Chapter 1

Introduction

As far as I can see, all a priori statements in physics have their origin
m symmetry.
—Hermann Weyl*

1.1 Symmetry in Physics

Symmetry is a fundamental human concern, as evidenced by its pres-
ence in the artifacts of virtually all cultures. Symmetric objects are
aesthetically appealing to the human mind and, in fact, the Greek
work symmetros was meant originally to convey the notion of “well-
proportioned” or “harmonious.” This fascination with symmetry first
found its rational expression around 400 B.C. in the Platonic solids and
continues to this day unabated in many branches of science.

1.1.1 What is a Symmetry?

An object is said to be symmetric, or to have a symmetry, if there is
a transformation, such as a rotation or reflection, whereby the object
looks the same after the transformation as it did before the transforma-
tion. In Fig. 1.3, we show an equilateral triangle, a square, and a circle.
The triangle is indistinguishable after rotations of %7‘(‘ and %ﬂ' around
its geometric center, or symmetry axis. The square is indistinguishable

n Symmetry (Princeton University Press, 1952)
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after rotations of %W, 7, and %W, and the circle is indistinguishable after
all rotations around their symmetry axes. These transformations are
said to be symmetry transformations ~ of the corresponding object, which
are said to be invariant under such transformations. The more symme-
try transformations that an object admits, the more “symmetric” it is
said to be. One this basis, the circle is “more symmetric” than the
square which, in turn, is more symmetric than the triangle. Another
property of the symmetry transformations of the objects in Fig. 1.3
that is central to this course is that those for the triangle and square
are discrete, i.e., the rotation angles have only discrete values, while
those for the circle are continuous.

() (b) (c)

Figure 1.1: An equilateral triangle (a), square (b) and circle (c¢). These ob-
jects are invariant to particular rotations about axes that are perpendicular
to their plane and pass through their geometric centers (indicated by dots).

1.1.2 Symmetry in Physical Laws

In the physical sciences, symmetry is of fundamental because there are
transformations which leave the laws of physics invariant. Such trans-
formations involve changing the variables within a physical law such
that the equations describing the law retain their form when expressed
in terms of the new variables. The relationship between symmetry
and physical laws began with Newton, whose equations of motion were
found to be the same in different frames of reference related by Galilean
transformations. Symmetry was also the guiding principle that en-
abled Lorentz and Poincaré to derive the transformations, now known
as Lorentz transformations, which leave Maxwell’s equations invari-
ant. The incompatibility between the Lorentz invariance of Maxwell’s
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equations and the Galilean invariance of Newtonian mechanics was, of
course, resolved by Einstein’s special theory of relativity.

As an example of a symmetry in a physical law, consider the prop-
agation of an impulse at the speed of light c¢. This is governed by the
wave equation, which is obtained from Maxwell’s equations:
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The Lorentz transformation of space-time coordinates corresponding to
a velocity v = (v,0,0) is
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where v = (1—v?/c?)~1/2. When expressed in terms of the transformed
coordinates (z',y/, 2/, '), the wave equation (1.1) is found to retain its
form under this transformation:

1 0%/ B 0% 0% 0%
2ot 9z? + oy'? + 022"

(1.3)

This implies that the wave propagates in the same way with the same
velocity in two inertial frames that are in uniform motion with respect
to one another. The Lorentz transformation is thus a symmetry trans-
formation of the wave equation (1.1) and this equation is said to be
covariant with respect to these transformations. In general, symmetry
transformations of physical laws involve the space-time coordinates,
which are sometimes called geometrical symmetries , and/or internal co-
ordinates, such as spin, which are called internal symmetries .

1.1.3 Noether’s Theorem

Identifying appropriate symmetry transformations is one of the central
themes of modern physics since their mathematical expression affects
the structure and predictions of physical theories. Work by both math-
ematicians and physicists, culminating with Emmy Noether, led to the
demonstration that there was a deep relationship between symmetry
and conservation laws. This is now known as Noether’s Theorem:
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Noether's Theorem. The covariance of the equations of motion with
respect to a continuous transformation with n parameters implies the
existence of n quantities, or constants of motion, i.e., conservation laws.

