
A model for interatomic forces in metals with excited electrons

30fs into a 1keV cascade in 2016 atoms computed quantum
mechanically within the Ehrenfest approximation. Velocity v, Hellmann-
Feynman force F, and non-adiabatic force F1 vectors shown. F1 is scaled
for clarity. Note F1 is neither antiparallel to or proportional in
magnitude to v. Inset: histogram of the cosine of the angle between
unit vectors ṽ and F̃1.
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In classical MD simulations of metals, electrons are treated only implicitly within the empirical potentials. Where included non-adiabatic 
forces are modelled as an electronic friction– an additional viscous drag force– justified by models of electronic stopping in idealised binary 
collisions or in a homogeneous electron gas. Such treatments successfully predict the statistical behaviour of energy exchange processes 
[1], but will not capture the microscopic detail of the non-adiabatic forces seen in quantum mechanical cascade simulations.
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When atom 1 passes atom 2, an attractive electrostatic well forms
between them, pulling electrons into bond 1-2. Adiabatic evolution
assumes the electron response is infinitely rapid, but in reality it lags
behind, changing the Hellman Feynman force F = -2Tr( Ĥ r ̂). We must
compute the non-adiabatic force F1 = -2Tr( Ĥ d̂), where d is the change
in the electron density matrix.
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The non-adiabatic force can be shown to accumulate in the direction F1 = t Tr[ (v. r ̂) Ĥ ], where v is a 3N vector of all velocities. We argue
that as electronic excitations produced in collisions rapidly decohere, this expression may be localised both in time and space. In the spirit
of a Finnis-Sinclair second-moment approximation we find the non-adiabatic force on atom a in a form suitable for use in MD:
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The environment and direction dependence of electronic damping 
computed with our force model(left) compared with the computed 
damping experienced by an idealised oscillating interstitial (right) in
a tight-binding model metal, (after [2]). One atom in a perfect lattice is
displaced to the position indicated on the horizontal axis, then made
to oscillate at 0.5 rad/fs in each of 9 different directions. Superimposed
on the force model plot predictions from viscous damping and a density
dependent damping model (C-V [3]).

Our model reproduces in detail the non-adiabatic forces on individual
atoms during a collision and so captures the work done by non-adiabatic
forces with unprecedented accuracy. (Left): the upper panel shows the
work done by F1 acting on a PKA in a sample Ehrenfest simulation of a
collision cascade. The lower panel shows v and ṽ.F1̃. (Right): the Cartesian
components of the non-adiabatic force (in eV/A).
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