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Introduction

Using time-dependent tight-binding (TB) simulations of radiation damage cas- tion of classical molecular dynamics (MD) to explicitly include QM electrons by applying
cades in a model metal we directly investigate the nature of the excitations of a semi-classical Ehrenfest dynamics to an s-band TB model of a metal. We can observe
system of quantum mechanical (QM) electrons in response to the motion of a set the electronic excitations produced and any effect that these have on the forces between
of classical ions. We also investigate the effect of these excitations on the forces lons. We identify two effects:

between the ions. - The finite response time of the electron density to ionic motion gives a non-
A fast neutron impinging on a metal surface transfers kinetic energy to a primary knock- conservative force on the ions.

on atom (PKA) of the metal. This PKA collides with other ions, creating a disordered re- - Electronic excitations accumulate, reducing the conservative forces between ions.
gion known as a displacement spike. We go beyond the Born-Oppenheimer approxima- Here we investigate the second of these effects.

The electronic force

Model and analysis
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Results

1. Electronic force in 2keV cacade simulations 2. A typical eigenstate occupation spectrum

Excited force —— By running 44 simulations of 2keV cascades of
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2016 atoms with periodic boundaries and averag- ~ Original distribution tions pii of the eigenstates
Ing the bond order across all atom pairs with a 3l Best-fit distribution ] of energy & we find an
given interionic separation we can determine the approximately thermal dis-
ensemble averaged attractive electronic force as a tribution at an elevated
function of separation. Repeating the exercise for I . | temperature. This is true
data corresponding to the adiabatic density opera- even without thermalizing
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electronic excitations. The data illustrated corre- . . : .
spond to a simulation time of 225fs, at which point tions during the simulation
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3. Fitting temperatures to the excited spectra 4. A thermal model for the interionic forces 5. Extrapolating to higher excitation energies

— - It the excita- . . . B fit- Exploiting the good validity of a thermal model for excitations allows us to ex-
Fitted + . Thermal excitations —— ecause a It . . . .
Theoretical tions are well Residual excitations —— ted tempera- trapolate our low energy simulation results to higher energies by:
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it accounts for We compare the percentage re-
_ the majority of duction in the attractive force
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Conclusions More information

We find that the electronic excitations in time-dependent TB simu-  extrapolate our results to find the effect of higher levels of elec- Published papers:

lations of collision cascades using Ehrenfest dynamics are well tronic excitation on the electronic forces between ions. D.R.Mason et al. J. Phys.:Condens. Matter 19 (2007) 436209
described by a FD distribution at an elevated temperature and that One way to include the effects of electronic excitation in a classical J.le Page et al. J. Phys.:Condens. Matter 20 (2008) 125212
this temperature is related to the non-adiabatic energy transfer AE ~ MD simulation, would be to make the potential dependent on the J.le Page et al. New Journal Physics To be published Jan 2009
by the Sommerfeld form for the electronic heat capacity. We also  local electronic temperature. Construction of such a potential will Website:

find that a thermal model captures over 95% of the reduction in  be greatly simplified by the assumption of a FD distribution for the www.cmih.ph.ic.ac.uk/people/d. mason/RadiationDamage

the attractive electronic force due to the excitations and can thus electrons. Our work adds to the justification for that assumption.
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