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Abstract. We derive a form for the non-conservative damping forces on metal
ions due to their interactions with electrons, and present the result in the second-
moment tight-binding approximation suitable for direct and efficient inclusion
in a large-scale molecular dynamics simulation. We demonstrate that this
form accurately captures the direction, velocity, temperature and local atomic
environment dependence of the non-adiabatic force in quantum mechanical
simulations in which electronic stopping is accurately calculated. No previous
empirical damping force is able to reproduce this rich behaviour.
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1. Introduction

An understanding of dynamic processes involving fast metal ions requires an accurate model
for energy exchange between ions and electrons. In sputtering processes, the local non-uniform
electronic temperature distribution can influence the sputtering yield [1, 2]. In radiation damage
cascades, ionic kinetic energy is absorbed by the electrons and transported out of the damage
region [3, 4]. Duffy et al investigated the effect of electron–ion energy exchange on the
evolution of radiation damage phenomena. Their results suggest that this energy exchange can
significantly impact the residual defect population following a collision cascade [3, 5] and that
the strength of the electron–ion interaction is a key determinant of the formation of tracks around
channelled ions [6]. For ions channelling between crystal lattice planes with kinetic energies of
tens or hundreds of keV, the principal energy loss mechanism is to the electrons [7, 8]. All these
processes take place on atomic timescales, making experimental observation difficult, and so
classical molecular dynamics (MD) simulations are an important means of gaining insight.

In classical MD simulations of metals, the electrons are treated implicitly in the empirical
potentials. Non-adiabatic effects, where included, are commonly modelled as an electronic
friction—an additional force anti-parallel to the ion velocity [3, 5, 6], [9]–[13]. The use of
such viscous drag forces is often justified with reference to models of electronic stopping
power based on highly idealized treatments of a homogeneous electron gas [14] or of isolated
binary collisions [15, 16]. Such treatments clearly neglect any environmental dependence or
directionality of the non-adiabatic forces by construction and so, while they can successfully
predict the statistical behaviour of energy exchange processes [8], they cannot be expected to
capture any microscopic detail. We should view the use of a drag force as a convenient means
of effecting the removal of energy from the ionic subsystem on average over the course of a
radiation damage event, rather than as an accurate model of the non-adiabatic forces exerted on
the ions by the electrons.

We have previously demonstrated that the non-adiabatic force on a moving ion will have
a significant dependence on the local atomic environment, on the direction of motion and on
the electronic temperature [17]. In cascade simulations, we observed that a viscous drag force
cannot capture the different rates of damping of different modes of ionic motion [18]. In this
paper, we derive a form for the non-adiabatic force in a metal that reproduces the microscopic
detail of the quantum mechanical force and can be incorporated at very low cost within a
classical MD simulation.

In section 2, we derive a model for the non-adiabatic electronic damping force acting on an
ion in a metal, starting with the quantum mechanical evolution of electrons coupled to classical
ions. In the first instance we obtain a general, basis-independent, expression for the force. We
then specialize to a tight-binding picture to arrive at a form suitable for inclusion in MD. In
section 3, we demonstrate that our damping model used with an empirical potential reproduces
extremely closely the results of time-dependent quantum mechanical simulations down to the
detailed forces on individual atoms. Section 4 considers the implications of our new model for
MD simulations of radiation damage in metals.

2. A new model for the non-adiabatic forces

Classical MD simulations of metals commonly employ tight-binding empirical potentials, a
prototypical example of which is the Finnis–Sinclair second-moment approximation [19]. In the
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Finnis–Sinclair form, the total binding energy is written as the sum of repulsive and attractive
components, where the former is a pairwise interionic repulsion and the latter is proportional to
the square root of the second moment of the local density of states, computed from the sum of
the squares of the hopping integrals (see for example [20])

HFS = U (r) −

∑
a

√
8a (r) +

|p|
2

2m

≡
1

2

∑
a

∑
b∈Na

Ũ (|rab|) −

∑
a

c

√∑
b∈Na

H (|rab|)
2 +

|p|
2

2m
, (1)

where r is the 3N vector of all atomic positions and p the momentum, rab ≡ rb − ra is the sep-
aration between atoms a and b and Na is the set of atoms in the neighbourhood of a, i.e. within
the range of the potential. For the convenience of notation we assume that all ions have the
same mass m, and write the pairwise contributions to the repulsive energy Ũab ≡ Ũ (|rab|) and
the hopping integrals Hab ≡ H(|rab|). For this potential, the conservative force on an atom is

(F0)a ≡ ∇aHFS =

∑
b∈Na

∇aŨab − c
∑
b∈Na

(
1

√
8a

+
1

√
8b

)
Hab∇a Hab. (2)

The central result of this paper is our corresponding expression for an additional non-
conservative damping force

(F1)a ≈ 4h̄x
∑
b∈Na

√
80

82
a8b

(∇a Hab · ṙab) ∇a Hab, (3)

where x is a constant for fine tuning the damping to experimental data and
√

80 is the
contribution to the attractive component of the binding energy for an atom in the perfect lattice.
The role of the particle velocity in viscous damping models is taken in (3) by the rate of change
of bond lengths ṙab.

