
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

How good is damped molecular dynamics as a
method to simulate radiation damage in metals?

J le Page, D R Mason1, C P Race and W M C Foulkes
Department of Physics, Imperial College London, London SW7 2AZ, UK
E-mail: daniel.mason@imperial.ac.uk

New Journal of Physics 11 (2009) 013004 (15pp)
Received 28 August 2008
Published 7 January 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/1/013004

Abstract. Classical molecular dynamics (MD) is a frequently used technique
in the study of radiation damage cascades because it provides information on
very small time and length scales inaccessible to experiment. In a radiation
damage process, energy transfer from ions to electrons may be important, yet
there is continued uncertainty over how to accurately incorporate such effects in
MD. We introduce a new technique based on the quantum mechanical Ehrenfest
approximation to evaluate different methods of accounting for electronic losses.
Our results suggest that a damping force proportional to velocity is sufficient
to model energy transfer from ions to electrons in most low energy cascades.
We also find, however, that a larger rate of energy transfer is seen when the
ionic kinetic energy is confined to a focused sequence of collisions. A viscous
damping coefficient dependent on the local atomic environment is shown to be
an excellent model for electronic energy losses in low energy cascades in metals.
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1. Introduction

In a radiation damage process, incoming high energy particles collide with the ions of the
solid. The primary knock-on atoms (PKAs), hit by the incoming particles, recoil and go on
to cause damage themselves [1]. At present, numerical study of the evolution of the damage
due to these PKAs typically uses classical molecular dynamics (MD) simulations. The crucial
advantage of MD is that the evolution of the ions can be studied on experimentally inaccessible
picosecond timescales and nanometre length scales. MD simulations have established that the
damage process first involves a cascade of colliding ions, causing ionic displacements up to
some point of maximum damage. The behaviour then becomes qualitatively different as kinetic
and potential energy is repartitioned and the majority of the ions return to lattice sites. The
focus of interest is on the density and structure of the remaining defects as these influence the
material’s long term behaviour. For reviews of a wide range of MD results see [2, 3].

The propagation of a swift PKA through a solid also causes a response by the electronic
system [4]. Valence electrons are excited into higher energy states and the electronic density
reacts to dynamically screen the PKA; the electrons act as an energy sink and also provide an
interatomic potential through which the ions move.

Numerical evolution of quantum mechanical electrons and ions on the time and length
scales of a radiation damage cascade is impossible with current computing facilities.
Attempts are therefore made to incorporate the required electronic effects within MD
phenomenologically, often by treating the electrons as hidden classical degrees of freedom.
In this paper, we introduce a method, based on quantum mechanical Ehrenfest dynamics [5],
to investigate the use of such an approach. We examine the energy exchange between the ionic
and electronic subsystems and find that, for the majority of the low energy cascades simulated,
a damping force proportional to velocity is an effective way to include the energy transfer.
However, in those cascades where the ionic kinetic energy is confined to a focused sequence
of collisions, we see a higher rate of energy transfer and thus would require a larger damping
force.

We begin in section 2 by highlighting the limitations of current techniques for including
electronic effects in MD simulations of radiation damage. The outline of our Ehrenfest approach
is given in section 3 and the details of the simulations performed are given in section 4.
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Our results and the subsequent analysis are covered in section 5. Finally, in section 6, we present
our conclusions and discuss possible extensions to our approach.

2. Including electronic effects in MD

To the extent that empirical interatomic potentials are fitted to a range of material properties,
classical MD simulations already include electronic contributions to the ionic forces at the
level of the Born–Oppenheimer approximation. The majority of MD simulations of cascades
reported in the literature do not include any electronic effects beyond this. The adiabatic forces
are conservative and cannot represent a frictional loss of ionic energy to the electron system.
However, given the high speed of the ions involved in a radiation damage cascade, nonadiabatic
effects are bound to occur and may well influence the evolution of the cascade. A range of
different methods has been suggested to include these effects.

