
Chapter 5

Characters and Character
Tables

In great mathematics there is a very high degree of unexpectedness, com-
bined with inevitability and economy.

—Godfrey H. Hardy1

In the preceding chapter, we proved the Great Orthogonality Theorem,
which is a statement about the orthogonality between the matrix ele-
ments corresponding to different irreducible representations of a group.
For many applications of group theory, however, the full matrix rep-
resentations of a group are not required, but only the traces within
classes of group elements—called “characters.” A typical application
involves determining whether a given representation is reducible or irre-
ducible and, if it is reducible, to identify the irreducible representations
contained within that representation.

In this chapter, we develop the mathematical machinery that is used
to assemble the characters of the irreducible representations of a group
in what are called “character tables.” The compilation of character ta-
bles requires two types of input: the order of the group and the number
of classes it contains. These quantities provide stringent restrictions

1G.H. Hardy, A Mathematician’s Apology (Cambridge University Press, London,
1941)
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on the number of irreducible representations and their dimensionali-
ties. Moreover, orthogonality relations derived from the Great Orthog-
onality Theorem will be shown to provide constraints on characters of
different irreducible representations, which considerably simplifies the
construction of character tables.

5.1 Orthogonality Relations

The Great Orthogonality Theorem,∑
α

(Akα)ij(A
k′
α )∗i′j′ =

|G|
dk
δi,i′δj,j′δk,k′ (5.1)

is a relationship between the matrix elements of the irreducible repre-
sentations of a group G. In this section, we show how this statement
can be manipulated into an expression solely in terms of the traces of
the matrices in these representations. This will open the way to estab-
lishing a sum rule between the number of irreducible representations
and the number of classes in a group.

We begin by setting j = i and j′ = i′ in (5.1),

∑
α

(Akα)ii(A
k′
α )∗i′i′ =

|G|
dk
δi,i′δk,k′ , (5.2)

where we have used the fact that δi,i′δi,i′ = δi,i′ . Summing over i and i′

on the left-hand side of this equation yields

∑
i,i′

∑
α

(Akα)ii(A
k′
α )i′i′ =

∑
α

[∑
i

(Akα)ii

]
︸ ︷︷ ︸

tr(Akα)

[∑
i′

(Ak
′
α )∗i′i′

]
︸ ︷︷ ︸

tr(Ak
′
α )∗

=
∑
α

tr(Akα)tr(Ak
′
α )∗ ,

and, by summing over i and i′ on the right-hand side of (5.2), we obtain

|G|
dk
δk,k′

∑
i

∑
i′
δi,i′ =

|G|
dk
δk,k′

∑
i

1︸ ︷︷ ︸
dk

= |G|δk,k′ .
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We have thereby reduced the Great Orthogonality Theorem to∑
α

tr(Akα)tr(Ak
′∗
α ) = |G|δk,k′ . (5.3)

This expression can be written in a more useful form by observing
that matrices corresponding to elements in the same conjugacy class
have the same trace. To see this, recall the definition in Section 2.6
of the conjugacy of two elements a and b group G. There must be
an element g in G such that a = gbg−1. Any representation {Aα},
reducible or irreducible, must preserve this relation:

Aa = AgAbAg−1 .

This representation must also have the property that Ag−1 = A−1
g . Thus

(Problem 2, Problem Set 4),

tr(Aa) = tr(AgAbA
−1
g ) = tr(A−1

g AgAb) = tr(Ab) .

We can now introduce the notation χkα for the trace corresponding to
all of the elements of the αth class of the kth irreducible representation.
This is called the character of the class. If there are nα elements in this
class, then we can write the relation (5.3) in terms of characters as a
sum over conjugacy classes

C∑
α=1

nαχ
k
αχ

k′∗
α = |G|δk,k′ , (5.4)

where C is the number of conjugacy classes. In arriving at this relation,
we have proven the following theorem:

Theorem 5.1 (Orthogonality Theorem for Characters). The char-
acters of the irreducible representations of a group obey the relation∑

α

nαχ
k
αχ

k′∗
α = |G|δk,k′ .

