
Chapter 4

Properties of Irreducible
Representations

Algebra is generous; she often gives more than is asked of her.
—Jean d’Alembert

We have seen in the preceding chapter that a reducible representa-
tion can, through a similarity transformation, be brought into block-
diagonal form wherein each block is an irreducible representation. Thus,
irreducible representations are the basic components from which all
representations can be constructed. But the identification of whether a
representation is reducible or irreducible is a time-consuming task if it
relies solely on methods of linear algebra.1 In this chapter, we lay the
foundation for a more systematic approach to this question by deriving
the fundamental theorem of representation theory, called the Great Or-
thogonality Theorem. The utility of this theorem, and its central role
in the applications of group theory to physical problems, stem from the
fact that it leads to simple criteria for determining irreducibility and
provides a direct way of identifying the number of inequivalent repre-
sentations for a given group. This theorem is based on two lemmas of
Schur, which are the subjects of the first two sections of this chapter.

1K. Hoffman and R. Kunze, Linear Algebra 2nd edn (Prentice–Hall, Englewood
Cliffs, New Jersey, 1971), Ch. 6,7.
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52 Properties of Irreducible Representations

4.1 Schur’s First Lemma

Schur’s two lemmas are concerned with the properties of matrices that
commute with all of the matrices of a irreducible representations. The
first lemma addresses the properties of matrices which commute with
a given irreducible representation:

Theorem 4.1 (Schur’s First Lemma) . A non-zero matrix which com-
mutes with all of the matrices of an irreducible representation is a
constant multiple of the unit matrix.

Proof. Let {A1, A2, . . . , A|G|} be the matrices of a d-dimensional
irreducible representation of a group G, i.e., the Aα are d× d matrices
which cannot all be brought into block-diagonal form by the same sim-
ilarity transformation. According to Theorem 3.2, we can take these
matrices to be unitary without any loss of generality. Suppose there is
a matrix M that commutes with all of the Aα:

MAα = AαM (4.1)

for α = 1, 2, . . . , |G|. By taking the adjoint of each of these equations,
we obtain

A†αM
† = M †A†α . (4.2)

Since the Aα are unitary, A†α = A−1
α , so multiplying (4.2) from the left

and right by Aα yields

M †Aα = AαM
† , (4.3)

which demonstrates that, if M commutes with every matrix of a repre-
sentation, then so doesM †. Therefore, given the commutation relations
in (4.1) and (4.3) any linear combination of M and M † also commute
with these matrices:

(aM + bM †)Aα = Aα(aM + bM †) ,

where a and b are any complex constants. In particular, the linear
combinations

H1 = M +M †, H2 = i(M −M †)
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yield Hermitian matrices: Hi = H†i for i = 1, 2. We will now show
that a Hermitian matrix which commutes with all the matrices of an
irreducible representation is a constant multiple of the unit matrix. It
then follows that M is also such a matrix, since

M = 1
2
(H1 − iH2) (4.4)

The commutation between a general Hermitian matrix H and the
Aα is expressed as

HAα = AαH . (4.5)

Since H is Hermitian, there is a unitary matrix U which transforms H
into a diagonal matrix D (Theorem 3.1):

D = U−1HU .

We now perform the same similarity transformation on (4.5):

U−1HAiU = U−1HUU−1AiU

= U−1AiHU = U−1AiUU
−1HU

By defining Ãα = U−1AαU , the transformed commutation relation (4.5)
reads

DÃα = ÃαD . (4.6)

Using the fact that D is a diagonal matrix, i.e., that its matrix elements
are Dij = Diiδij, where δij is the Kronecker delta, the (m,n)th matrix
element of the left-hand side of this equation is

(DÃα)mn =
∑
k

Dmk(Ãα)kn =
∑
k

Dmmδmk(Ãα)kn = Dmm(Aα)mn .

Similarly, the corresponding matrix element on the right-hand side is

(ÃαD)mn =
∑
k

(Ãα)mkDkn =
∑
k

(Ãα)mkDnnδkn = (Ãα)mnDnn .

Thus, after a simple rearrangement, the (m,n)th matrix element of
(4.6) is

(Ãα)mn(Dmm −Dnn) = 0 . (4.7)
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There are three cases that we must consider to understand the impli-
cations of this equation.