To derive this form, we have considered the following: when an ion moves in a
metal, we often assume that the electron response is infinitely rapid (the Born–Oppenheimer
approximation), but in reality the ion collides with electrons at the Fermi level producing a
shower of electron–hole pairs (excitons)2. These excitons give rise to a lag in the bond-orders
dependent on the ion velocity. Excitons evolve via the Schrödinger equation, and so when many
have been generated, we expect their phases to be incoherent—the net effect of the history of
this exciton production is to raise the electronic temperature [21, 23]—and only those created
recently and in the vicinity of the moving ion will have a significant contribution to the non-
adiabatic force. The time locality is captured by introducing an electron scattering time and the
space locality is encapsulated in a local projection operator, derived in appendix A.

We derive our result starting from quantum-classical Ehrenfest dynamics, which has been
shown to accurately capture the energy transfer from hot ions to cold electrons [24], but does
not include the purely quantum mechanical effect in which the electron–hole recombination
emits a quantum phonon. We will not attempt to derive an expression to represent spontaneous
phonon emission. A productive approach to such a derivation might proceed from the correlated
electron ion dynamics (CEID) formalism of Horsfield et al [25, 26], but this is beyond the

2 In collision cascades, the energy of these excitations will typically be ∼10−2 eV [21] rising to tens of electron
volts in ion channelling.
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scope of the present paper. Instead, we propose a stochastic form for the spontaneous phonon
emission consistent with a Langevin formulation of energy exchange [27], which ensures that
an equilibrium is reached between ions and electrons. The total force on an atom in an MD
simulation is the Langevin force Fa = (F0)a + (F1)a + ηa, where ηa is a stochastically drawn
return force. A compatible form for ηa is derived in appendix B.

2.1. The non-adiabatic force

To derive the form of non-adiabatic forces, we consider energy transfer processes second order
in time via a generalization of the familiar velocity Verlet algorithm. This shows us the direction
and magnitude of a force that can be identified as non-adiabatic.

Starting with the quantum-classical non-self-consistent spin-degenerate Hamiltonian

HSC = U (r) + 2 Tr
(
ρ̂ Ĥ

)
+

|p|
2

2m
, (4)

where ρ̂ is a single-particle density matrix and Ĥ is a non-self-consistent one-electron spin-
degenerate Hamiltonian. U is a repulsive interionic potential deriving from ion-core electrostatic
and exchange-correlation energies [28].3

Equation (4) differs from the empirical equation (1) in two respects. Firstly, the band energy
is a trace over the electronic Hamiltonian; a moment expansion is not taken here. Secondly, the
electronic state, ρ̂, is not necessarily the ground state, but instead evolves with time, as described
below. In a time-dependent evolution, electrons and ions are distinct particles and moving one
will merely exert a Coulomb force on the other: ρ̂ is not an explicit function of position.

We can write the state at time t as s(t) = (r, p, ρ̂)T (the superscript denoting transpose)
and its time derivative F(s) = (v, F, i/h̄[ρ̂, Ĥ ])T. v = p/m is the ion velocity and F = −∇U −

2 Tr(ρ̂∇ Ĥ) is the Hellman–Feynman force. This scheme, known as Ehrenfest dynamics, is
discussed in detail in [29].

The state at time t + δt is given by s(t + δt) = s(t) + (F(s) +F(s̃))δt/2, where s̃ = s +
F(s)δt . This time-stepping algorithm, known as the Heun method, reduces to velocity Verlet
if the state is a function of position and momentum only.

s(t + δt) =

r
p
ρ̂

+


v
F

i

h̄

[
ρ̂, Ĥ

]
δt +


F/m

v · ∇F +
2i

h̄
Tr
(
ρ̂
[
∇ Ĥ , Ĥ

])
i

h̄

[
ρ̂, (v · ∇ Ĥ)

]
−

[[
ρ̂, Ĥ

]
, Ĥ

]
/h̄2

 δt2

2
+O

(
δt3
)
.

