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A model for interatomic forces in metals with excited electrons
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In classical MD simulations of metals, electrons are treated only implicitly within the empirical potentials. Where included non-adiabatic
forces are modelled as an electronic friction— an additional viscous drag force— justified by models of electronic stopping in idealised binary
collisions or in a homogeneous electron gas. Such treatments successfully predict the statistical behaviour of energy exchange processes
[1], but will not capture the microscopic detail of the non-adiabatic forces seen in quantum mechanical cascade simulations.
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When atom 1 passes atom 2, an attractive electrostatic well forms 30fs into a 1keV cascade in 2016 atoms computed quantum
between them, pulling electrons into bond 1-2. Adiabatic evolution mechanically within the Ehrenfest approximation. Velocity v,
assumes the electron response is infinitely rapid, but in reality it lags , and non-adiabatic force F, vectors shown. F; is scaled
behind, changing the Hellman Feynman force F = -2Tr( VH p). We must for clarity. Note F, is neither antiparallel to or proportional in
compute the non-adiabatic force F, = -2TrV H §), where 8 is the change magnitude to v. Inset: histogram of the cosine of the angle between
in the electron density matrix. unit vectors ¥ and F,.

The non-adiabatic force can be shown to accumulate in the direction F, =t Tr[ (vVP)V H ], where vis a 3N vector of all velocities. We argue
that as electronic excitations produced in collisions rapidly decohere, this expression may be localised both in time and space. In the spirit
of a Finnis-Sinclair second-moment approximation we find the non-adiabatic force on atom a in a form suitable for use in MD:
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The environment and direction dependence of electronic damping Our model reproduces in detail the non-adiabatic forces on individual
computed with our force model(left) compared with the computed atoms during a collision and so captures the work done by non-adiabatic
damping experienced by an idealised oscillating interstitial (right) in forces with unprecedented accuracy. (Left): the upper panel shows the
a tight-binding model metal, (after [2]). One atom in a perfect lattice is work done by F, acting on a PKA in a sample Ehrenfest simulation of 3
displaced to the position indicated on the horizontal axis, then made collision cascade. The lower panel shows v and V.F,. (Right): the Cartesian
to oscillate at 0.5 rad/fs in each of 9 different directions. Superimposed components of the non-adiabatic force (in eV/A).
on the force model plot predictions from viscous damping and a density
dependent damping model (C-V [3]).
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