At high ionic velocities, the PKA can be treated as a perturbation of the electronic system.
In such cases, theories focus on the energy transfer to the electrons per unit distance along
the PKA path, a quantity referred to as the electronic stopping power. At lower velocities, the
ionic motion is more phonon-like and energy transfer is treated in terms of the electron–phonon
interaction. We emphasize that both regimes of energy transfer arise from the interaction
between electrons and ions in the time-dependent Schrödinger equation [6], but the distinction
is convenient and is made throughout the literature.

A simple practical technique is to treat the electrons as a thermalizing heat bath. Caro
and Victoria [7] use this method to include both electronic stopping power effects and
the electron–phonon interaction. They model the ions using Langevin equations of motion,
introducing a random force and an inhomogeneous viscous damping force. By making the
damping force on an ion-dependent on the local electronic density, the energy loss from
ions to electrons can be treated over a wide range of ionic energies. The work of Duffy and
Rutherford [8, 9] extends that of Caro and Victoria, explicitly modelling the transport of heat
through the electron gas via a diffusion equation. In the work of Nordlund et al [10, 11], a
velocity proportional damping force is intended to represent the electronic stopping power and
is applied only to ions with kinetic energy higher than 10 eV. Exchanges of energy between ions
and electrons in the low-energy electron–phonon regime are neglected.

These three approaches use the theoretical methods of Lindhard et al (see [12] for a history
of the technique and relevant references) as a basis for the inclusion of electronic stopping
effects in MD. The original work aimed to calculate the range and straggling of swift ions in
matter and extensions give increasingly accurate predictions of these quantities [13]–[16]. All
such methods couch the problem in terms of a single ion interacting with an electron system
in an otherwise static potential. At high energies, where the ion loses most of its energy to
electrons, this model is expected to be accurate. For low energies, the Lindhard approach yields
a stopping power proportional to velocity, suggesting that the inclusion of such effects in MD
by a damping force proportional to velocity might be valid. Furthermore, extensive simulation
of cascades within the binary collision approximation (BCA) has shown that an energy loss
proportional to ionic kinetic energy is consistent with experimental data for ion implantation
ranges and stopping by thin films [17, 18]. However, the failure of Lindhard-like calculations to
include either the disruption of the lattice or phonons, both of which will play a part for the low
velocity ions of a cascade, raises questions about its direct application to radiation damage.
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Finnis et al [19] study the energy transfer to electrons diffusing randomly through the
hot cascade and scattering from the phonon system. This leads to a damping force that is
dependent on the local ionic temperature. The method has been applied by a number of other
authors [20, 21]. There is no attempt to include electron effects beyond the electron–phonon
description, although these are known to be important at higher ionic velocities.

The techniques described above all have some theoretical justification, but it is difficult
to quantify the shortcomings of the different approaches. Does it matter that Lindhard-like
calculations of stopping power do not include disruption of the lattice? How large are the errors
introduced by neglecting effects beyond phonon scattering in the work of Finnis et al? The next
section introduces an Ehrenfest-based approach that can be used to study these issues.

3. A semi-classical technique for validating methods of incorporating electronic
effects in MD

Attempting to investigate methods of incorporating nonadiabatic electron effects into MD
by comparison with the full quantum mechanical evolution of the electrons and ions would
be computationally intractable. However, we have previously shown that the quantum-
classical Ehrenfest approach accurately approximates the true electron–ion interaction when
the temperature of the ionic subsystem is much greater than the temperature of the electronic
system [22]. The Ehrenfest approach therefore provides a tractable way of including relevant
quantum mechanical effects in a cascade. Our approach will be to compare energy transfer in an
Ehrenfest simulation with the transfer in a classical MD simulation in which the ions are forced
to move identically.

