Group Theory

Problem Set 2

October 16, 2001

Note: Problems marked with an asterisk are for Rapid Feedback.

- 1. Show that, by requiring the existence of an identity in a group G, it is sufficient to require only a *left* identity, ea = a, or only a *right* identity ae = a, for every element a in G, since these two quantities *must* be equal.
- 2. Similarly, show that it is sufficient to require only a *left* inverse, $a^{-1}a = e$, or only a *right* inverse $aa^{-1} = e$, for every element a in G, since these two quantities must also be equal.
- **3.** Show that for any group G, $(ab)^{-1} = b^{-1}a^{-1}$.
- **4**^{*} For the elements g_1, g_2, \ldots, g_n of a group, determine the inverse of the *n*-fold product $g_1g_2\cdots g_n$.
- 5.* Show that a group is Abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$. You need to show that this condition is both necessary and sufficient for the group to be Abelian.
- **6.** By explicit construction of multiplication tables, show that there are two distinct structures for groups of order 4. Are either of these groups Abelian?
- 7* Consider the group of order 3 discussed in Section 2.4. Suppose we regard the rows of the multiplication table as individual permutations of the elements $\{e, a, b\}$ of this group. We label the permutations π_g by the group element corresponding to that row:

$$\pi_e = \begin{pmatrix} e & a & b \\ e & a & b \end{pmatrix}, \qquad \pi_a = \begin{pmatrix} e & a & b \\ a & b & e \end{pmatrix}, \qquad \pi_b = \begin{pmatrix} e & a & b \\ b & e & a \end{pmatrix}$$

- (a) Show that, under the composition law for permutations discussed in Section 2.3, the multiplication table of the 3-element group is preserved by this association, e.g., $\pi_a \pi_b = \pi_e$.
- (b) Show that for every element g in $\{e, a, b\}$,

$$\pi_g = \begin{pmatrix} e & a & b \\ g & ga & gb \end{pmatrix}$$

Hence, show that the π_g have the same multiplication table as the 3-element group.

- (c) Determine the relationship between this group and S_3 . This is an example of Cayley's theorem.
- (d) To which of the operations on an equilateral triangle in Fig. 2.1 do these group elements correspond?