
Group Theory
Solutions to Problem Set 10 December 14, 2001

1. As shown in Section 8.3.1, the eigenvalues of an orthogonal ma-
trix have modulus unity. These eigenvalues are also the roots
of the polynomial equation det(A − λI) = 0, so the Fundamen-
tal Theorem of Algebra requires that, if these roots are com-
plex, they must occur in complex conjugate pairs. Thus, only in
an odd-dimensional space is there guaranteed to be a single real
eigenvalue of unity. The corresponding eigenvector is the axis of
rotation.

2. If the fixed point is taken as the origin of the set of axes of the
body, then the displacement of the rigid body involves no trans-
lation, but only a change of orientation, i.e., a rotation. Since, in
three dimensions, every rotation can be expressed in an axis-angle
representation, Euler’s theorem follows immediately.

3. The general improper transformation in two dimensions is(
x′

y′

)
=

(
cosϕ sinϕ

sinϕ − cosϕ

)x
y

 .

Thus, for the functions (x± iy)m we have

(x′ ± iy′)m =
[
x cosϕ+ y sinϕ± i(x sinϕ− y cosϕ)

]m
=
[
x( cosϕ± i sinϕ)∓ iy( cosϕ± i sinϕ)

]m
= (x∓ iy)m e±imϕ ,

so they generate the representation[
(x′ + iy′)m

(x′ − iy′)m

]
=

(
0 eimϕ

e−imϕ 0

)[
(x+ iy)m

(x− iy)m

]
.
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To determine whether or not this representation is reducible, we
apply Schur’s first lemma. Suppose a matrix A commutes with
all of the matrices of our two dimensional representation. Then,
we have(
a11 a12

a21 a22

)(
0 eimϕ

e−imϕ 0

)
︸ ︷︷ ︸ a12e−imϕ a11eimϕ

a22e−imϕ a21eimϕ


=

(
0 eimϕ

e−imϕ 0

)(
a11 a12

a21 a22

)
︸ ︷︷ ︸ a21eimϕ a22eimϕ

a11e−imϕ a12e−imϕ


.

Thus, if m 6= 0, we must require that a12 = a21 = 0 and that
a11 = a22, i.e., A is multiple of the 2×2 unit matrix and, according
to Schur’s first lemma, this representation is irreducible. However,
of m = 0, we need only require that a12 = a21 and a11 = a22, so
this is a reducible representation.

4. The rotation angle ϕ is calculated from the trace of the transfor-
mation matrix:

1 + 2 cosϕ = cosψ cosφ− cos θ sinφ sinψ − sinψ sinφ

+ cos θ cosφ cosψ + cos θ

= (1 + cos θ)( cosφ cosψ − sinφ sinψ) + cos θ

= (1 + cos θ) cos(φ+ ψ) + cos θ .

Using the triginometric identity

1 + 2 cosϕ = 4 cos2 (1
2
ϕ)− 1 ,

we obtain

4 cos2 (1
2
ϕ) = (1 + cos θ)[1 + cos(φ+ ψ)]

= 4 cos2 (1
2
θ) cos2 [1

2
(φ+ ψ)] ,
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or,

cos (1
2
ϕ) = cos (1

2
θ) cos [1

2
(φ+ ψ)] .

5. The axis of the transformation in Problem 4 is determined from
the equations derived in Section 8.3.2:

n2

n1

=
a31 − a13

a23 − a32

,
n3

n1

=
a12 − a21

a23 − a32

.

The denominator of these expressions is

a23 − a32 = sin θ cosψ + sin θ cosφ = sin θ( cosψ + cosφ) .

We also have

a31 − a13 = sin θ sinφ− sin θ sinψ = sin θ(sinφ− sinψ)

a12 − a21 = cosψ sinφ+ cos θ cosφ sinψ

+ sinψ cosφ+ cos θ sinφ cosψ

= (1 + cos θ)(cosφ sinψ + sinφ cosψ)

= (1 + cos θ) sin(φ+ ψ) .

Thus, the (unnormalized) direction of the rotation axis is{
1,

sinφ− sinψ

cosψ + cosφ
, 2

(1 + cos θ) sin(φ+ ψ)

sin θ(cosφ+ cosψ)

}
.