In the Ehrenfest approach, the ions are modelled as a collection of classical particles
moving in a ‘mean-field’ generated by the electrons. In turn the electrons are modelled using
full quantum mechanics evolving in a time-dependent potential due to the ions. We therefore
represent the state of the electronic system by some density matrix, ρ̂(t), and the system of ions
by a set of trajectories in position space, R(t) := {R1(t), R2(t), . . . , RNion(t)}. For some initial
electronic density matrix, ρ̂0, and an initial set of ionic positions and momenta, the evolution of
the system is given by the following coupled equations:

ih̄ ˙̂ρ(t) =

[
Ĥ (R(t)) , ρ̂(t)

]
, (1)

MR̈n(t) = −∇Rn Vion (R(t)) − Tr
{
ρ̂(t)∇Rn Ĥ (R(t))

}
, (2)

where R(t) denotes a dependence on all ionic positions. Equation (1) is known as the quantum
Liouville equation, the density matrix formulation of the time-dependent Schrödinger equation.
For simplicity, we assume the mass of each ion, denoted M , is the same. The electronic
Hamiltonian, Ĥ (R(t)), is composed of electronic kinetic and potential energy terms as well
as the electron–ion potential. It is this term that is dependent on the ionic positions. The
operator −∇Rn Ĥ (R(t)) corresponds to the force on the nth ion due to its interaction with the
electrons. The inter-ion force is given by −∇Rn Vion (R(t)), where Vion(R(t)) is the classical
potential energy arising from ion–ion interactions. We also denote by Û (t) the unitary evolution
propagator corresponding to the Hamiltonian Ĥ (R(t)), thus ρ̂(t) = Û (t)ρ̂0Û +(t).
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In the absence of electron–electron interactions the total energy of the system is

E(t) :=
Nion∑
n=1

1

2
M |Ṙn(t)|

2 + Vion (R(t)) + Tr
{
ρ̂(t)Ĥ (R(t))

}
. (3)

This energy is conserved in Ehrenfest dynamics.
For comparison with MD simulations we must separate the adiabatic portion of the

electronic energy from the nonadiabatic part. To do so we must first define, and then calculate,
the adiabatic evolution of the electrons. Derivations of adiabatic/Born–Oppenheimer behaviour
rely on the small electron–ion mass ratio [23, 24]. Thus, in order to reach the adiabatic limit for
some given ionic evolution, we might move ions along the same trajectories in position-space
with a smaller electronic mass (or equivalently rescale the electronic time [25, 26]). Adiabatic
evolution is then defined as that obtained in the zero electron mass limit. Assuming that such a
limit is valid we denote the corresponding propagator by Â(t). We then define the nonadiabatic
energy transfer in an Ehrenfest simulation by

1Eehr(t) := Tr
{

Û (t)ρ̂0Û +(t)Ĥ (R(t))
}

− Tr
{

Â(t)ρ̂0( Â(t))+ Ĥ (R(t))
}

. (4)

It is this quantity that we compare with the energy loss from the ions of MD simulations
including models of electronic damping.

We view the incorporation of electron–ion energy transfer in an MD simulation of a cascade
as successful if, for a comparable set of ionic trajectories, it gives a similar energy loss to the
Ehrenfest evolution. The internal energy of a classical MD simulation, which is conserved only
in the microcanonical ensemble, is determined as

E(t) :=
Nion∑
n=1

1

2
M |Ṙn(t)|

2 + V (R(t))

= T (t) + V (R(t)) , (5)

where the two terms correspond to total kinetic and potential energy. We then ask if the total
change in energy, E(t) − E(0), is approximately equal to the nonadiabatic energy transfer from
the ions obtained using the Ehrenfest approach, i.e. −1Eehr(t).

A direct simulation comparison between equation (4) and its classical analogue is possible
only if classical MD and Ehrenfest methods give equal trajectories in ionic position-space. This
is precluded by the Lyapunov instability of atomic systems which will exponentially magnify
any infinitesimal difference in the two methods. Instead we perform an Ehrenfest simulation and
record the resulting ionic trajectories. We assume a potential energy surface exists for which
classical MD incorporating nonadiabatic effects through some specified technique produces
the same position-space trajectories. We may then compute the energy loss that would occur
applying the classical technique, should the Ehrenfest trajectory be followed on this potential
energy surface. If the classical MD technique and Ehrenfest simulations give a similar energy
change for a range of different simulation times we say that the technique used to damp the ions
in the MD simulation accounts for nonadiabatic energy loss.