Case I. Suppose that all of the diagonal elements of D are dis-
tinct: Dmm 6= Dnn if m 6= n. Then, (4.7) implies that

(Ãα)mn = 0, m 6= n ,

i.e., the off-diagonal elements of Ãα must vanish, these are diagonal ma-
trices and, therefore, according to the discussion in Section 3.3, they
form a reducible representation composed of d one-dimensional rep-
resentations. Since the Ãi are obtained from the Ai by a similarity
transformation, the Ai themselves form a reducible representation.

Case II. If all of the diagonal elements of D are equal, i.e. Dmm =
Dnn for all m and n, then D is proportional to the unit matrix. The
(Ãα)mn are not required to vanish for any m and n. Thus, only this
case is consistent with the requirement that the Aα form an irreducible
representation. If D is proportional to the unit matrix, then so is
H = UDU−1 and, according to (4.4), the matrix M is as well.

Case III. Suppose that the first p diagonal entries of D are equal,
but the remaining entries are distinct from these and from each other:
D11 = D22 = · · · = Dpp, Dmm 6= Dnn otherwise. The (Ãα)mn must
vanish for any pair of unequal diagonal entries. These correspond to
the cases where both m and n lie in the range 1, 2, . . . , p and where m
and n are equal and both greater than p, so all the Ãi all have the
following general form:

Ãi =

(
B1 0

0 B2

)
,

where B1 is a p×p matrix and B2 is a (p−d)× (p−d) diagonal matrix.
Thus, the Ãi are block diagonal matrices and are, therefore, reducible.

We have shown that if a matrix that not a multiple of the unit
matrix commutes with all of the matrices of a representation, then
that representation is necessarily reducible (Cases I and III). Thus, if
a non-zero matrix commutes with all of the matrices of an irreducible
representation (Case III), that matrix must be a multiple of the unit
matrix. This proves Schur’s lemma.
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4.2 Schur’s Second Lemma

Schur’s first lemma is concerned with the commutation of a matrix with
a given irreducible representation. The second lemma generalizes this
to the case of commutation with two distinct irreducible representations
which may have different dimensionalities. Its statement is as follows:

Theorem 4.2 (Schur’s Second Lemma). Let {A1, A2, . . . , A|G|} and
{A′1, A′2, . . . , A′|G|} be two irreducible representations of a group G of
dimensionalities d and d′, respectively. If there is a matrix M such that

MAα = A′αM

for α = 1, 2, . . . , |G|, then if d = d′, either M = 0 or the two represen-
tations differ by a similarity transformation. If d 6= d′, then M = 0.

Proof. Given the commutation relation between M and the two
irreducible representations,

MAα = A′αM , (4.8)

we begin by taking the adjoint:

A†αM
† = M †A′†α . (4.9)

Since, according to Theorem 3.2, the Aα may be assumed to be unitary,
A†α = A−1

α , so (4.9) becomes

A−1
α M † = M †A′−1

α . (4.10)

By multiplying this equation from the left by M ,

MA−1
α M † = MM †A′−1

α ,

and utilizing the commutation relation (4.8) to write

MA−1
α = A′−1

α M ,

we obtain

A′−1
α MM † = MM †A′−1

α .
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Thus, the d′ × d′ matrix MM † commutes with all the matrices of an
irreducible representation. According to Schur’s First Lemma, MM †

must therefore be a constant multiple of the unit matrix,

MM † = cI , (4.11)

where c is a constant. We now consider individual cases.

Case I. d = d′. If c 6= 0, Eq. (4.11) implies that2

M−1 =
1

c
M † .

Thus, we can rearrange (4.8) as

Aα = M−1A′αM ,

so our two representations are related by a similarity transformation
and are, therefore, equivalent.

If c = 0, thenMM † = 0. The (i, j)th matrix element of this product
is

(MM †)ij =
∑
k

Mik(M
†)kj =

∑
k

MikM
∗
jk = 0 .

By setting i = j, we obtain∑
k

MikM
∗
ik =

∑
k

|Mik|2 = 0 ,

which implies that Mik = 0 for all i and k, i.e., that M is the zero
matrix. This completes the first part of the proof.

Case II. d 6= d′. We take d < d′. Then M is a rectangular matrix
with d columns and d′ rows:

M =



M11 · · · M1d

M21 · · · M2d

...
. . .

...

Md′1 · · · Md′d

 .

2By multiplying (4.10) from the right by M and following analogous steps as
above, one can show that M†M = cI, so that the matrix c−1M† is both the left
and right inverse of M .
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We can make a d′ × d′ matrix N from M by adding d′ − d columns of
zeros:

N =



M11 · · · M1d 0 · · · 0

M21 · · · M2d 0 · · · 0

...
. . .