6. There are a number of ways of decomposing the direct product
of irreducible representations of SO(3). The books by Tinkham
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and Jones give two very different approaches. Below, we provide
a third method. We first calculate the direct product

χ(`)(ϕ)χ(1)(ϕ) =

( ∑̀
m=−`

e−imϕ
)(

1∑
m1=−1

e−im1ϕ

)
.

By expanding the second summation and multiplying the first
summation with each of the exponentials, we obtain( ∑̀

m=−`
e−imϕ

)(
1∑

m1=−1

e−im1ϕ

)
=

∑̀
m=−`

e−imϕ
(
eiϕ + 1 + e−iϕ

)

=
∑̀
m=−`

e−i(m−1)ϕ +
∑̀
m=−`

e−imϕ +
∑̀
m=−`

e−i(m+1)ϕ .

If, in the first summation on the right-hand side of this equation,
we change the summation variable to m′ = m− 1 and in the last
summation change the summation variable to m′ = m + 1, we
have ∑̀

m=−`
e−i(m−1)ϕ +

∑̀
m=−`

e−i(m+1)ϕ

=
`−1∑

m′=−`−1

e−im
′ϕ +

`+1∑
m′=−`+1

e−im
′ϕ

=
`+1∑

m′=−(`+1)

e−im
′ϕ +

`−1∑
m′=−(`−1)

e−im
′ϕ .

In fact, for any positive integer k, we have

∑̀
m=−`

e−i(m−k)ϕ +
∑̀
m=−`

e−i(m+k)ϕ

=
`−k∑

m′=−`−k
e−im

′ϕ +
`+k∑

m′=−`+k
e−im

′ϕ

=
`+k∑

m′=−(`+k)

e−im
′ϕ +

`−k∑
m′=−(`−k)

e−im
′ϕ . (1)
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Thus, we conclude that

χ(`)(ϕ)χ(1)(ϕ) = χ(`−1)(ϕ) + χ(`)(ϕ) + χ(`+1)(ϕ) .

Then, by using (1), we have, in the general case

χ(`)(ϕ)χ(`′)(ϕ) =
∑̀
m=−`

e−imϕ
[
ei`
′ϕ + ei(`

′−1)ϕ + · · ·+ e−i`
′ϕ
]

= χ(`+`′)(ϕ) + χ(`+`′−1)(ϕ) + · · ·+ χ(`−`′) .

Therefore,

χ(`)(ϕ)χ`
′
(ϕ) =

`+`′∑
m=`−`′

χ(m)(ϕ) ,

where, from our procedure, it is clear that `′ ≤ `.

7. The corresponding Clebsch–Gordan series for SO(2) is very simple
because the group is Abelian. Since

χ(m)(ϕ) = eimϕ ,

then

χ(m1)(ϕ)χ(m2)(ϕ) = χ(m1+m2)(ϕ) .

8. Given the complex transformation

(
x′

y′

)
=

(
a b

c d

)(
x

y

)
, (2)
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then the invariance of the quantity xx∗ + yy∗ yields

x′x′∗ + y′y′∗

= (ax+ by)(a∗x∗ + b∗y∗) + (cx+ dy)(c∗x∗ + d∗y∗)

= (aa∗ + cc∗)xx∗ + (ab∗ + cd∗)xy∗ + (a∗b+ c∗d)x∗y

+ (cc∗ + dd∗)yy∗ .

Maintaining equality for all independent variations of x and y
requires that

aa∗ + cc∗ = 1, ab∗ + cd∗ = 0, cc∗ + dd∗ = 1 . (3)

A fourth condition is that the determinant of the transformation
in (2) is unity:

ad− bc = 1 (4)

If we take the second of equations (3), multiply by a∗, and then
use the first of these equations and Equation (4), we obtain

a∗(ab∗ + cd∗) = aa∗b∗ + a∗cd∗

= (1− cc∗)b∗ + (1 + b∗c∗)c

= b∗ + c = 0

which yields

c = −b∗

The second of equations (4) then immediately yields

a = d∗ (5)

Thus, the transformation (2) must have the form(
x′

y′

)
=

(
a b

−b∗ a∗

)(
x

y

)

where aa∗ + bb∗ = 1.


