s func-
tion. The thick (thin) wavy line represents dressed (bare)
phonon Green’s function. We ignore Hartree-type diagrams
and corrections to a phonon line. Taken from reference [80].

the pFp term is absent from equation (60). In the origi-
nal CEID method [3,13], the expansion was with respect
to AR = R — R, whereas we use X = R — Ry here, lead-
ing to the tr(p.F)p. term in (60). Apart from these two
differences, the two formulations of CEID are parallel.

In the full CEID formalism [3,13], the above elec-
tronic evolutionary equations are supplemented, further,
by equations of motion for the quantities Crr, Cpgr
and Cpp, which measure the mean-square fluctuations
in the trajectory of the oscillator. However, for the pur-
poses of demonstration, here we close the set of equa-
tions by simply retaining the zero-order term in the per-
turbation expansion for Crpr(t) and Cpg(t). Thus we
set Crr(t ) = ihD§(t,t) = C (C is a constant) and
Cpr(t) = 5 (P, (t) X, () + X, () Pro (1)) = 0. Notion-
ally, this corresponds to connecting the oscillator to a ther-
mostat that maintains it in its unperturbed thermal state.

The decoupling approximations (53)—(57) are the
defining approximations in the CEID method. The present
formulation enables us to express the meaning of these ap-
proximations in diagrammatic terms. Each of them repre-
sents a subset of diagrams in the diagrammatic perturba-
tive expansion of the corresponding Green’s function. As
shown in Figure 18 where we use I’/ (rt,r't) as an exam-
ple, the decoupling approximation (54) includes the first
diagram in Figure 18a and consequently coincides exactly
with the exact perturbation expansion at the lowest order,
while it includes only the second diagram in Figure 18a at
the next order.

In the NEGF formulation of CEID, CEID can be sys-
tematically extended by making corrections to the CEID
decoupling approximations for Green’s functions I,,, Fuw
A, I'y, and F)(;r For instance, the last diagram in Fig-
ure 18a (a second-order noncrossing diagram in the exact
perturbation expansion for I’ ;/12) which is absent from Fig-
ure 18b serves as a second-order correction term to the
decoupling approximation (54) illustrated in Figure 18b.
One feature of this type of correction is that it does not
result in a higher hierarchy of coupled equations.
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We have thus rederived the CEID equations of mo-
tion from nonequilibrium Green’s functions and general-
ized CEID to an ensemble which allows for a variable total
number of electrons. Moreover, the present formulation al-
lows the key approximations in CEID to be quantified in
Feynman diagrammatic terms, and, in principle, extended
in a systematic manner. The present formulation of CEID
can be extended to include multiple quantum oscillators.
The purpose of the single-oscillator model is to illustrate
the analytical features of CEID in a simple way and to
enable a direct comparison between CEID and SCBA.

5.2 Weak electron-phonon coupling limit and beyond

The lowest-order CEID equations of motion take the form

pe = Zlh [ e P } [F o 1)} (61)
1= et = e [ra] e
1) Zlh [h ¢ } p<o )l

{F L >} pO Fp® — f¢ D) (63)

where the superscript denotes the order in the cou-

pling strength F'. These equations give the exact second-

order density matrix p(2) since the decoupling approxi-
€

mations (53)—(57) are exact to lowest-order in F'. Accord-

ing to equation (49), pg)

must correspond to the second-
order SCBA Green’s function G(s% 4 Which involves both
the Hartree and Fock diagrams [68]. Hence, in the weak
electron-phonon coupling limit CEID agrees exactly with
SCBA throughout the time domain, which extends the
range of validity of the conclusion in the earlier compari-

son [3] for a steady state in the energy domain.

One can go beyond the weak electron-phonon cou-
pling limit and compare CEID and SCBA at the fourth
order in F' [80]. However, the algebra is rather cumber-
some and we shall not give the details here (see Ref. [80]
for a detailed treatment). The key finding of the fourth-
order comparison is that CEID becomes equivalent to
SCBA at the fourth-order by adding explicit SCBA cor-
rections to the CEID equations of motion for (3 and
A®). These correction terms are contributed by the dia-
grams which are absent from the decoupling approxima-
tion but are present in the complete collection of second-
order noncrossing diagrams for higher-order Green’s func-
tions I, (1,1'), I7,,(1,1), I'\u(1,1") and I, (1,1"). Here,
and below, we use the shorthand notation (k) = (ritg).
However, these SCBA corrections to the CEID equations
of motion no longer involve just single-time quantities [80].