(5)

In order to separate out the non-adiabatic part of the evolution, we split the density
matrix into two semi-independently evolving components, ρ̂ ≡ ρ̂0 + δ̂, where ρ̂0 represents

3 Excluding self-consistent energy terms makes the derivation somewhat neater. In this paper, it is justified on
physical grounds as first-order non-adiabatic Hartree terms must come from the interaction between adiabatic
charges and their non-adiabatic corrections. Screening is very efficient in a metal and so the former energy terms
are small, the latter negligible. A full Hartree energy self-consistent derivation leads to terms not dissimilar to those
derived below, but including terms in the adiabatic charges. To our knowledge, no empirical potential for metals
includes a mechanism for calculating such charges—if one were needed, the natural course would be to perform
the simulation using an explicit electron tight-binding Hamiltonian or density functional theory.
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the electronic ground state assumed in classical MD. For transferability, the repulsive part
of an empirical potential, which is partly electronic in origin, must be fitted at a specified
electronic temperature (corresponding to the temperature associated with the data used to fit
the coefficients of the potential). For consistency, the attractive electronic bonding should make
the same assumption. Whether an empirical potential is fitted to zero or finite temperature,
it is nevertheless the case that MD tacitly assumes the existence of an electronic reservoir,
or other electron–electron interactions, which act to instantaneously thermalize the electronic
subsystem [30]. The electronic ground state density matrix ρ̂0 that we use as the reference for
the adiabatic evolution is therefore a canonical temperature ground state. ρ̂0 =

∑
i fi | φi 〉〈 φi |,

where fi = {1 + exp(εi − µ)/kBTe}
−1 is the Fermi–Dirac occupation at electronic temperature

Te, chemical potential µ, of the i th eigenstate of the instantaneous electron Hamiltonian (i.e.
Ĥ | φi 〉 = εi | φi 〉).

ρ̂0 therefore commutes with the instantaneous Hamiltonian, and is an explicit function of
the atomic positions. δ̂ is the non-adiabatic remainder, evolving as

dδ̂

dt
= i/h̄

[
δ̂, Ĥ

]
+ v · ∇δ̂ = i/h̄

[
δ̂, Ĥ

]
− v · ∇ρ̂0. (6)

If we define F̃0 by writing F = F̃0 − 2 Tr(δ̂∇ Ĥ), and the state σ(t) = (r, p, δ̂)T, then

σ(t + δt) = σ(t) +


v

F̃0 − 2 Tr(δ̂∇ Ĥ)

i

h̄
[δ̂, Ĥ ] − v · ∇ρ̂0

 δt

+


F̃0/m − 2 Tr(δ̂∇ Ĥ)/m

v · ∇F̃0 + 2 Tr((v · ∇ρ̂0)∇ Ĥ) − 2 Tr(δ̂ (v · ∇∇ Ĥ)) +
2i

h̄
Tr(δ̂[∇ Ĥ , Ĥ ])

i

h̄
[δ̂, (v·∇ Ĥ)]−[[δ̂, Ĥ ], Ĥ ]/h̄2 +v · ∇(v · ∇ρ̂0)−F̃0 ·∇ρ̂0 +2 Tr(δ̂∇ Ĥ)·∇ρ̂0


δt2

2
+O(δt3).

(7)

This equation has a particularly simple form when we can assume the non-adiabatic part of the
density matrix δ̂ starts negligibly small:

σ(t + δt) = σ(t) +

 v

F̃0

0̂

 δt +

 F̃0/m

v · ∇F̃0

0̂

 δt2

2

+

 0
0

−v · ∇ρ̂0

 δt +


0

2 Tr
(
(v · ∇ρ̂0)∇ Ĥ

)
v · ∇(v · ∇ρ0) − F̃0 · ∇ρ̂0

 δt2

2
+O

(
δt3
)
. (8)

The top line is recognized as the velocity Verlet evolution of position and momentum for
motion under a conservative potential whose force is F̃0, the Hellman–Feynman force for the
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ground state. Motion under this force alone, often referred to as Born–Oppenheimer dynamics,
conserves free energy HSC − TeS, where S = −2kB

∑
i( fi ln fi + (1 − fi) ln(1 − fi)) is the

electronic entropy. Work is done on a reservoir continually resetting the electrons to a ground
state. Internal energy can be conserved if the conservative force −2 Tr(∇ρ̂0 Ĥ) is added to F̃0,
but the difference between evolution in an open or closed system vanishes at zero temperature
and is generally neglected in MD.

The second line of equation (8) is the non-adiabatic part of the evolution. We see that δ̂

accumulates in the direction −v · ∇ρ̂0, producing a non-adiabatic force in the direction Tr((v ·

∇ρ̂0)∇ Ĥ). In this way, δ̂ is generated from the sum of all the individual electron–hole pairs
excited during the evolution history and Ehrenfest dynamics is deterministic and reversible. The
term in v · ∇ρ̂0 can be interpreted as a contribution to δ̂ due to the evolved density matrix ρ̂(t)
lagging behind the changing ground state ρ̂0. However, as each exciton evolves according to the
Schrödinger equation, the phases of old excitations are incoherent and only the non-adiabatic
density built up recently over a (slowly spatially varying) time τ approximating the electron
scattering time will contribute to the non-adiabatic force. This suggests that we can write our
non-adiabatic force as