This orthogonality theorem can be used to deduce a relationship
between the number classes of a group and the number of irreducible
representations. By rearranging (5.4) as∑

α

[(
nα
|G|

)1/2

χkα

][(
nα
|G|

)1/2

χk
′∗
α

]
= δk,k′
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and introducing the vectors

χ̃k = |G|−1/2(
√
n1χ

k
1,
√
n2χ

k
2, . . . ,

√
nCχ

k
C) ,

we can write the orthogonality relation for characters as

χ̃k ·χ̃k′ = δk,k′ .

The χ̃k reside in a space whose dimension is the number of classes C in
the group. Thus, the maximum number of a set of mutually orthogonal
vectors in this space is C. But these vectors are labelled by an index k
corresponding to the irreducible representations of the group. Hence,
the number of irreducible representations must be less than or equal to
the number of classes.

It is also possible2 to obtain an orthogonality relation with the roles
of the irreducible representations and classes reversed in comparison to
that in Theorem 5.1: ∑

k

χkαχ
k∗
β =

|G|
nα

δα,β . (5.5)

By following analogous reasoning as above, we can deduce that this or-
thogonality relation implies that the number of irreducible representa-
tions must be greater than or equal to the number of classes. Combined
with the statement of Theorem 5.1, we have the following theorem:

Theorem 5.2. The number of irreducible representations of a group is
equal to the number of conjugacy classes of that group.

Example 5.1. For Abelian subgroups each element is in a class by
itself (Problem 6, Problem Set 3). Thus, the number of classes is equal
to the order of the group, so, according to Theorem 5.2, the number
of irreducible representations must also equal the order of the group.
When combined with the restriction imposed by Eqn. (4.19), which we
can now write as

|G|∑
k=1

d2
k = |G| ,

2M. Hamermesh, Group Theory and its Application to Physical Problems (Dover,
1989, New York) pp. 106–110.
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we have an alternative way (cf. Problem 4, Problem Set 5) of seeing
that all of the the irreducible representations of an Abelian group are
one-dimensional, i.e., dk = 1, for k = 1, 2, . . . , |G|.

Example 5.2. For the group S3, there are three classes: {e}, {a, b, c},
and {d, f} (Example 2.9). Thus, there are three irreducible represen-
tations which, as we have seen, consist of two one-dimensional repre-
sentations and one two-dimensional representation.

5.2 The Decomposition Theorem

One of the main uses of characters is in the decomposition of a given
reducible representation into its constituent irreducible representations.
The procedure by which this is accomplished is analogous to projecting
a vector onto a set of complete orthogonal basis vectors. The theorem
which provides the foundation for carrying this out with characters is
the following:

Theorem 5.3 (Decomposition Theorem). The character χα for the
αth class of any representation can be written uniquely in terms of the
corresponding characters of the irreducible representations of the group
as

χα =
∑
k

akχ
k
α ,

where

ak =
1

|G|
∑
α

nαχ
k∗
α χα .

Proof. For a reducible representation, the same similarity transfor-
mation brings all of the matrices into the same block-diagonal form. In
this form, the matrix Aα can be written as the direct sum of matrices
Akj of irreducible representations:

Aα = Ak1
α ⊕ Ak2

α ⊕ · · · ⊕ Aknα ,
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where α = 1, 2, . . . , |G| and k1, k2, . . . kn label irreducible representa-
tions. Given this, and the fact that similarity transformations leave
the trace invariant, we can write the character χi of this reducible rep-
resentation corresponding to the ith class as

χα =
∑
k

akχ
k
α , (5.6)

where the ak must be nonnegative integers. We now multiply both
sides of this equation by nαχ

k′∗
α , sum over α, and use the orthogonality

relation (5.4):∑
α

nαχ
k′∗
α χα =

∑
k

ak
∑
α

nαχ
k
αχ

k′∗
α︸ ︷︷ ︸

|G|δk,k′

= |G|ak′

Thus,

ak′ =
1

|G|
∑
α

nαχ
k′∗
α χα , (5.7)

so ak′ is the projection of the reducible representation onto the k′th
irreducible representation. Note that, because the number of irreducible
representations equals the number of classes, the orthogonal vectors of
characters span the space whose dimensionality is the number of classes,
so this decomposition is unique.