In the limit where the Ehrenfest approach is accurate, i.e. when the electronic temperature
tends to zero, the nonadiabatic effects in the approaches of Nordlund et al [10, 11], Caro and
Victoria [7] and Finnis et al [19] all reduce to a damping proportional to velocity. When
a damping proportional to velocity is used to incorporate nonadiabatic effects in an MD
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simulation the loss of energy from the classical ions can be written as an integral over time.
To see this, we note that in such an MD simulation the evolution of the nth ion obeys

MR̈n(t) + bn(t)Ṙn(t) + ∇Rn V (R(t)) = 0, (6)

where bn(t) is the damping coefficient for the nth ion. By differentiating the total energy in
equation (5) with respect to time we obtain

Ė(t) =

∑
n

MR̈n(t) · Ṙn(t) +
∑

n

∇Rn V (R(t)) · Ṙn(t). (7)

Multiplying equation (6) by Ṙn(t) and rearranging, we have

Ė(t) = −

∑
n

bn(t)Ṙn(t) · Ṙn(t). (8)

The first classical model we consider sets bn(t) = b, a single time-independent scalar. This
is equivalent to the Finnis et al [19] model at zero temperature. The second model sets bn(t)
again to a time-independent scalar b, but applied only where 1

2 M Ṙn(t)2 > Tcut-off. Nordlund
et al [10, 11] use a similar model with a kinetic energy threshold Tcut-off = 10 eV. The third
model uses the environmentally dependent damping coefficient of Caro and Victoria, with
bn(t) = A log(αρ1/3

n + β), where the local electronic density ρn is estimated using an embedded
atom potential [27]. We define a comparable constant for model 3, b = Alog(αρ

1/3
0 + β), where

ρ0 is the electronic density computed for an atom in the perfect lattice. b for model 3 is the
damping experienced by an atom at a perfect lattice site.

If, for the evolution of an electron–ion system by the Ehrenfest approach, the relation

1Emodel(t) :=
∫ t

0

∑
n

bn(s)Ṙn(s) · Ṙn(s)ds = 1Eehr(t) (9)

holds, this suggests that the model incorporating a damping proportional to velocity can be used
to approximate the nonadiabatic energy exchange. It is worthwhile stating the logic behind our
approach. If there exists some potential with a velocity proportional damping that can reproduce
the Ehrenfest trajectories and energy loss then equation (9) must hold. Therefore, if equation (9)
is not true, such a classical potential does not exist. Yet, if equation (9) is true, then it is only
indicative that such a potential may exist, not a signal that it must, and certainly not that it is
possible to find. Thus, strictly, our study is focused on ruling out the impossibility of using a
velocity proportional damping to include nonadiabatic effects. Nonetheless, validation of the
equation (9) is a strong indication that such an approach is effective.

We note that this work treats the electron system as an energy sink and is not concerned
with the changes in the interatomic forces that may arise as the electrons evolve. The damping
force specified in equation (6) is always opposed to the motion of the ion and will miss any
directional dependence of the force due to electronic excitation. This is an intrinsic flaw in
using a scalar damping coefficient to account for nonadiabatic effects. One may go on to study
the nonadiabatic changes in the forces, by changing the observable of interest in equation (4),
but this is not done in this paper.

4. Computational method

We now apply the method discussed above to a set of Ehrenfest simulations of cascades in a
metal. In this section, we summarize the computational methods used and the initial conditions
of our simulations.
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To simplify the modelling of the electronic system we use the tight-binding formalism,
which approximates the electronic wavefunctions as superpositions of atomic orbitals and
substantially simplifies, or even neglects, electron–electron interactions [28]. For a detailed
description of the combination of the Ehrenfest approach and the tight-binding formalism
see [29].