F1 ≈ 2τ Tr
(
(v · ∇ρ̂0)∇ Ĥ

)
. (9)

The gradient of the density matrix is extremely difficult to compute exactly, and so we need
to find an approximation to use equation (9) in an MD simulation. Start by writing the identity

∇ρ̂0 =

∑
i

fi(| ∇φi 〉〈 φi | + | φi 〉〈 ∇φi |) +
∑

i

| φi 〉〈 φi |∇ fi

=

∑
i, j 6=i

fi − f j

εi − ε j
| φ j 〉〈 φ j |∇ Ĥ | φi 〉〈 φi | +

∑
i

| φi 〉〈 φi |∇ fi , (10)

where we have used | ∇φi 〉 =
∑

j 6=i〈 φ j |∇ Ĥ | φi 〉| φ j 〉/(εi − ε j). Contributions to the first
term will be largest for pairs of states close to the Fermi level so that we can approximate
( fi − f j)/(εi − ε j) ≈ −1/4kBTe. We also have

∇ fi =
∂ fi

∂εi
∇εi =

fi(1 − fi)

kBTe
∇(〈 φi |Ĥ | φi 〉) ≈ −

1

4kBTe
〈 φi |∇ Ĥ | φi 〉, (11)

where we have assumed that there is no systematic variation of the energy of eigenstates with
position. Thus, we arrive at an approximate form for a metallic system at finite temperature:

∇ρ̂0 ≈ −
1

4kBTe

∑
i j

′

| φi 〉〈 φi |∇ Ĥ | φ j 〉〈 φ j |,

= −
1

4kBTe
P̂
(
∇ Ĥ

)
P̂, (12)

where
∑

′ indicates a sum that includes only states close to the Fermi level, and we have defined
the projection operator P̂ ≡

∑
′

i | φi 〉〈 φi |.
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2.2. The non-adiabatic force in a tight-binding picture

To write the non-adiabatic force for a tight-binding potential, we will expand the trace in
equation (9) in an orthonormal atomic orbital basis {| al 〉}, where | al 〉 is the lth orbital on
atom a, and define | a 〉 =

∑
l | al 〉. In this basis, F1 ≈ 2τ

∑
ab〈 a |v · ∇ρ̂0| b 〉〈 b |∇ Ĥ | a 〉, and

so we can write the force on a particular atom c as

(F1)c ≈ 2τc

∑
ab

〈 a |v · ∇ρ̂0| b 〉〈 b |∇c Ĥ | a 〉. (13)

In an atomic basis, we see the non-adiabatic force is made up of contributions acting along the
bonds between ion pairs, proportional to the adiabatic forces 〈 b |∇c Ĥ | a 〉 and to the degree
of non-adiabaticity in the bond orders τc〈 a |v · ∇ρ̂0| b 〉, where τc is a local measure of the
electronic scattering time at ion c. This latter term is non-local since the non-adiabaticity in
bond a–b is a function of the rate of change of all the hopping integrals in the system. We can
quantify the degree of non-adiabatic coupling to bond a–b with a single vector with dimensions
of an inverse length:

gab =

∑
cd

Pac(∇ Ĥ)cd Pdb

4kBTe
, (14)

which allows us to write the non-adiabatic force on atom c as

( EF1)c = −2τc

∑
ab

Ev · Egab(∇c Ĥ)ba. (15)

The electron scattering time appropriate for atom a must be dependent on the characteristic
local electronic time scale h̄ Da, where Da is the local density of states at the Fermi level. It
should also depend inversely on the electronic temperature: when the temperature is high there
are more electronic excitations within the system to contribute to scattering. We therefore write
τa ∼ h̄ Da/DkB Te, with D being the total density of states per atom at the Fermi level.

In appendix A, we derive a simple form for P̂ , and argue that when the density of states
is low Pab ≈ δab 2DakB Te. We can further localize the force calculation by noting that Ĥ ab is a
function of |rab|, so

( EF1)a ≈ 4h̄
∑
b∈Na

D2
a Db

D

(
(∇a Ĥ)ab · Erab

)
(∇a Ĥ)ab. (16)

Note that the non-adiabatic force at atom a depends only on the bonds between a and its
neighbours. It is highly sensitive to the electron density, scaling roughly with the second power
of the density of states. Note also that the force is correctly zero for a rigid translation or rotation,
in contrast to a viscous drag model.