The Decomposition Theorem reduces the task of determining the ir-
reducible representations contained within a reducible representation to
one of vector algebra. Unless a particular application requires the ma-
trix forms of the representations, there is no need to block-diagonalize
a representation to identify its irreducible components.

We can follow a procedure analogous to that used to prove the De-
composition Theorem to derive a simple criterion to identify whether
a representation is reducible or irreducible. We begin with the decom-
position (5.6) and take its complex conjugate:

χ∗α =
∑
k′
ak′χ

k′∗
α , (5.8)
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where we have used the fact that the ak are integers, so a∗k = ak. We
now take the product of (5.6) and (5.8), multiply by nα, sum over α,
and invoke (5.4):∑

α

nαχαχ
∗
α =

∑
k,k′

akak′
∑
i

nαχ
k
αχ

k′∗
α︸ ︷︷ ︸

|G|δk,k′

= |G|
∑
k

a2
k .

Thus, ∑
α

nα|χ2
α| = |G|

∑
k

a2
k . (5.9)

If the representation in question is irreducible, then all of the ak are zero,
except for the one corresponding to that irreducible representation,
which is equal to unity. If the representation is reducible, then there
will be at least two of the ak which are positive integers. We can
summarize these observations with a simple criterion for reducibility.
If the representation is irreducible, then∑

α

nα|χα|2 = |G| , (5.10)

and if the representation is reducible,∑
α

nα|χα|2 > |G| . (5.11)

Example 5.3. Consider the following representation of S3:

e =

(
1 0

0 1

)
, a = 1

2

(
1 −

√
3

−
√

3 −1

)
, b = 1

2

(
1
√

3
√

3 −1

)
,

c =

(−1 0

0 1

)
, d = 1

2

( −1
√

3

−
√

3 −1

)
, f = 1

2

(−1 −
√

3
√

3 −1

)
.

There are three classes of this group, {e}, {a, b, c}, and {d, f}, so we
have n1 = 1, n2 = 3, and n3 = 2, respectively. The corresponding
characters are

χ1 = 2, χ2 = 0, χ3 = −1 .
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Forming the sum in (5.9), we obtain

3∑
α=1

nα|χα|2 = (1× 4) + (3× 0) + (2× 1) = 6 ,

which is equal to the order of the group. Therefore, this representation
is irreducible, as we have already demonstrated in Example 3.4 and in
Problem 1, Problem Set 6.

Example 5.4. Another representation of S3 is

e = d = f =

(
1 0

0 1

)
, a = b = c = 1

2

( −1 −
√

3

−
√

3 1

)
.

The characters corresponding to the three classes are now

χ1 = 2, χ2 = 0, χ3 = 2 .

Forming the sum in (5.9), we find

3∑
i=1

n1|χi|2 = (1× 4) + (3× 0) + (2× 4) = 12 ,

which is greater than the order of the group, so this representation is
reducible (cf. Problem 2, Problem Set 6). To determine the irreducible
constituents of this representation, we use the decomposition theorem.
There are three irreducible representations of S3: the one-dimensional
identical representation, with characters

χ1
1 = 1, χ1

2 = 1, χ1
3 = 1 ,

the one-dimensional “parity” representation, with characters

χ2
1 = 1, χ2

2 = −1, χ2
3 = 1 ,

and the two-dimensional “coordinate” representation discussed above
in Example 5.3, with characters