In classical mechanics, the conservation of linear momentum results
from the translational covariance of Newton’s equations of motion, i.e.,
covariance with respect to transformations of the form »’ = r + a, for
any vector a. The conservation of angular momentum similarly results
from rotational covariance, i.e., covariance with respect rotations in
space: ¥’ = Rr, where R is a 3 X 3 rotation matrix. Finally, the con-
servation of energy results from the covariance of Newton’s equations
to translations in time, i.e., transformations of the form ¢ = ¢ + 7.

1.1.4 Symmetry and Quantum Mechanics

The advent of quantum mechanics and later quantum field theory fos-
tered entirely new avenues for investigating the consequences of sym-
metry. London and Weyl introduced a type of transformation known as
a gauge transformation into quantum theory, with total electric charge
as the conserved quantity. In the early 1960s, Gell-Mann and Ne’eman
proposed the unitary symmetry SU(3) for the strong interactions. This
led to the proposal by Gell-Mann and Zweig of a new, deeper, level
of quanta, “quarks,” to account for this symmetry. Heisenberg, Gold-
stone and Nambu suggested that the ground state (i.e., the vacuum)
of relativistic quantum field theory may not have the full global sym-
metry of the Hamiltonian, and that massless excitations (Goldstone
bosons) accompany this “spontaneous symmetry breaking.” Higgs and
others found that for spontaneously broken gauge symmetries there are
no Goldstone bosons, but instead massive vector mesons. This is now
known as the Higgs phenomenon and its verification verification has
been the subject of extensive experimental effort.

Another aspect of symmetry, also due to the quantum mechanical
nature of matter, arises from the arrangement of atoms in molecules
and solids. The symmetry of atomic arrangements, whether in a sim-
ple diatomic molecule or a complex crystalline material such as a high-
temperature superconductor, affects many aspects of their electronic
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and vibrational properties and especially their response to external
thermal, mechanical, and electromagnetic perturbations. The trans-
formation properties of wavefunctions in quantum mechanics are an
example of what is known as Representation Theory , which was devel-
oped by the mathematicians Frobenius and Schur near the turn of the
20th century. This inspired a huge effort by physicists and chemists
to determine the physical consequences of the symmetries of wavefunc-
tions which continues to this day. Notable examples include Bloch’s
work on wavefunctions in periodic potentials, which forms the basis of
the quantum theory of solids, Pauling’s work on the chemical interpre-
tation orbital symmetries, and Woodward and Hoffman’s work on how
the conservation of orbital symmetry determines the course of chemical
reactions. Recent scientific advances that highlight the prominent role
that symmetry maintains in condensed-matter physics is the discov-
ery of quasicrystals, which have rotational symmetries (e.g., fivefold, as
shown in Fig. 1.2) which are incompatible with the translational sym-
metry of ordinary crystals and are thus sometimes called aperiodic, and
the Cgg form of carbon, known as “Buckminsterfullerene,” or “Buck-
yballs”, a name derived from its resemblance to structures (geodesic
domes) proposed by R. Buckminster Fuller as an alternative to conven-
tional architecture.

Figure 1.2: A section of a Penrose tile, which has a fivefold rotational
symmetry, but no translational symmetry. This two-dimensional structure
shares a number of features with quasicrystals.
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1.2 Examples from Quantum Mechanics

1.2.1 Omne-Dimensional Systems

To appreciate how symmetry enters into the description of quantum me-
chanical systems, we consider the time-independent Schrodinger equa-
tion for the one-dimensional motion of a particle of mass m bound by
a potential V' (z):

o+ V(@) () = Be(a), (14)

where i = h/2m, h is Planck’s constant, ¢ is the wavefunction, and E
is the energy eigenvalue. By writing this equation as Hy = Eyp, we
identify the coordinate representation of the Hamiltonian operator as

H = ——m7+V(x) (15)

In the following discussion, we will utilize the fact that the energy eigen-
values of one-dimensional quantum mechanical problems such as that
in (1.4) are nondegenerate, i.e., each energy eigenvalue is associated
with one and only one eigenfunction.?