In principle, one may extend the comparison between
CEID and SCBA to any order in F, but the amount of
diagrams increases fast with increasing order.



20 The European Physical Journal B

5.3 Large ionic mass limit

In the limit of infinite ionic mass, the electron density
matrix is determined by equation (58) and

1 1
| = he, )] — . CIF, pe 64
po= o lhe,ul = CIE pe] (64)
here the constant C' corresponds to the equal-time classical
phonon Green’s function because the oscillator with infi-
nite mass is treated classically [80]. These coupled equa-
tions of motion can be solved exactly by the following

ansatz [80]:

Gopn(1,1) = Go(1,1) + C/Go(l, 2) [F(r2)Go(2, 3)

X(’f‘g)] GCE]D(37 1/)d2d3 (65)

and

Fu(l, 1/) = —C/Go(l, 2)F(T‘2)GCE1D(2, 1I)d2

Similar to the treatment in Section 5.1, it is straight-
forward to verify that p.(r,t|r’,t) = —ihGS g p(rt,7't)
and p(r,tlr',t) = —ihl;>(rt,r't) are solutions to equa-
tions (58) and (64). In the large ionic mass limit, the
CEID equations of motion are thus exactly solvable. In-
terestingly, the Dyson equation (65) is consistent with the
Born approximation (BA) and Gogrp contains only one
term at each order in F'.

To compare with SCBA, we need the mixed quantum-
classical perturbation expansion for Gscpa which, fol-
lowing the discussion in reference [80], can be obtained
by replacing the quantum phonon Green’s function by
the classical phonon Green’s function in the SCBA Dyson
equation Gscpa = Go+ Go - FDoGscpaF - Gscpa (the
Hartree-type diagrams are ignored here). In the infinite
ionic mass limit, the classical phonon Green’s function is
a constant C' [80]. So the SCBA Dyson equation becomes
Gscpa = Go+ CGy - FGsepaF - Gscpa. This equation
differs from the CEID solution (65) from the fourth-order

term onwards, e.g. Gg%BA = 2G(5%1D, and the difference
can be precisely quantified.

5.4 Summary

In this section, we have introduced an NEGF formulation
of CEID that establishes a rigorous connection between
CEID and NEGF within the SCBA, while also extending
CEID to a general non-equilibrium ensemble that allows
for a variable total number of electrons. We achieve this by
closing the hierarchy of electron-phonon correlation func-
tions without invoking two-time quantities. To do this we
first consider the lesser components of our equations of
motion, while setting ¢’ = ¢ (see Eq. (52)). We then apply
the approximations of equations (53)—(57) for the lesser

components at equal times: this makes the matrices on
the left hand side self-consistent functionals of the density
matrices on the right hand sides. In that sense, CEID can
be considered a density-matrix-functional approach. An
interpretation of the above approximations, in terms of
the retention of a subset of diagrams in the perturbative
expansion of the quantities on the left, was illustrated in
Figure 18.

We have compared the limiting behavior of CEID and
SCBA analytically. In the weak electron-phonon coupling
limit, they agree exactly for a general dynamical state of
the system. In the large ionic mass limit, where CEID can
be solved exactly, the difference between CEID and SCBA
emerges from the fourth-order term and can be quantified.
We have also pointed out the connection between CEID
and SCBA at the fourth-order in the coupling strength.
We conclude by the observation that CEID occupies a spe-
cial place between BA and SCBA, such that CEID is sim-
pler than SCBA, but is an improvement over BA, in that
CEID retains just single-time quantities and conserves the
total number of electrons.

6 High order CEID: new formalism

The CEID formalism was originally developed to target a
very specific problem, i.e., inelastic scattering in current-
carrying nanowires (see Sect. 4). The scattering nature
of this theoretical formalism has been further clarified
in Section 5 by a comparison between CEID and NEGF
based approaches. The original perturbative approach of
CEID is clear, the small parameter being AF = F - F
where F' = F(Ne) + [} is defined in equation (37) and
F in equation (69). A self-consistent closure of the CEID
EOM is then obtained by assuming a given functional de-
pendence of the higher CEID moments on the lower ones
through the time-dependent variables Crr = (ARAR),
Crp = %({AP, AR}), and Cpp = (APAP), see equa-
tion (39). The systematic extension of this closure scheme
has been the object of intense study and in this section
we provide a brief survey of the results obtained. In the
following exposition we believe it is appropriate to skip all
the mathematical details that might obscure the physical
assumptions of this new CEID formalism. The interested
reader will find thorough derivations in references [82,83].

