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1. Suppose that e is the right identity of a group G,

ge = g (1)

for all g in G, and that e′ is the left identity,

e′g = g (2)

for all g in G. The choice g = e′ in the first of these equations
and g = e in the second, yields

e′e = e′ (3)

and
e′e = e (4)

respectively. These equations imply that

e′ = e (5)

so the left and right identities are equal. Hence, we need specify
only the left or right identity in a group in the knowledge that
this is the identity of the group.

2. Suppose that a is the right inverse of any element g in a group G,

ga = e (6)

and a′ is the left inverse of g,

a′g = e (7)

Multiplying the first of these equations from the left by a′ and
invoking the second equation yields

a′ = a′(ga) = (a′g)a = a (8)
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so the left and right inverses of an element are equal. The same
result could have been obtained by multiplying the second equa-
tion from the right by a and invoking the first equation.

3. To show that for any group G, (ab)−1 = b−1a−1, we begin with
the properties of the inverse. We must have that

(ab)(ab)−1 = e

Left-multiplying both sides of this equation first by a−1 and then
by b−1 yields

(ab)−1 = b−1a−1

4. For elements g1, g2, . . . , gn of a group G, we require the inverse of
the n-fold product g1g2 · · · gn. We proceed as in Problem 2 using
the definition of the inverse to write

(g1g2 · · · gn)(g1g2 · · · gn)−1 = e

We now follow the same procedure as in Problem 2 and left-
multiply both sides of this equation in turn by g−1

1 , g−1
2 , . . . , g−1

n

to obtain

(g1g2 · · · gn)−1 = g−1
n · · · g−1

2 g−1
1

5. We must prove two statements here: that for an Abelian group
G, (ab)−1 = a−1b−1, for all a and b in G, and that this equality
implies that G is Abelian. If G is Abelian, then using the result



3

of Problem 3 and the commutativity of the composition law, we
find

(ab)−1 = b−1a−1 = a−1b−1

Now, suppose that there is a group G (which we must not assume
is Abelian, such that

(ab)−1 = a−1b−1

for all a and b in G. We now right multiply both sides of this
equation first by b and then by a to obtain

(ab)−1ba = e

Then, left-multiplying both sides of this equation by (ab) yields

ba = ab

so G is Abelian. Hence, we have shown that G is an Abelian
group if and only if, for elements a and b in G, (ab)−1 = a−1b−1.

6. To construct the multiplication table of a four-element group
{e, a, b, c} we proceed as in Section 2.4 of the course notes. The
properties of the unit of the group enable us to make the following
entries into the multiplication table:

e a b c
e e a b c
a a
b b
c c

We now consider the product aa. This cannot equal a, since that
would imply that a = e, but it can equal any of the other el-
ements, including the identity. However, this leads only to two
distinct choices for the product, since the apparent difference be-
tween aa = b and aa = c disappears under the interchange of the
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e a b c
e e a b c
a a e
b b
c c

e a b c
e e a b c
a a b
b b
c c

(1)

labelling of b and c. Thus, at this stage, we have two distinct
structures for the multiplication table:

We now determine the remaining entries for these two groups.
For the table on the left, we consider the product ab. From the
Rearrangement Theorem, this cannot equal a or or e, nor can it
equal b (since that would imply a = e). Therefore, ab = c, from
which it follows that ac = b. According to the Rearrangement
Theorem, the multiplication table becomes

e a b c
e e a b c
a a e c b
b b c
c c b

(2)

For the remaining entries of this table, we observe that b2 = a
and b2 = e are equally valid assignments. These leads to two
multiplication tables:

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

e a b c
e e a b c
a a e c b
b b c a e
c c b e a

(3)

Note that these tables are distinct in that there is no relabelling
of the elements which transforms one into the other.

We now return to the other multiplication table on the right in
(1). The Rearrangement Theorem requires that the second row
must be completed as follows:
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e a b c
e e a b c
a a b c e
b b c
c c e

(4)

Again invoking the Rearrangement Theorem, we must have that
this multiplication table can be completed only as:

e a b c
e e a b c
a a b c e
b b c e a
c c e a b

(5)

Notice that all of the multiplication tables in (3) and (5) are
Abelian and that the table in (5) is cyclic, i.e., all of the group
elements can be obtained by taking successive products of any
non-unit element.

We now appear to have three distinct multiplication tables for
groups of order 4: the two tables in (3) and the one in (5). How-
ever, if we reorder the elements in the second table in (3) to
{e, b, a, c} and reassemble the multiplication table (using the same
products), we obtain

e b a c
e e b a c
c b a c e
b a c e b
a c e b a

(6)

which, under the relabelling a 7→ b and b 7→ a, is identical to (5).
Hence, there are only two distinct structures of groups with four
elements:
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e a b c
e e a b c
a a e c b
b b c e a
c c b a e

e a b c
e e a b c
a a b c e
b b c e a
c c e a b

(7)

7. (a) All of the products involving the identity are self-evident. The
only products that must be calculated explicitly are a2, ab, ba,
and b2. These are given by

πaπa =

(
e a b

a b e

)(
e a b

a b e

)
=

(
e a b

b e a

)
= πb

πaπb =

(
e a b

a b e

)(
e a b

b e a

)
=

(
e a b

e a b

)
= πe

πbπa =

(
e a b

b e a

)(
e a b

a b e

)
=

(
e a b

e a b

)
= πe

πbπb =

(
e a b

b e a

)(
e a b

b e a

)
=

(
e a b

a b e

)
= πa

Thus, the association g → πg, for g = e, a, b preserves the prod-
ucts of the three-element group.

(b) With the construction

πg =

(
e a b

g ga gb

)
(9)

for g = e, a, b, we can use the rows of the multiplication table on
p. 19 to obtain

πe =

(
e a b

ee ea eb

)
=

(
e a b

e a b

)

πa =

(
e a b

ae aa ab

)
=

(
e a b

a b e

)
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πb =

(
e a b

be ba bb

)
=

(
e a b

b e a

)
(10)

Thus, the association g → πg is one-to-one and preserves the
products of the 3-element group. Hence, these groups are equiv-
alent.

(c) The elements of the three-element group correspond to the
cyclic permutations of S3. In other words, given a reference order
{a, b, c}, the cyclic permutations are a 7→ b, b 7→ c, and c 7→ a,
yielding {b, c, a}, and then b 7→ c, c 7→ a, and a 7→ b, yielding
{c, a, b}.

(d) These elements correspond to the rotations of an equilateral
triangle, i.e., the elements {e, d, f} in Fig. 2.1.