χ3
1 = 2, χ3

2 = 0, χ3
3 = −1 .
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We now calculate the ak using the expression in Equation (5.7). These
determine the “projections” of the characters of the reducible represen-
tation onto the characters of the irreducible representation. We obtain

a1 = 1
6

[
(1× 1× 2) + (3× 1× 0) + (2× 1× 2)

]
= 1 ,

a2 = 1
6

[
(1× 1× 2) + (3×−1× 0) + (2× 1× 2)

]
= 1 ,

a3 = 1
6

[
(1× 2× 2) + (3× 0× 0) + (2×−1× 2)

]
= 0 .

Thus, this reducible representation is composed of the identical repre-
sentation and the “parity” representation, with no contribution from
the “coordinate” representation. The block-diagonal form of this rep-
resentation is, therefore,

e = d = f =

(
1 0

0 1

)
, a = b = c = 1

2

(
1 0

0 −1

)
,

which is the result obtained in Problem 5, Problem Set 5 by applying
matrix methods.

5.3 The Regular Representation

Our construction of irreducible representations has thus far proceeded
in an essentially ad hoc fashion, relying in large part on physical argu-
ments. We have not yet developed a systematic procedure for construct-
ing all of the irreducible representations of a group. In this section, we
introduce a method, based on what is called the “regular” represen-
tation, which enables us to accomplish this. However, our purpose
for introducing such a methodology is not the determination of irre-
ducible representations as such, since even for relatively simple groups,
the approach we describe would present a computationally demanding
process, but as a theoretical tool for proving a theorem. Moreover, we
will find that, for applications of group theory to quantum mechanics,
the irreducible representations of the group of operations that leave
Hamiltonian invariant will emerge naturally without having to rely on
any auxiliary constructions.
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The regular representation is a reducible representation that is ob-
tained directly from the multiplication table of a group. As we will show
below, this representation contains every irreducible representation of
a group at least once. The construction of the regular representation
is based on arranging the multiplication table of a group so that the
unit element appears along the main diagonal of the table. Within such
an arrangement the columns (or rows) of the table are labelled by the
group elements, arranged in any order, and the corresponding order of
the inverses labels the rows (or columns).

As an example, consider the multiplication table for S3 (Section 2.4)
arranged in the way just described:

e a b c d f
e = e−1 e a b c d f
a = a−1 a e d f b c
b = b−1 b f e d c a
c = c−1 c d f e a b
f = d−1 f b c a e d
d = f−1 d c a b f e

The matrices of the regular representation are obtained by regarding
the multiplication table as an |G| × |G| array from which the matrix
representation for each group element is assembled by putting a ‘1’
where that element appears in the multiplication table and zero else-
where. For example, the matrices corresponding to the unit e and the
element a are

e→



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, a→



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0


with analogous matrices for the other group elements.
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Our first task is to show that the regular ‘representation’ is indeed
a representation of the group. First of all, it is clear that the mapping
we have described is one-to-one. For any two elements g1 and g2 of
this group, we denote the matrices in the regular representation that
correspond to these elements as Areg(g1) and Areg(g2). Thus, to show
that these matrices form a representation of S3, we need to verify that

Areg(g1g2) = Areg(g1)Areg(g2) ,

i.e., that the multiplication table is preserved by this representation.
We consider this relation expressed in terms of matrix elements:[

Areg(g1g2)
]
ij

=
∑
k

[
Areg(g1)

]
ik

[
Areg(g2)

]
kj
. (5.12)

From the way the regular representation has been constructed, the ith
row index of these matrix elements can be labelled the inverse of the
ith group element g−1

i and the jth column can be labelled by the jth
group element gj:

[
Areg(g1g2)

]
ij

=
[
Areg(g1g2)

]
g−1
i ,gj

=

 1, if g−1
i gj = g1g2;

0; otherwise

[
Areg(g1)