6.1 Strong electron-phonon interaction

Due to the ultimate quantum nature of both electrons and
ions, inelastic scattering at nanoscale and low tempera-
ture can involve the exchange of single quanta of energy,
quantum interference, and tunnelling. This nonclassical
behaviour gives rise to the well known differences between
joule heating in macroscopic and nanoscopic devices, e.g.,
atomic wires [84]. Following this physical insight, one can
think of single electrons that ‘kick’ the ions just a few
times during their transit in the nanowire, thereby jus-
tifying the perturbative approach of the original CEID
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scheme. This picture breaks down when quantum inter-
ference becomes important. For instance, if the products
of an electron-ion scattering event are confined close to
the interaction region, they can be rescattered again and
again. Therefore, interference patterns can build up in a
way similar to the generation of stationary waves through
multiple reflexions. As a consequence of quantum inter-
ference among scattering events, the ionic wavefunction
can develop a nontrivial nodal structure, which is not ac-
counted by the original CEID scheme. A new CEID ap-
proximation has been developed to deal with quantum
interference and the new expansion reads

Neceid

b= > 0) bum (P.F) (],

n,m=0

(67)

where the total density matrix p has been expanded with
respect to AR and AP, i.e., the quantum fluctuations of
the ions (see Sect. 4). This abstract notation is particularly
useful in the many-atom case [83], although for systems
with just one ionic degree of freedom, one can choose the
eigenstates of the harmonic Hamiltonian,

h? 2 1
0 + _Mw?*(AR)?,

ToMa(AR) T2 (68)

where the parameters M and w give the effective mass and
angular frequency of the ionic degree of freedom [82]. In
this case the meaning of the states {|n)} is clear: they rep-
resent a given nodal structure of the quantum fluctuations
of the ions, the wavefunction (AR|n) having n nodes. In
particular, the state |0) represents Gaussian, i.e., node-
less, quantum fluctuations about the average trajectory
(P(1), R(1)).

The expansion in equation (67) is truncated at CEID
order N.c;q, which sets the maximum number of nodes
considered at a given level of approximation. Note that
the expansion in equation (67) is taken with respect to a
mobile reference frame, the average phase-space trajectory
(P(t), R(t)), and this is why the coefficients p,, ,,? depend
on P and R. For the same reason, in general the states
{In)} do not represent quanta of oscillations (phonons),
since those are defined with respect to a fixed equilibrium
configuration.

Similarly to p, all observables can be partially ex-
panded by means of the same states and their averages
computed algebraically. For instance, the average force is
given by

- 8H§NC)
F=-Tr<p
{p OR
ceid R 8HG(N6)
- - Z Tre Pn,m < OR 5 (69)

where Tr.{} is the partial trace with respect to the elec-
tronic degrees of freedom, only [82].

2 Actually, pp,m are not scalar but operators which act on
the residual electronic degrees of freedom [82].

Starting from equation (67) and the formally exact
Liouville equation (see Sect. 4) the EOM for the coeffi-
cients Py, m are derived [82] and they look like a corrected
Liouvillean propagation

b= 9 85

+ Ccerp [ﬁi,jaAF (R) . K (R)} ) (70)
the correcting term depending on matrix coefficients
with different indices, AF, and K = KWe) 4+ K, (see
Eq. (37)). In principle, higher order derivatives of the total
Hamiltonian H,; can be included. However, adding extra
terms in equation (70) largely increases the computational
cost of the algorithm and, at least for the models we have
considered so far, a second-order expansion suffices.
Equation (70) along with the Ehrenfest equations,

P=F

B = P/M,
and equation (69) are employed to consistently propagate
Prms P, and R, from which the values of all observables
can be derived by means of the algebraic approximation
illustrated in equation (69).