Equation (16) becomes the empirical form equation (3) under the assumptions of the
second-moment tight-binding model Hab = (Ĥ)ba and 8a = 1/D2

a . An order unity scalar fitting
parameter x is introduced to tune to available damping data. We can find this parameter by direct
calculation, using time-dependent density functional calculations, or by fitting to the stopping
and range of ions in matter (SRIM) [8] code output or experimental stopping data—for example,
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by equating the expected energy loss rate for a single moving atom in a perfect lattice position
to the loss rate from the tabulated effective viscous damping coefficient βeff:

− 〈va · (F1)a〉ideal ≡ βeff

〈
|va|

2
〉
=

4h̄x

80

∑
b∈Na

〈
(va · ∇a Hab)

2
〉

= x

(
4h̄

380

∑
b∈Na

〈
|∇a Hab|

2
〉) 〈

|va|
2
〉
. (17)

The simple example of a fast head-on collision will help illuminate the form of the model.
In such collisions, the true bonding response between the collision partners lags behind the
adiabatic response: the atoms are under-bonded in the first half of the collision and over-bonded
in the second. If we assume an atom a collides with an initially stationary atom b, then up to the
point of closest approach our model predicts a force that will act to decelerate a and accelerate b,
consistent with a reduced attractive bonding interaction when compared with the instantaneous
ground state. After the point of closest approach, the situation is reversed and our model predicts
an accelerating force on a and a retarding force on b. These model forces agree with the picture
of a retarded response of the bonding interaction.

3. The performance of the model

We can assess the performance of our proposed model for the non-adiabatic force by comparing
its predictions with the forces derived from quantum-classical Ehrenfest simulations of idealized
cases and radiation damage cascades. In all the results shown below, the model non-adiabatic
force derived from the tight-binding model of copper used in the Ehrenfest simulations is exactly
that which would also correspond to a Sutton–Chen copper potential [32]. We start with an
idealized case, the damping of a single Einstein oscillator. Following the procedure set out
in [17], we take a perfect static lattice of 2048 fcc atoms with periodic boundary conditions and
an electronic temperature of 500 K. The formalism exploits a particularly simple single s-band
tight-binding model metal [31] as an efficient way of combining an explicit quantum mechanical
electronic system and a set of classical ions. The simplicity of this tight-binding model allows
the direct simulation of collision cascades and makes clear the effects of non-adiabaticity (which
might otherwise be obscured by the chemistry of a more complex model). One atom is displaced,
and made to oscillate at a fixed frequency (here 0.5 rad fs−1), in a given direction. The damping
can then be directly computed from the rise in electronic energy after each cycle, for a moving
atom in different electronic environments moving in different directions. The result is shown
in figure 1. The vertical scale is arbitrary energy transfer or damping units, reflecting the need
for a scaling parameter. It is clear that our new model for the non-adiabatic force (16) does
not just capture the coarse features of the damping, but reproduces accurately fine detail of the
direction and environment dependence. Superimposed on the plot is the damping model of Caro
and Victoria [9], which reproduces the environment dependence well, but simply sets the drag
force direction anti-parallel to the velocity.

We have previously given details [17, 18, 21] of a time-dependent tight-binding formalism
suitable for radiation damage simulations. We have conducted 24 cascade simulations in which
the primary knock-on atom (PKA) was given 1 keV of kinetic energy in one of 24 directions
evenly distributed over the 1/48th irreducible solid angle of the face-centred cubic unit cell.
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da

m
pi

ng

[100]
[010]
[001]
[110]

[0-11]
[-110]
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[111]

[-111]
C-V

Viscous

da
m

pi
ng

[1/4
1/40] [1/4

1/4
1/4] [000] [1/200] [1/4

1/40] [000]

da
m

pi
ng

[100]
[010]
[001]
[110]

[0-11]
[-110]
[101]
[111]

[-111]

da
m

pi
ng

[1/4
1/40] [1/4

1/4
1/4] [000] [1/200] [1/4

1/40] [000]

Figure 1. The environment and direction dependence of electronic damping
computed by our force model (left) compared with the computed damping
experienced by an idealized oscillating interstitial (right) (after [17]). One atom
in a perfect lattice is displaced to the position indicated on the horizontal
axis, then made to oscillate at 0.5 rad fs−1 in each of nine different directions.
Superimposed on the force model plot (left) are the predictions from non-
directional simple viscous damping and the density-dependent model of Caro
and Victoria [9] (labelled C-V). The origin of the ordinate axis is at zero
damping.

The simulation cells had periodic boundaries and contained 2016 atoms (9 × 7 × 8 unit cells),
all initially static at their perfect lattice sites. These initial conditions ensured that we were able
to focus on the effects of non-adiabatic forces on atoms directly involved in a collision cascade
rather than on thermal atoms in the surrounding material. We have simulated a relatively low
PKA energy for computational expeditiousness, but we expect that our force model will remain
valid whenever the single band tight-binding model is a good approximation (i.e. a similar range
of validity to that of empirical potentials based on a single valence band). The model will begin
to break down when excitations from core states become active, at kinetic energies of several
tens of keV in the case of copper. Because a direct diagonalization of the electronic Hamiltonian
is necessary in order to obtain details of the non-adiabatic force we were restricted to studying
a snapshot of the forces every 0.05 fs for the first 25 fs of each cascade. However, it is in these
early stages that the effects of energy exchange between electrons and ions should depend most
strongly on the details of the cascade evolution and so our results provide a stricter test of the
validity of our force model than if forces were averaged over a longer time frame.