To ease the computational burden, we base our simulations on the copper parameterization
of an empirical tight-binding model proposed by Sutton et al [30]. The model reproduces the
structural stability and elastic constants of copper. However, the electronic density of states at
the Fermi level, a prominent quantity in calculations of the electron–ion energy transfer [31],
is not accurately represented. Therefore we view our results as a quantitative exploration of the
nonadiabatic energy exchange rather than an accurate prediction in copper. The use of local
charge neutrality to capture the effects of metallic screening is suggested by Sutton et al but
we choose to neglect this feature to ease computation of the nonadiabatic energy transfer (see
below). Our tight-binding model therefore neglects Hartree-like interactions that arise when
there is charge transfer. Tests show that such Coulomb and screening effects are negligible at
the velocities we are considering.

We consider a simulation cell of 9 × 8 × 7 face-centred-cubic unit cells containing
Nion = 2016 ions in total. Periodic boundary conditions are imposed along the edges of the
simulation cell. Previous work suggests that, over the timescales considered, such a simulation
cell is sufficiently large to give an energy transfer nearly equivalent to simulations with an
electronic system existing in an infinitely large crystal [31]. The ionic system is initially at zero
temperature with all ions stationary at their lattice sites. Although finite ion temperatures are
likely to have an effect on cascade evolution (see section 6), we believe it sensible to consider
the zero temperature case first. The electronic and ionic systems are evolved simultaneously
using the fourth order Runge–Kutta algorithm with a time-step of 0.01 fs.

The electronic system begins with a finite temperature of Tel = 500 K in a potential set
by the initial (perfect) lattice of ions. A small finite temperature improves numerical stability
by avoiding discontinuous changes in the occupation of states at the Fermi energy. We have
found that our results are insensitive to the choice of electronic temperature, provided kBTel is
greater than the average spacing between electronic energy levels and much less than the Fermi
temperature. The initial electronic density matrix is therefore given by

ρ̂0 = 2
∑

k

f (εk(0); µ, Tel)|k(0)〉〈k(0)|, (10)

where |k(0)〉 and εk(0) denote the eigenvectors and eigenvalues of the initial Hamiltonian
Ĥ ({Rm(0)}) and the multiple of 2 is due to spin degeneracy. The Fermi–Dirac function

f (ε; µ, Tel) =

(
exp

{
ε − µ

kBTel

}
+ 1

)−1

gives the occupancy of each eigenstate of the electron system. The chemical potential, µ, is
chosen so that Tr{ρ̂0} = 2νNion, where the band-filling, ν, is a parameter of the model.

Our strict periodic boundary conditions imply that we include only eigenstates
corresponding to the 0-point of the supercell. Earlier work indicated that multiple k-point
sampling is of little benefit when calculating energy transfer [31].

One ion is chosen as the PKA and given some initial recoil energy in a specified direction.
A total of 10 recoil energies are modelled, from 100 eV to 1 keV. For each energy 24 different
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initial directions are considered, chosen such that each direction corresponds to an equal
solid angle within the irreducible 1

48 th part of the face-centred-cubic unit cell. The scheme
used to make this selection of initial directions was adapted by the authors from the work of
Tegmark [32, 33]. The different initial directions sample a range of different cascades at each
recoil energy. The cascade is evolved for 200 fs2.

Because of the computational demands of time-dependent tight binding, we are not able
to explore the full evolution of a radiation damage cascade and are restricted in the size of
the simulation cell we use. At high energies the resulting ion cascade will propagate across
the periodic boundary within the first 50–80 fs and collide with itself, causing unrealistic ion
evolution. We do not believe this invalidates our simulations as a basis for exploring the use of
a velocity proportional damping in MD. We are interested in comparing the energy lost using a
damping force with that given by the Ehrenfest approach and it is of little concern that the ionic
evolution is not that of a true cascade, as long as it is representative.

In order to determine the nonadiabatic energy transfer it is necessary to calculate the energy
of the adiabatically evolved electron system. In section 3, we defined the adiabatic evolution of
the electrons for a given set of ionic trajectories as that which occurs in the zero-electron mass
limit.