The commutator term in equation (70) gives the uni-
tary, Ehrenfest-like [8], evolution of p, ., so that all the
remaining terms in the r.h.s. of equation (70) can be un-
derstood as corrections to the Ehrenfest Dynamics (ED)
due to the inclusion of the quantum fluctuations of ions.
Actually, if Neeiq = 0, one can rewrite equation (70) as

1 S R
K(R)a £0,01| 5

2 h
00,0 = +z’h

(NG (P
H (R)+4Mw

(71)
which is formally equivalent to the unitary Ehrenfest evo-
lution of the electronic density [84] apart from the term
containing K accounting for the zero-point quantum fluc-
tuations of ions about the average trajectory. This term
is neglected in ED because atoms are treated classically.
To illustrate the dynamical effects generated by the
correcting terms in equation (70) and the convergence
properties of the new CEID scheme, in the following sec-

tions we shall consider two test-cases, namely a two-level
system (2LS) and a Su-Schrieffer-Heeger (SSH) chain.

6.2 Quantum electron-ion coherence

A system made by two electronic levels linearly coupled
to a single ionic degree of freedom is modelled by the
Hamiltonian H.; = P?/2M + H.(R), where

H.(R) = (%wZ (R~ Ro)’

“oR (72)

—aR
;wQRz—i-hw '

In equation (72), o measures the strength of the electron-
ion coupling and Ry sets the displacement between the
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Fig. 19. Results for 2LS dynamics: (a) adiabatic and diabatic levels of equation (72), with Ry = 1. The region of the avoided
crossing is magnified in the inset; (b) evolution of the electronic populations from CEID simulations of different orders. The
system is initially prepared in the ionic ground state of the higher electronic level; (c) and (d) same as (a) and (b), but for the

case Ry = 2.

equilibria of the two electronic levels, whose energy differ-
ence is fixed to fiw (resonance condition). Adiabatic and
diabatic levels for the cases Ry = 1,2 are plotted in Fig-
ures 19a and 19c¢, respectively. [Energies are measured in
units of fw.] In the small insets of these two panels the
avoided crossing between the two adiabatic levels is mag-
nified to highlight the differences between the two sets of
electronic levels. In both cases, a = 0.1 has been used.

The system, originally prepared in the vibrational
ground state of the higher adiabatic level, is propagated by
means of the new CEID scheme described in Section 6.1.
In Figures 19b and 19d we plot the evolution of the pop-
ulations of the two electronic levels for CEID simulations
with different N ;4. [Time is measured in units of 27/w.]
In both cases, a N¢e;q = 0 simulation gives no dynamics,
while good convergence for the reported propagation is
reached for high enough CEID order, namely Ngeiq > 5
and Neeiq > 10 for the cases Ryp = 1 and Ry = 2, re-
spectively. As shown in reference [82], for a 2LS, results of
a converged CEID simulation are indistinguishable from
those of an exact integration of the Schrodinger equation.

Note that the periodic oscillations between the higher
and lower electronic levels are analogous to the Rabi oscil-
lations encountered in quantum optics [85]. The period of
these oscillations depends linearly on the strength of the
electron-ion interaction, « [82]. The faithful reproduction
of such quantum coherent behaviour by the new CEID
scheme demonstrates its ability to deal with electron-ion
correlations built up by multiple scattering events. Dur-
ing every ionic oscillation, the electronic wavepacket is
partially reflected and transmitted through the avoided

crossing, so that these split components can interfere again
during the subsequent oscillations, giving the observed co-
herent behaviour. As pointed out in Section 2, ED does
not reproduce the energy transfer from excited electrons
due to spontaneous emission of phonons. This elusive pro-
cess is well reproduced in high order CEID simulations
because the quantum fluctuations of ions are treated ac-
curately.

6.3 Applications to conjugated oligomers

To illustrate the capability of CEID to simulate more real-
istic models, e.g., of photoexcited m-conjugated polymers
(see Sect. 3), we use the SSH Hamiltonian parametrised
for cis-polyacetylene, equation (28) [86,87].

In Figure 20 we plot results obtained by simulating a
34-site SSH chain (end sites kept fixed) initially prepared
in its ground state equilibrium geometry (dimerised) and
with an electron vertically excited from the HOMO-1 to
the LUMO+1 level. [Details can be found in Ref. [88].] In
panels (a) and (c¢) the evolution of the single-particle adi-
abatic spectrum, with the HOMO-1, HOMO, LUMO, and
LUMO+1 levels highlighted, is reported. In panels (b) and
(d) the populations of the highlighted levels are plotted.
The differences between the Ngeig = 0 and Neeig = 10
cases are striking. In particular, as for the 2LS, the lowest
order CEID approximation gives no electronic population
dynamics. On the other hand, the high order CEID simu-
lation suggests that the initial HOMO — 1 — LUMO + 1
single-particle excitation decays to the lower energetic
HOMO — LUMO one in approximately 25 fs. Even
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Fig. 20. Results for the SSH dynamics: (a) evolution of the single-particle levels from a Nceig = 0 simulation. The four states
which enter the gap are highlighted; (b) evolution of the electronic populations of the four states highlighted in panel (a); (c)

and (d) same as (a) and (b), but from a Nee;q = 10 simulation.