Figures 2–4 show the work done by the non-adiabatic forces acting on a sample of atoms
from our cascade simulations and the Cartesian components of those forces. In each case, we
compare the force derived from our simulations, the force predicted by the model presented
in equation (16), and two drag forces anti-parallel to the ion velocity—a simple viscous drag
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Figure 2. (a) The upper panel shows the work done by the non-adiabatic force
acting on the PKA in a sample Ehrenfest simulation of a collision cascade. In
this case, the PKA undergoes an oblique collision with the first atom that it
encounters along its path. The lower panel shows the ionic velocity (solid line)
and the cosine of the angle θ between the velocity and the non-adiabatic force in
the Ehrenfest simulation (shown only where the velocity is appreciable). (b) The
Cartesian components of the non-adiabatic force. In each case, data are shown
for the force derived from the Ehrenfest simulation, the force calculated using
our new model, a simple viscous drag and the density-dependent drag of Caro
and Victoria [9] (labelled C-V model).

and the environment-dependent drag of Caro and Victoria [9]. A best-fit damping coefficient,
discussed below, is used for each model. In figure 2, we show data for the PKA in a simulation
in which it undergoes a glancing collision with another atom early in the cascade. Our force
model not only captures the work done by the non-adiabatic force in the simulations, but also
reproduces much of the fine detail in the direction and magnitude of the force. In figure 3, we
present the same data for the second atom in a replacement collision sequence (RCS) initiated
in a simulation in which the PKA is directed along the [110] close-packed direction. Again,
our force model captures details of the non-adiabatic force that cannot be replicated by a simple
drag, in particular, reproducing the ‘double well’ in the interaction of the ion with its neighbours.
Finally, in figure 4, we show data for an atom set in motion later in a cascade. By this stage, many
atoms are in motion and the approximation of locality made in the derivation of our force model
will be less good, but we can see that the details of the non-adiabatic force in the simulations
are still well reproduced. Where the model fails to capture finer details in the force (probably
due to non-local effects on the density matrix), it tends to evolve as an average over the fine
fluctuations.

For a statistical measure of the performance of our model, we can consider the work done
on each individual atom in our simulations over the course of the 25 fs cascades. Figure 5(a)
shows comparisons of our model adiabatic force, a simple drag force and the model of Caro
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Figure 3. As for figure 2, but data for the second atom in a replacement collision
sequence are shown.
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Figure 4. As for figure 2, but data for an atom set in motion later in the cascade
are shown.

and Victoria [9] with the work done by the non-adiabatic force derived from the simulations. In
each case, the model data have been scaled by a best-fit damping coefficient fitted using linear
least-squares regression over data for all atoms for which the maximum kinetic energy in the
simulations exceeded 1.0 eV. Our model significantly outperforms the drag models, showing
greatly reduced scatter and achieving an R2 goodness-of-fit measure of 0.983 compared with
0.903 for the simple drag and 0.906 for the Caro and Victoria model. In figure 5(b), we have
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Figure 5. (a) The work done by the non-adiabatic forces acting on each
individual ion over the 25 fs duration of our cascade simulations. The results
for our new model, a simple viscous drag and the density-dependent drag
of Caro and Victoria [9] (labelled C-V model), scaled by a best-fit constant
of proportionality in each case, are compared to the data from our Ehrenfest
simulations. Each data-point represents a single ion. (b) The total work done by
the non-adiabatic forces acting on all the ions in each simulation. The results
are shown in the same way as in (a) above, but each data-point now represents
a single simulation. The right-most points are for a simulation with an RCS in
a [110]-direction and the filled points for an RCS in a [100]-direction. Note the
discontinuity in the axes.

aggregated the data of figure 5(a) so that each data-point represents the total work done by
the non-adiabatic force on all the ions in each simulation. This cascade level data shows that
different PKA directions can give significantly different values for this work (which is equal
to the energy transferred irreversibly into the electronic system). In particular, the RCS is
initiated when the PKA is directed along [110] shows a greatly enhanced damping. All these
variations are well captured by our model, but are completely unaccounted for by a simple
viscous damping force. The density dependence in the model of Caro and Victoria captures
some of the enhancement of the damping of the RCS (as we have previously found [18])4.