For the system sizes we consider here, an alternative computational method presents itself
when we note that in the limit of zero electron mass an eigenstate of the initial Hamiltonian will
evolve into a corresponding eigenstate of the instantaneous Hamiltonian [25, 26], i.e.

Â(t)|k(0)〉 = |k(R(t))〉,

where |k(R(t))〉 is an eigenstate of Ĥ(R(t)). This then gives

Â(t)ρ̂0( Â(t))+
= 2

∑
k

f (εk(0); µ, Tel) Â(t)|k(0)〉〈k(0)|( Â(t))+

= 2
∑

k

f (εk(0); µ, Tel)|k(R(t))〉〈k(R(t))|.

Therefore, for a configuration of ions at some instant of a cascade, R(t), we determine the
adiabatically evolved electronic density matrix by diagonalizing the corresponding Hamiltonian
to get the instantaneous eigenvectors and match them to the corresponding initial occupancies.

Problems may arise in determining the instantaneous eigenstate into which each initial
eigenstate has evolved. For a time-evolving system, when all symmetries are rapidly broken
by the ionic motion, eigenvalue crossings are unlikely to occur and thus the correspondence
between instantaneous and initial eigenstates can be determined by their positions in an
eigenvalue ordered list. Preserving the initial occupations of the eigenvectors yields the
adiabatically evolved density matrix.

5. Simulation results and analysis

In section 3, we argued that a demonstration of the equality of 1Eehr(t) and 1Emodel(t), where
both quantities are calculated from the same Ehrenfest simulation, would offer strong evidence
that the damping model can be used to incorporate the energy transfer from ions to electrons

2 One simulation takes ∼48 h on a single 2.4 GHz Intel Pentium processor, of which 80% of the time is spent
computing the energy transfer 1Eel(t) every 2.5 fs.
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Figure 1. Scatter plot of the nonadiabatic energy transfer calculated by three
classical models of electronic damping against the energy transfer calculated
by the Ehrenfest method. Left panel: energies calculated for all 24 initial
PKA directions with a cascade energy of 100 eV. Right panel: energies for
cascade energy 1 keV. The upper plots are for model 1 (homogeneous damping
coefficient), middle for model 2 (kinetic energy cut-off) and bottom for model
3 (electron-density-dependent damping coefficient). Each axis is scaled by the
energy transfer at t = 200 fs. A straight line of gradient 1 would indicate a perfect
correspondence between classical and Ehrenfest methods. Classical models 1
and 3 are close to linear, indicating that they well reproduce the quantum
mechanical energy loss. Model 2 fails to capture the energy loss from slow
moving ions at later times.

in MD simulations. We plot 1Emodel(t)/1Emodel(tmax) against 1Eehr(t)/1Eehr(tmax) in figure 1,
where 1Emodel(t) has been calculated for each of the three classical models considered.

In each classical model the damping coefficient b scales the total energy transfer. We can
thus use a linear least squares fitting procedure to see if 1Emodel and 1Eehr are proportional
to one another and to calculate an estimator for the constant of proportionality. This constant
is then used to determine the damping coefficient b. To analyse the quality of our assumptions
and goodness of fit we will use the familiar techniques of linear regression. Analysis of the
residuals shows that the difference between 1Eehr(t) and 1Emodel(t), caused by the complicated
interplay of electronic forces, has an autocorrelation time small compared to the simulation
time. Furthermore, when averaged over initial PKA directions, the expected magnitude of the
residuals does not vary significantly with time (except close to t = 0 when the residuals must,
of course, be nearly zero).
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Figure 2. Damping coefficient computed as a function of PKA energy for the
classical models considered. The solid symbols show the mean of the damping
coefficient computed for all directions excluding the 〈110〉 RCS described in
the text; the error bars indicating one standard deviation of these values. The
open symbols are the values computed for the 〈110〉 RCS. The lines are to guide
the eye.