Suppose that the potential in (1.4) is an even function of z. The
mathematical expression of this fact is the invariance of this potential
under the inversion transformation r — —u:

V(—z)=V(x). (1.6)

Examples of such potentials are the symmetric square well and the
harmonic oscillator (Fig. 1.3), but the particular form of the potential
is unimportant for this discussion. The kinetic energy term in (1.4) is
also invariant under the same inversion transformation as the potential,
since &2 2

= (1.7)

2This follows directly from the fact that this equation, together with appropri-
ate boundary conditions, constitute a Sturm—Liouville problem. Other well-known
properties of solutions of Schréodinger’s equation (real eigenvalues, discrete eigen-
values for bound states, and orthogonality of eigenfunctions) also follow from the
Sturm-Liouville theory.
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Figure 1.3: The first four eigenfunctions of the Schrédinger equation (1.4)

for an infinite square-well potential, V(z) = 0 for |z| < L and V(z) — oo

for |z| > L (left), and a harmonic oscillator potential, V(z) = $kz?, where

k is the spring constant of the oscillator (right). The abscissa is the spatial
position x and the ordinate is the energy F, with the vertical displacement of
each eigenfunction given by its energy. The origins are indicated by broken
lines.

Thus, the Hamiltonian operator in (1.5) is itself invariant under inver-
sion, i.e., inversion is a symmetry transformation of this Hamiltonian.
We now use this property of H to change variables from z to —z in
(1.4) and thereby obtain the Schrédinger equation for p(—x):

—5 73 T V(@) p(=2) = Bp(—x) (1.8)

Since F is nondegenerate, there can be only one eigenfunction associ-
ated with this eigenvalue, so the ¢(—x) cannot be linearly independent
of ¢(x). The only possibility is that ¢(—z) is proportional to ¢(x):

p(—z) = Ap(x) (1.9)
where A is a constant. Changing x to —x in this equation,
o(x) = Ap(—1) (1.10)

and then using (1.9) to replace p(—x), yields

p(z) = A%p(z) (1.11)
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This requires that A2 = 1,i.e., A=1or A = —1. Combining this result
with (1.9) shows that the eigenfunctions ¢ of (1.4) must be either even

p(—x) = p(x) (1.12)

or odd

p(—z) = —p(x) (1.13)
under inversion. As we know from the solutions of Schrodinger’s equa-
tion for square-well potentials and the harmonic oscillator (Fig. 1.3),
both even and odd eigenfunctions are indeed obtained. Thus, not all
eigenfunctions have the symmetry of the Hamiltonian, although the
ground state usually does.® Nevertheless, the symmetry (1.6) does pro-
vide a classification of the eigenfunctions according to their parity under
inversion. This is a completely general result which forms one of the
central themes of this course.

1.2.2 Symmetries and Quantum Numbers

The example discussed in the preceding section showed how symmetry
enters explicitly into the solution of Schrodinger’s equation. In fact, we
can build on our discussion in Sec. 1.1.2, and especially Noether’s theo-
rem, to establish a general relationship between continuous symmetries
and quantum numbers.

Consider the time-dependent Schrodinger equation for a free particle
of mass m in one dimension:

h? 92
.h3_<p_ 0

=———. 1.14
ot 2m Oz ( )

The solutions to this equation are plane waves:
o, 1) = eilhr=en (1.15)

where k and w are related to the momentum and energy by p = hk
and F = hw. In other words, the quantum numbers k£ and w of the

3A notable exception to this is the phenomenon of spontaneous symmetry-
breaking discussed in Sec. 1.1, where the symmetry of the equations of motion
and the boundary conditions is not present in the observed solution for the ground
state.
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solutions to Eq. (1.14) correspond to the momentum and energy which,
because of the time- and space-translational covariance of this equation,
correspond to conserved quantities. Thus, quantum numbers are asso-
ciated with the symmetries of the system. Similarly, for systems with
rotational symmetry, such the hydrogen atom or, indeed, any atom,
the appropriate quantum numbers are the energy and the angular mo-
mentum, the latter producing two quantum numbers, as required by
Noether’s theorem, because the transformations have two degrees of
freedom.