...
...

. . .
...

Md′1 · · · Md′d 0 · · · 0

 ≡ (M, 0) .

Taking the adjoint of this matrix yields

N † =



M11 M∗
21 · · · M∗

d′1

M∗
12 M∗

22 · · · M∗
d′2

...
...

. . .
...

M∗
1d M∗

2d · · · M∗
d′d

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



=

(
M †

0

)
.

Note that this construction maintains the product MM †:

NN † = (M, 0)

(
M †

0

)
= MM † = cI .

The determinant of N is clearly zero. Thus,

det(NN †) = det(N) det(N †) = cd
′
= 0

so c = 0, which means that MM † = 0. Proceeding as in Case I, we
conclude that this implies M = 0. This completes the second part of
the proof.

4.3 The Great Orthogonality Theorem

Schur’s lemmas provide restrictions on the form of matrices which com-
mute with all of the matrices of irreducible representations. But the
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group property enables the construction of many matrices which sat-
isfy the relations in Schur’s First and Second Lemmas. The interplay
between these two facts provides the basis for proving the Great Or-
thogonality Theorem. The statement of this theorem is as follows:

Theorem 4.3 (Great Orthogonality Theorem). Let {A1, A2, . . . , A|G|}
and {A′1, A′2, . . . , A′|G|} be two inequivalent irreducible representations
of a group G with elements {g1, g2, . . . , g|G|} and which have dimen-
sionalities d and d′, respectively. The matrices Aα and A′α in the two
representations correspond to the element gα in G. Then∑

α

(Aα)
∗
ij(A

′
α)i′j′ = 0

for all matrix elements. For the elements of a single unitary irreducible
representation, we have

∑
α

(Aα)
∗
ij(Aα)i′j′ =

|G|
d
δi,i′δj,j′ ,

where d is the dimension of the representation.

Proof. Consider the matrix

M =
∑
α

A′αXA
−1
α , (4.12)

where X is an arbitrary matrix with d′ rows and d columns, so that M
is a d′ × d′ matrix. We will show that for any matrix X, M satisfies a
commutation relation of the type discussed in Schur’s Lemmas.

We now multiply M from the left by the matrix A′β corresponding
to some matrix in the the “primed” representation:

A′βM =
∑
α

A′βA
′
αXA

−1
α

=
∑
α

A′βA
′
αXA

−1
α A−1

β Aβ

=
∑
α

A′βA
′
αX(AβAα)

−1Aβ . (4.13)
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Since the Aα and A′α form representations of G, the products AαAβ
and A′αA

′
β yield matrices Aγ and A′γ, respectively, both corresponding

to the same element in G because representations preserve the group
composition rule. Hence, by the Rearrangement Theorem (Theorem
2.1), we can write the summation over α on the right-hand side of this
equation as ∑

α

A′βA
′
αX(AβAα)

−1 =
∑
γ

A′γXA
−1
γ = M .

Substituting this result into (4.13) yields

A′βM = MAβ . (4.14)

Depending on the nature of the two representations, this is precisely the
situation addressed by Schur’s First and Second Lemmas. We consider
the cases of equivalent and inequivalent representations separately.

Case I. d 6= d′ or, if d = d′, the representations are inequivalent (i.e.,
not related by a similarity transformation). Schur’s Second Lemma
then implies that M must be the zero matrix, i.e., that each matrix
element of M is zero. From the definition (4.12), we see that this
requires

Mii′ =
∑
α

∑
jj′

(A′α)ijXjj′(A
−1
α )j′i′ = 0 . (4.15)

By writing this sum as (note that because all sums are finite, their
order can be changed at will)

∑
jj′
Xjj′

[∑
α

(Aα)
′
ij(A

−1
α )j′i′

]
= 0 , (4.16)

we see that, since X is arbitrary, each of its entries may be varied
arbitrarily and independently without affecting the vanishing of the
sum. The only way to ensure this is to require that the coefficients of
the Xjj′ vanish: ∑

α

(A′α)ij(A
−1
α )j′i′ = 0 .
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For unitary representations, (A−1
α )j′i′ = (Aα)

∗
i′j′ , so this equation re-

duces to ∑
α

(A′α)ij(Aα)
∗
i′j′ = 0 ,

which proves the first part of the theorem.