We begin by performing the fitting procedure for each simulation individually, i.e. for a
given initial direction and recoil energy. The fitting procedure therefore involves a total of
80 points (since 1Eehr(t) is calculated every 2.5 fs) and a total of 10 × 24 × 3 fittings are
performed. Figure 2 shows the average value and spread of these parameters as a function
of PKA energy. The damping coefficient for model 2 (KE cut-off) is more than twice that
for model 1 (constant damping). As slow moving ions are ignored in model 2, energy must
be transferred at a higher rate from the fast moving ions to give the same total. The damping
coefficient for model 3 (inhomogeneous damping) is lower than that for model 1, because the
coefficients correspond to the damping of an ion at an equilibrium lattice site and most of the
energy transfer in a cascade is from ions experiencing a higher than normal electronic density.

In a typical cascade the PKA causes a broad region of ions to be displaced from their
equilibrium lattice sites. However, an anomalously high damping coefficient is found in the
cascades where the PKA is fired directly at one of its nearest neighbours, a single focused
sequence of collisions is caused along a close packed direction of the lattice. Such ion behaviour
is known as a replacement collision sequence (RCS). In an RCS all the initial energy of the
PKA is concentrated in a few ions and they therefore move more rapidly and approach each
other more closely than in a generic cascade. The classical phenomenological models we have
considered are therefore seen to fail to capture the true dependence of the electronic damping
on the atomic environment and direction of motion. We note that our simulation method has
highlighted these collision sequences by using a low temperature ionic lattice, and that at higher
lattice temperatures such collision sequences will be shorter.
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Table 1. Estimators of damping coefficients computed for use in three classical
models. Values in eV fs A−2. The mean value and standard error are computed for
cascades with PKA energy over 500eV. The value for the 〈110〉 RCS is reported
separately to the other directions. The standard deviation of b̄ indicates the range
of values of b̄ computed for the whole cascade, not as a range over which the
instantaneous damping on an given atom may be expected to vary. These values
should be taken as good quantitative estimates of a best-fit damping coefficient,
albeit correct for a rather simple tight-binding model.

b̄ b̄ Std. dev. b̄
Model excluding 〈110〉RCS 〈110〉 RCS only excluding 〈110〉 RCS

1 (single damping) 0.636 ± 0.004 1.223 ± 0.003 0.016
2 (with cut-off) 1.186 ± 0.011 1.405 ± 0.003 0.038
3 (Caro and Victoria) 0.197 ± 0.001 0.297 ± 0.001 0.033

If we exclude the 〈110〉 RCS, then for PKA energies above 500 eV we see that the
computed average damping coefficient for each classical model converges to an energy
independent limit. This is the best estimate for a single value of b̄ which may be used in such a
classical simulation. The values of b̄ together with the spread of the values computed are given
in table 1. For each model the damping coefficient for a 〈110〉 RCS is significantly higher than
for the other cascades. In model 1 (constant damping) the ratio is 1.92. The ratio is lower for
model 3, because the increased damping of an RCS is partly taken into account by the electronic
density dependence in the model. The ratio is lowest for model 2 as a consequence of the kinetic
energy cut-off; the damping coefficient is determined by high energy collisions such as the RCS
head-on collisions.

We use the computed value of b̄, excluding the 〈110〉 RCS to find the energy transfer as a
function of time for each cascade using the classical models. The distribution of the difference
between these energies and those computed using the Ehrenfest method is then used to construct
an R2 measure of the goodness of fit, shown in figure 3. Excluding the 〈110〉 RCS simulations,
the R2 values for models 1 and 3 are seen to converge well at high PKA energies. Model 1 gives
a limiting value of R2

= 0.95, model 3 does slightly better with R2
= 0.97.

In figure 4, we plot the R2 values computed for model 2 as a function of the kinetic energy
cut-off Tcut-off at each PKA energy. If the simulation data supported a nonzero Tcut-off we should
see this as a peak in R2 at this value. However, we must remember that the introduction of the
cut-off also introduces an extra degree of freedom which must allow for some improvement of
the fit in some regions. We find the optimal Tcut-off to be rather low (0.6 ± 0.1 eV), and that the
goodness of fit is not very much better than that using no cut-off, being only raised to R2

= 0.97.
A cut-off value of Tcut-off of the order of several electron volts, as suggested in the literature, does
not give a good model for the energy transfer rate in our cascades. We note that our model has
a rather flat electronic density of states. A more complex electronic Hamiltonian may better
justify use of a cut-off if band structure effects are pronounced.