]
ik

=
[
Areg(g1)

]
g−1
i ,gk

=

 1, if g−1
i gk = g1;

0; otherwise

[
Areg(g2)

]
kj

=
[
Areg(g2)

]
g−1
k
,gj

=

 1, if g−1
k gj = g2;

0; otherwise

Therefore, in the sum over k in (5.12), we have nonzero entries only
when

g1g2 = (g−1
i gk)(g

−1
k gj) = g−1

i gj ,

which gives precisely the nonzero matrix elements of Areg(g1g2). Hence,
the matricesAreg(g1) preserve the group multiplication table and thereby
form a faithful representation of the group.
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Our main purpose in introducing the regular representation is to
prove the following theorem:

Theorem 5.4. The dimensionalities dk of the irreducible representa-
tions of a group are related to the order |G| of the group by∑

k

d2
k = |G| .

This theorem shows that the inequality (4.19), which was deduced di-
rectly from the Great Orthogonality Theorem is, in fact, an equality.

Proof. We first show, using Eqn. (5.9), that the regular represen-
tation is reducible. To evaluate the sums on the left-hand side of this
equation, we note that, from the construction of the regular repre-
sentation, the characters χreg,i vanish for every class except for that
corresponding to the unit element. Denoting this character by χreg,e,
we see that its value must be equal to the order of the group:

χreg,e = |G| .

Thus, ∑
α

nα|χα|2 = χ2
reg,e = |G|2 ,

which, for |G| > 1 is greater than |G|. Thus, for groups other than the
single-element group {e}, the regular representation is reducible.

We will now use the Decomposition Theorem to identify the irre-
ducible constituents of the regular representation. Thus, the characters
χreg,α for the αth class in the regular representation can be written as

χreg,α =
∑
k

akχ
k
α .

According to the Decomposition Theorem, the ak are given by

ak =
1

|G|
∑
α

nαχ
k∗
α χreg,α .
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We again use the fact that χreg,e = |G|, with all other characters vanish-
ing. The corresponding value of χke is determined by taking the trace of
the identity matrix whose dimensionality is that of the kth irreducible
representation: χke = dk. Therefore, the Decomposition Theorem yields

ak =
1

|G| × dk × |G| = dk ,

i.e., the kth irreducible representation appears dk times in the regular
representation: each one-dimensional irreducible representation appears
once, each two-dimensional irreducible representation appears twice,
and so on. Since the dimensionality of the regular representation is |G|,
and since ak is the number of times the kth irreducible representation
appears in the regular representation, we have the constraint∑

k

akdk = |G| ,

i.e., ∑
k

d2
k = |G| .

This sum rule, and that equating the number of classes to the num-
ber of irreducible representations (Theorem 5.2), relate a property of
the abstract group (its order and the number of classes) to a property
of the irreducible representations (their number and dimensionality).
The application of these rules and the orthogonality theorems for char-
acters is the basis for constructing character tables. This is described
in the next section.

5.4 Character Tables

Character tables are central to many applications of group theory to
physical problems, especially those involving the decomposition of re-
ducible representations into their irreducible components. Many text-
books on group theory contain compilations of character tables for the
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most common groups. In this section, we will describe the construction
of character tables for S3. We will utilize two types of information: sum
rules for the number and dimensionalities of the irreducible represen-
tations, and orthogonality relations for the characters. Additionally,
the group multiplication table can be used to establish relationships
for one-dimensional representations. By convention, characters tables
are displayed with the columns labelled by the classes and the rows by
the irreducible representations.

The first step in the construction of this character table is to note
that, since |S3| = 6 and there are three classes (Example 2.9), there are
3 irreducible representations whose dimensionalities must satisfy

d2
1 + d2

2 + d2
3 = 6 .

The unique solution of this equation (with only positive integers) is
d1 = 1, d2 = 1, and d3 = 2, so there are two one-dimensional irreducible
representations and one two-dimensional irreducible representation.