We have previously published data from cascade simulations of longer duration (200 fs),
which suggested that a simple damping force is able to capture ionic energy loss due to the
non-adiabatic forces as a sum over all atoms over the full duration of a cascade [18]. Our new
results show that the simple damping force is unable to capture fine details of the energy loss.
A viscous damping force in MD should therefore be regarded as a mechanism for implementing
the average energy loss rate and not as an accurate model for the non-adiabatic force.

4 The model of Caro and Victoria is designed to capture the difference between the damping of very slow thermal
ions and faster cascade ions, rather than to model the detailed variation of the damping of cascade ions moving at
different speeds in different atomic environments.
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4. Discussion and conclusions

Starting from the Ehrenfest equations of motion, we have derived a form for the non-adiabatic
force in terms of the response of the density matrix to changes in the electronic Hamiltonian. We
argued that the greatest contribution to the many-body terms in our expression for the evolution
of the bond orders comes from simple two-body terms. Ultimately, the non-adiabatic force is
determined by the lag in the response of the electronic orbitals to changes in the ionic positions.
In Ehrenfest dynamics, in which the electronic system is closed in the quantum mechanical
sense, the effects of different periods of the system history accumulate in the non-adiabatic part
of the density matrix, but they tend to contribute incoherently and so we have been able to write
a successful non-adiabatic force model in a time-local form. In an open quantum mechanical
system, the historical information in the density matrix would decay with some characteristic
decoherence time, but we would expect this time to be larger than the correlation time assumed
in our model. The contribution to the non-adiabatic force of the ‘memory’ in the density matrix
is limited by the former effect.

The approximations that we applied to arrive at our force model are necessary in order
to obtain a local expression dependent only on the hopping integrals and other quantities
accessible in any tight-binding empirical potential. Such a form is required if our model is to be
implemented with minimal computational cost. Our non-adiabatic force model can be directly
parameterized to correspond to any empirical potential model that includes the physics of
electronic hopping integrals in its formulation—most obviously potentials of a Finnis–Sinclair
form or bond-order potentials. In simulations that make use of potentials that do not take such
a form, it would not be inconsistent to apply a parameterization of our model derived from a
valid second-moment potential for the same metal—such a parameterization would correctly
capture the form of the non-adiabatic force at the level of the approximations in our model. We
have also proposed a stochastic force to model the effects of spontaneous phonon emission in
returning energy from the electrons to the ions (see appendix A).

In the Lindhard picture of electronic stopping at low velocity, a moving ion induces
a lagged electronic response, the linear part of which can be described using the dielectric
function [14]. It is common practice to use a homogeneous, isotropic dielectric function
for stopping calculations, in which case the only directionality present is given by the
velocity vector of the moving ion. In our new tight-binding picture of electronic stopping, the
Schrödinger equation is used to move the electrons, with non-equilibrium bond orders coming
from the lagged redistribution of charge from high-energy regions to low regions energy regions.
In this picture, bonds may be strengthened or weakened in front of, to the side of, or behind the
moving ion, producing a directional non-adiabatic force. We take the limit where delta is small,
that is to say that the non-adiabatic part of the density matrix does not accumulate coherently,
but instead only appears as a gradual rise in electronic temperature [21]. In this sense, we are
making the same linear approximation as is used in the dielectric theory of stopping, but with
an inhomogeneous, anisotropic response, and accounting for the motion of all the ions, one
pair at a time. These many-atom effects are absent from the standard dielectric stopping theory
by construction (although density functional theory (DFT) linear response calculations have
been performed that incorporate the effects of inhomogeneity and anisotropy in a static target
lattice [22]).

We have tested our form for the non-adiabatic force against data from time-dependent
tight-binding simulations of collision cascades. In these simulations, we employed a highly
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simplified tight-binding model in order to more cleanly separate the effects of non-adiabaticity
from details of the tight-binding force. We found convincing agreement, not just of the work
done by the force, but also of the detailed variation in the Cartesian components of the force
acting on individual atoms throughout the early stages of collision cascades. These simulation
results provide justification for our simplifying assumptions—in particular, the existence of a
short correlation time τ and the spatial localization of the force model. A simple drag force is
not able to capture the work done at the level of individual atoms, but it also fails to distinguish
the different rates of damping of collision cascades with different PKA directions.