6. Conclusions and discussion

The quantum mechanical Ehrenfest method is an accurate and efficient technique for computing
the nonadiabatic energy transfer between ions and electrons in radiation damage cascades.
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below. Each solid symbol corresponds to one cascade excluding the 〈110〉 RCS.
The lines link the means of these at each PKA energy and are to guide the eye.
The open symbols are the R2 values computed for the 〈110〉 RCS simulations.

The methodology we present here is designed to assess the quality of a classical approximation,
by finding the goodness of fit of a particular implementation of stopping power to evolution
using the time-dependent Schrödinger equation. It is not our present intention to emphasize
the damping coefficient computed within each model; a full calculation and comparison to
experiment can be found in [22]. In the present work, we have applied the method to compare
and assess various classical models for electronic damping used in MD simulations of radiation
damage. The three models we consider: an isotropic homogeneous viscous damping coefficient;
a viscous damping applied only to fast-moving ions; and an electronic density-dependent
inhomogeneous damping, are the low electronic temperature limits of important methods for
including nonadiabatic effects in classical MD today. We have shown that the simple viscous
damping coefficient, analogous to the approach of Finnis et al is quite adequate to compute the
average energy transfer in low-energy cascades in metals.

Applying a very low ionic kinetic energy cut-off to the damping rate slightly improves the
fit, but this effect is not dramatic and we have no physical justification for the optimized cut-off
at 0.6 eV. If a finite kinetic energy cut-off Tcut-off is used, then the dynamics will tend towards
that of the corresponding microcanonical ensemble when the average KE per atom is small
compared with Tcut-off. This could be claimed as a practical justification for using such a cut-off.
It would be of course be incorrect to equate this to dynamics within the canonical ensemble
without applying a thermostatting mechanism such as a Nosé-Hoover or Langevin thermostat
to equilibrate electronic and ionic temperatures [34]. The correct handling of electron–ion
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of energy transfer (model 2). The average of the high energy (>500 eV) cascades
is shown as the dashed line. A modest improvement in the accuracy of the linear
fit, indicating a better match between classical and quantum mechanical models
is possible by optimizing the cut-off kinetic energy above which damping is
applied to the moving atoms. This optimum we find is Tcut-off = 0.6 ± 0.1 eV
for the high energy cascades, raising the R2 goodness of fit from 0.95 to 0.97.

equilibration is extremely challenging within a semi-classical formalism. The Ehrenfest method
does not give a finite temperature steady state as spontaneous phonon emission is missing from
the equations [35]. We have looked only at short timescales (of the order of a few atomic
vibration periods), where the missing return of heat from the electrons is negligible. We have
also been careful to test classical models with a zero-temperature steady state, so that the
comparison with the Ehrenfest steady state is fair. Our method should therefore be seen as a
test for validating the damping terms within classical models; we make no claims for validating
mechanisms for incorporating energy return from hot electrons to cold ions.

We have shown that, while the energy transfer rate averaged over cascade energies and
directions is reproduced well by the simple classical models, the instantaneous damping of
a particular atom is not. The equivalent damping coefficient for atoms colliding head-on,
generating a 〈110〉 RCS, should be double the average for glancing collisions. We find that
it is possible to improve the classical model by taking some account of the variation in damping
with the local atomic environment, as suggested by Caro and Victoria, as this goes some way to
accounting for the increased energy transfer during head-on collisions.

Finite computer resources have limited our study to low energy cascades and a simple tight-
binding model. With a more sophisticated Hamiltonian the technique described here could be
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used to find accurate quantitative estimates of damping coefficients for classical MD simulation.
Our methodology has not only been able to illustrate deficiencies within existing classical
models of electronic damping, but will also act as a benchmark for new classical models as
they appear.
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