though these interesting results have been obtained by in-
cluding quantum fluctuations of ions with respect to the
C=C stretching mode only, ? they are in good qualita-
tive agreement with the measured ultrafast decay to the
lowest excitonic state in 7w-conjugated polymers and nan-
otubes [89,90]. Inclusion of further quantum fluctuations
of ions with respect to other oscillation modes is limited
by the computational cost of the algorithm, which scales
as a power of the number of quantised modes [82,83]. Nev-
ertheless, we do not expect qualitative changes of the de-
cay picture we have found if more quantised modes are
included. Indeed, this electronic decay is caused by the
spontaneous emission of phonons [15] missed by ED [40]
and so adding more quantum fluctuations of ions will pos-
sibly make it more likely, not suppress it.

6.4 Summary

In this section we have shown how the new formalism
for high-order expansion successfully extends the origi-
nal scope of CEID to the study of quantum electron-ion
coherence (see Sect. 6.2) and ultrafast electronic decay
due to strong interaction with the quantum fluctuations
of the ions. Further extension for this new computational

3 The constraint on the quantum fluctuations of ions, ex-
panded according to a many-atoms generalisation of equa-
tion (67) [83] must not be confused with constraints on the
dynamics of the average ionic positions, R;. For instance, in
the simulations of the short SSH, the average ionic motion is
completely free and evolved according to equation (71), apart

from the end sites which are kept fixed.

method being considered are the inclusion of 1) electron-
electron correlations and 2) a dissipative environment.
These are the object of ongoing theoretical investigation
with a view to future application to the study of coher-
ent electron dynamics in 7-conjugated polymers at finite
temperature [91].

7 Conclusions

In this paper we have provided a quick overview of the
projects to which CEID has been applied, and they all
involve performing simulations in which non-adiabatic ef-
fects are important. The theory has evolved continuously
in response to the new challenges thrown up by each appli-
cation. As the dust settles, three clear methods are emerg-
ing with well defined domains of applicability. Ehrenfest
is the simplest and most efficient to implement and is
used whenever possible. However, the loss of spontaneous
phonon emission means there are problems where it fails
to capture important phenomena. When this happens we
have to move up a level in complexity. For weak electron-
phonon coupling the mean field second moment approxi-
mation has been found to be very useful, though can suf-
fer from stability problems. It is currently the method of
choice for including inelastic effects in transport simula-
tions of nanostructures. When the electron-phonon inter-
action is strong (as occurs in conjugated polymers) we
need the revised higher order CEID formalism. The ro-
bustness and systematic extensibility of this approach al-
lows coherent motion of electrons and nuclei to be followed
reliably.
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CEID is still under development. One project is to find
simplified expressions that can be used in large molecu-
lar dynamics simulations. This is in response to the high
computational cost associated with carrying around many
electronic matrices, and is important for radiation damage
simulations when Ehrenfest Dynamics no longer suffices.
These expressions might also allow us to combine CEID
with TDDFT, but this is speculative. A second project is
to find efficient ways to include photon fields; this is to al-
low us to perform simulations of spectra. A third project
is to couple the systems described by CEID to a dissi-
pative environment. This is important both for heat loss
in current carrying nanowires and for providing a correct
description of the dynamics of excitations in conjugated
polymers.

The formalism of CEID is conceptually quite simple,
but the details quickly lead to considerable complexity.
Much of this complexity can now be hidden from the view
of those wishing to perform simulations as codes imple-
menting the methods are now available. For Ehrenfest sim-
ulation we have spICED (maintained by Daniel Mason),
while for mean field second moment simulations we have
pDINAMO (maintained by Daniel Dundas). Finally, for
the higher order CEID formalism we have a code named
polyCEID (maintained by Lorenzo Stella). If you wish to
use one of these codes as part of a collaboration, please
contact the relevant developer.

We gratefully acknowledge the support of the EPSRC through
grants EP/C524403/1, EP/C006739/1 and EP/C524381/1,
and many useful (and sometimes provocative) conversations
with Marshall Stoneham, David Bowler and Mike Finnis.
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