Case II. d = d′ and the representations are equivalent. According
to Schur’s First Lemma, M = cI, so,

cI =
∑
α

AαXA
−1
α . (4.17)

Taking the trace of both sides of this equation,

tr(cI)︸ ︷︷ ︸
cd

= tr
(∑

α

AαXA
−1
α

)
=
∑
α

tr(AαXA
−1
α ) =

∑
α

tr(X)︸ ︷︷ ︸
|G| tr(X)

,

yields an expression for c:

c =
|G|
d

tr(X) .

Substituting this into Eq. (4.17) and expressing the resulting equation
in terms of matrix elements, yields

∑
jj′
Xjj′

[∑
α

(Aα)ij(A
−1
α )j′i′

]
=
|G|
d
δi,i′

∑
j

Xjj ,

or, after a simple rearrangement,

∑
jj′
Xjj′

[∑
α

(Aα)ij(A
−1
α )j′i′ −

|G|
d
δi,i′δj,j′

]
= 0 .

This equation must remain valid under any independent variation of
the matrix elements of X. Thus, we must require that the coefficient
of Xjj′ vanishes identically:

∑
α

(Aα)ij(A
−1
α )j′i′ =

|G|
d
δi,i′δj,j′ .
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Since the representation is unitary, this is equivalent to

∑
α

(Aα)ij(Aα)
∗
i′j′ =

|G|
d
δi,i′δj,j′ .

This proves the second part of the theorem.

4.4 Some Immediate Consequences of the

Great Orthogonality Theorem

The Great Orthogonality Theorem establishes a relation between ma-
trix elements of the irreducible representations of a group. Suppose we
denote the αth matrix in the kth irreducible representation by Akα and
the (i, j)th element of this matrix by (Akα)ij. We can then combine the
two statements of the Great Orthogonality Theorem as

∑
α

(Akα)ij(A
k′
α )∗i′j′ =

|G|
d
δi,i′δj,j′δk,k′ (4.18)

This expression helps us to understand the motivation for the name
“Orthogonality Theorem” by inviting us to consider the matrix ele-
ments of irreducible representations as entries in |G|-component vec-
tors, i.e., vectors in a space of dimensionality |G|:

V k
ij =

[
(Ak1)ij, (A

k
2)ij, . . . , (A

k
|G|)ij

]
According to the statement of the Great Orthogonality Theorem, two
such vectors are orthogonal if they differ in any one of the indices i, j,
or k, since (4.18) requires that

V k
ij · V k′

i′j′ =
|G|
d
δi,i′δj,j′δk,k′

But, in a |G|-dimensional space there are at most |G| mutually or-
thogonal vectors. To see the consequences of this, suppose we have
irreducible representations of dimensionalities d1, d2, . . ., where the dk
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are positive integers. For the k representations, there are dk choices
for each of i and j, i.e., there are d2

k matrix elements in each matrix
of the representation. Summing over all irreducible representations, we
obtain the inequality ∑

k

d2
k ≤ |G| (4.19)

Thus, the order of the group acts as an upper bound both for the
number and the dimensionalities of the irreducible representations. In
particular, a finite group can have only a finite number of irreducible
representations. We will see later that the equality in (4.19) always
holds.

Example 4.1. For the group S3, we have that |G| = 6 and we have
already identified two one-dimensional irreducible representations and
one two-dimensional irreducible representation (Example 3.2). Thus,
using (4.19), we have ∑

k

d2
k = 12 + 12 + 22 = 6

so the Great Orthogonality Theorem tells us that there are no addi-
tional distinct irreducible representations.

For the two element group, we have found two one-dimensional rep-
resentations, {1, 1} and {1,−1} (Example 3.3). According to the in-
equality in (4.19), ∑

k

d2
k = 1 + 1 = 2

so these are the only two irreducible representations of this group.

4.5 Summary

The central result of this chapter is the statement and proof of the
Great Orthogonality Theorem. Essentially all of the applications in
the next several chapters are consequences of this theorem. The impor-
tant advance provided this theorem is that it provides an orthogonality
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relation between the entries of the matrices of the irreducible repre-
sentations of a group. While this can be used to test whether a given
representation is reducible or irreducible (Problem Set 6), its main role
will be in a somewhat “reduced” form, such as that used in Sec. 4.4 to
place bounds on the number of irreducible representations of a finite
group. One of the most important aspects of the Great Orthogonality
Theorem for applications to physical problems is in the construction
of “character tables,” i.e., tables of traces of matrices of an irreducible
representation. This is taken up in the next chapter.
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