1.2.3 Matrix Elements and Selection Rules

One of the most important uses of symmetry is to identify the matrix
elements of an operator which are required to vanish. Continuing with
the example in the preceding section, we consider the matrix elements
of an operator H' whose position representation H’'(x) has a definite
parity. The matrix elements of this operator are given by

Hyy = [ pila)H (@)p;() do (1.16)

where the range of integration is symmetric about the origin. If H’
has even parity, i.e., if H'(—z) = H'(x), as in (1.6), then these matrix
elements are nonvanishing only if ¢;(z) and ¢;(z) are both even or both
odd, since only in these cases is the integrand an even function of z.
This is called a selection rule , since the symmetry of H'(z) determines,
or selects, which matrix elements are nonvanishing.

Suppose now that H'(x) has odd parity, i.e., H'(—z) = —H'(z).
The matrix elements in (1.16) now vanishes if ¢;(z) and ¢;(x) are
both even or both odd, since these choices render the integrand an
odd function of x. In other words, the selection rule now states that
only eigenfunctions of opposite parity are coupled by such an operator.
Notice, however, that the use of symmetry only identifies which matrix
elements must vanish; it provides no information about the magnitude
of the nonvanishing matrix elements.

Suppose that

H'(z) = Az (1.17)
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where A is a constant, i.e., H'(x) is proportional to the coordinate x.
Such operators arise in the quantum theory of transitions induced by
an electromagnetic field.* H'(z) clearly has odd parity, so the matrix
elements (1.16) are nonvanishing only if ¢;(z) and ¢,(z) have opposite
parity. But, if

) n? d?

H(x) = 5 da? (1.18)
which is the coordinate representation of the kinetic energy operator,
then the matrix elements (1.16) are nonvanishing only if ¢;(z) and
¢;(z) have the same parity.

Selection rules are especially useful if there are broken symmetries .
For example, the Hamiltonian of an atom, which is the sum of the
kinetic energies of the electrons and their Coulomb potentials, is in-
variant under all rotations. But when an atom is placed in an electric
or magnetic field, the Hamiltonian acquires an additional term which
is mot invariant under all rotations, since the field now defines a pre-
ferred direction. These are the Stark and Zeeman effects, respectively.
A similar situation is encountered in quantum field theory when, be-
ginning with a Lagrangian that is invariant under certain symmetry
operations, a term is added which does not have this invariance. If
the symmetry-breaking terms in these cases are small, then selection
rules enter into the perturbative calculation around the solutions of the
symmetric theory.

1.3 Summary

The notion of symmetry implicit in all of the examples cited in this
chapter is endowed with the algebraic structure of “groups.” This is a
topic in mathematics that had its beginnings as a formal subject only
in the late 19th century. For some time, the only group that was know
and whose properties were studied were permutation groups. Cauchy
played a major part in developing the theory of permutations, but it
was the English mathematician Cayley who first formulated the notion
of an abstract group and used this to identify matrices and quaternions

4E. Merzbacher, Quantum Mechanics 2nd edn. (Wiley, New York, 1970), Ch. 18.
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as groups. In a later paper, Cayley showed that every finite group could
be represented in terms of permutations, a result that we will prove in
this course. The fact that geometric transformations, as discussed in
this chapter, and permutations, share the same algebraic structure is
part of the richness of the subject and is rooted in its history as an
adjunct to the study of algebraic solutions of equations. In the next
chapter, we discuss the basic properties of groups that form the basis
of this course.
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