In the character table for any group, several entries can be made im-
mediately. The identical representation, where all elements are equal to
unity, is always a one-dimensional irreducible representation. Similarly,
the characters corresponding to the unit element are equal to the di-
mensionality of that representation, since they are calculated from the
trace of the identity matrix with that dimensionality. Thus, denoting
by α, β, γ, and δ quantities that are to be determined, the character
table for S3 is:

S3 {e} {a, b, c} {d, f}
Γ1 1 1 1
Γ2 1 α β
Γ3 2 γ δ

where the Γi are a standard label for the irreducible representations.
The remaining entries are determined from the orthogonality re-

lations for characters and, for one-dimensional irreducible representa-
tions, from the multiplication table of the group. The orthogonality
relation in Theorem 5.1, which is an orthogonality relation for the rows
of a character table, yield

1 + 3α + 2β = 0 , (5.13)
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1 + 3α2 + 2β2 = 6 . (5.14)

The group multiplication table requires that

a2 = e, b2 = e, c2 = e, d2 = f .

Since the one-dimensional representations must obey the multiplication
table, these products imply that

α2 = 1, β2 = β .

Substituting these relations into (5.14), yields 4 + 2β = 6, i.e.,

β = 1

Upon substitution of this value into (5.13), we obtain 3 + 3α = 0, i.e.,

α = −1

From the orthogonality relation (5.5), which is an orthogonality relation
between the columns of a character table, we obtain

1 + α + 2γ = 0

1 + β + 2δ = 0

Substituting the values obtained for α and β into these equations yields

γ = 0, δ = −1

The complete character table for S3 is therefore given by

S3 {e} {a, b, c} {d, f}
Γ1 1 1 1
Γ2 1 −1 1
Γ3 2 0 −1

When character tables are compiled for the most common groups,
a notation is used which reflects the fact that the group elements cor-
respond to transformations on physical objects. The notation for the
classes of S3 are as follows:
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• {e} → E. The identity.

• {a, b, c} → 3σv. Reflection through vertical planes, where ‘verti-
cal’ refers to the fact that these planes contain the axis of highest
rotational symmetry, in this case, the z-axis. The ‘3’ refers to
there being three elements in this class.

• {d, f} → 2C3. Rotation by 2
3
π radians, with the ‘2’ again referring

to the there being two elements in this class. The notation C2
3

is for rotations by 4
3
π radians, so the ‘class’ notation is meant

only to indicate the type of operation. In general, Cn refers to
rotations through 2π/n radians.

Several notations are used for irreducible representations. One of
the most common is to use A for one-dimensional representations, E
for two-dimensional representations, and T for three-dimensional rep-
resentations, with subscripts used to distinguish multiple occurrences
of irreducible representations of the same dimensionality. The notation
Γ is often used to indicate a generic (usually irreducible) representa-
tion, with subscripts and superscripts employed to distinguish between
different representations. With the first of these conventions, the char-
acter table for S3, which is known as the group C3v when interpreted
as the planar symmetry operations of an equilateral triangle, is

C3v E 3σv 2C3

A1 1 1 1
A2 1 −1 1
E 2 0 −1

5.5 Summary

This chapter has been devoted to characters and character tables. The
utility of characters in applications stems from the following:
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1. The character is a property of the class of an element.

2. Characters are unaffected by similarity transformations, so equiv-
alent representations—reducible or irreducible—have the same
characters.

3. As shown in Equations (5.10) and (5.11), the characters of a repre-
sentation indicate, through a straightforward calculation, whether
that representation is reducible or irreducible.

4. Characters of irreducible representations obey orthogonality the-
orems which, when interpreted in the context of character ta-
bles, correspond to the orthogonality relations of their rows and
columns.

5. According to the Decomposition Theorem, once the character ta-
ble of a group is known, the characters of any representation can
be decomposed into its irreducible components.
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