We have previously shown [21] that the effect of accumulating excitations on the
conservative electronic forces in collision cascades could be described with an electronic
temperature-dependent potential in which the evolving electronic temperature will correspond
via the electronic heat capacity to the work done by the non-adiabatic forces. By implementing
our proposed non-adiabatic force model in a classical MD code, it is now possible to accurately
reproduce the direction and magnitude of the quantum mechanical non-adiabatic force at the
atomic level.
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Appendix A. A form for the projection operator

The projection operator P̂ =
∑

′
| φi 〉〈 φi | is introduced in equation (12) as a compact means for

writing bond-order derivatives. To complete an expression for the non-adiabatic force as used
in MD, we need an explicit and easily calculable form. As P̂ spans the basis of instantaneous
eigenstates, we can expand P̂ as a sum over powers of Ĥ :

P̂ =

∑
n

αn Ĥ n, (A.1)

where we take Ĥ 0 to mean the identity 1̂.
We can find the coefficients αn using the Cyrot–Lackmann moments theorem, Tr(Ĥ n) =

µ(n), where µ(n) is the nth central moment of the density of states:

Tr
(

P̂ Ĥ m
)

=

∑
′
〈 φi |em

| φi 〉 =

∫ εF+kBTe

εF−kBTe

em D(e) de =

∑
n

αnµ
(m+n). (A.2)

To produce a useable expression, we need to truncate the polynomial expansion in
equation (A.1), even though in doing so we inevitably lose the idempotency of P̂ . To first order
P̃ = α01̂ + α1 Ĥ , with

α0 =

∫ εF +kBTe

εF−kBTe

D(e)de, α1 =
1

µ(2)

∫ εF+kBTe

εF−kBTe

eD(e) de. (A.3)

At low temperature α0 → 2kBTe D(εF), α1 → 2kBTeεF D(εF)/µ
(2), and at high temperature we

have α0 → Ne, α1 → 0, where Ne is the number of orbitals per atom. To interpolate between
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these forms, we note that the square root of the second moment is a measure of the bandwidth
of the density of states and so must be inversely proportional to the local density of states. We
can therefore write an approximate interpolating form

P̃aa = Ne tanh

(
2DakBTe

Ne

)
,

P̃ab = 2εFkBT D3
ab exp

(
−2DabkBTe

Ne

)
Hab,

(A.4)

where Dab =
√

Da Db is the symmetrized local density of states on atoms a and b at the Fermi
level.

Note that equations (A.4) define an analytic expression for the projection operator requiring
only the electronic temperature, hopping integrals and the local density of states (available
through the second moment), at the sacrifice of the idempotency of P̂ . Until kBTe reaches the
order of the bandwidth the matrix elements of P̃ scale linearly with temperature.

In the case of a noble metal, we can go even further in reducing the range of P̂ . Noting
that the density of states at the Fermi level is small, we can approximate α1 ≈ 0, and so
P̃ab ≈ δab 2DakBTe.

Appendix B. A stochastic return force

Spontaneous phonon emission is a purely quantum mechanical phenomenon, and so is difficult
to convincingly capture in a quantum-classical picture. We might expect the true solution
to couple specific electronic transitions to phonon modes—something very hard to compute
correctly. However, we can make two important simplifying approximations. Firstly, we note
that the time scale for a electronic de-excitation is too fast to couple to long wavelength
phonon modes, and so a model that returns energy stochastically to individual atoms is sensible.
Secondly, note that the total rate of energy transfer is easy to compute—it must generate an
equilibrium between ions and electrons when they have matched temperatures.

Our proposed method is to add a Langevin-style stochastic return. The spatial variation
of energy returned must match the variation of the strength of the electron–phonon coupling.
This electron–phonon coupling strength is responsible for the environmentally dependent non-
adiabatic force derived above. So we insert by hand into equation (5) a stochastic force,
F 7→ F + η, such that 〈η〉 = 0 and whose magnitude is chosen to produce a local thermal
equilibrium.

In the Heun method algorithm, we draw a random force twice per timestep. Therefore, we
can see from equation (5) that we will have an expected rise per timestep in the kinetic energy
of atom a due to the stochastic force of 〈|ηa|

2
〉δt2/4m. Assuming that τ is small, the expected

change in kinetic energy per timestep due to the non-adiabatic force is

1E = 〈2τ v · Tr
(
∇ρ̂0∇ Ĥ

)
· v〉δt

= −
2h̄δt

DkBTe

〈∑
a

Da

∑
b∈Na

(Ev · Egab)(∇a Ĥ)ba · ṙa

〉
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= −
h̄δt

2D(kBTe)2

〈∑
a

Da Paa

∑
b∈Na

Pbb

(
(∇a Ĥ)ba · ṙa

)2
〉

= −
h̄δt

2D(kBTe)2

kB TI

m

〈 ∑
a,b∈Na

Da Paa Pbb(∇a Ĥ)2
ba

〉
, (B.1)

where to derive this result we have used the fact that at equilibrium forces and velocities are
uncorrelated. To acheive a thermal equilibrium between ions and electrons, we therefore set

〈|ηa|
2
〉 =

2h̄

DkBTeδt

〈∑
b∈Na

Da Paa Pbb(∇a Ĥ)2
ba

〉
, (B.2)

which in the limit Paa ≈ 2DakBTe becomes

〈|ηa|
2
〉 =

8h̄kB Te D2
a

D

〈∑
b∈Na

Db(∇a Ĥ)2
ba

〉
. (B.3)
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