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1. Let D′(g) = UD(g)U−1, where D(g) is a representation of a group
G with elements g. To show that D′(g) is also a representation of
G, it is sufficient to show that this representation preserves the
multiplication table of G. Thus, let a and b be any two elements
of G with matrix representations D(a) and D(b). The product ab
is represented by

D(ab) = D(a)D(b) .

Therefore,

D′(ab) = UD(ab)U−1

= UD(a)D(b)U−1

= UD(a)U−1UD(b)U ′

= D′(a)D′(b) ,

so multiplication is preserved and D′(g) is therefore also a repre-
sentation of G.

2. The trace of a matrix is the sum of its diagonal elements. There-
fore, the trace of the product of three matrices A, B, and C is
given by

tr(ABC) =
∑
ijk

AijBjkCki .

By using the fact that i, j, and k are dummy summation indices
with the same range, this sum can be written in the equivalent
forms ∑

ijk

AijBjkCki =
∑
ijk

CkiAijBjk =
∑
ijk

BjkCkiAij .
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But the second and third of these are

∑
ijk

CkiAijBjk = tr(CAB)

and

∑
ijk

BjkCkiAij = tr(BCA) ,

respectively. Thus, we obtain the relation

tr(ABC) = tr(CAB) = tr(BCA) .

3. The trace of an n-fold product, A1A2 · · ·An is

tr(A1A2 · · ·An) =
∑

i1,i2,...in

(A1)i1i2(A2)i2i3 · · · (An)ini1 .

Proceeding as in Problem 2, we observe that the ik (k = 1, . . . , n)
are dummy summation indices all of which have the same range.
Thus, any cyclic permutation of the matrices in the product leaves
the sum and, hence, the trace invariant.

4. From Problem 2, we have that

tr(UAU−1) = tr(U−1UA) = tr(A) ,

so a similarity transformation leaves the trace of a matrix invari-
ant.
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5. Given a faithful representation of a group, similarity transfor-
mations of the matrices provide equally faithful representations.
Since we wish to obtain permutations of a particular matrix repre-
sentation, we base our similarity transformations on the non-unit
elements in the group. Thus, consider the following similarity
transformations:

a{e, a, b, c, d, f}a−1 = {e, a, c, b, f, d} ,

b{e, a, b, c, d, f}b−1 = {e, c, b, a, f, d} ,

c{e, a, b, c, d, f}c−1 = {e, b, a, c, f, d} , (1)

d{e, a, b, c, d, f}d−1 = {e, b, c, a, d, f} ,

e{e, a, b, c, d, f}e−1 = {e, c, a, b, d, f} .

Thus, the following permutations of the elements {e, a, b, c, d, f}
provide equally faithful representations:

{e, a, c, b, f, d} , {e, c, b, a, f, d} ,

{e, b, a, c, f, d} , {e, b, c, a, d, f} ,

{e, c, a, b, d, f} .

Notice that only elements within the same class can be permuted.
For S3, the classes are {e}, {a, b, c}, {d, f}.

6. In the basis (x, y, z) where x and y are given in Fig. 3.1 and the
z-axis emanates from the origin of this coordinate system (the
geometric center of the triangle), all of the symmetry operations of
the equilateral triangle leave the z-axis invariant. This is because
the z-axis is either an axis of rotation (for operations d and f) or
lies within the reflection plane (for operations a, b, and c). Hence,
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the matrices of these operations are given by

e =


1 0 0

0 1 0

0 0 1

 , a = 1
2


1 −

√
3 0

−
√

3 −1 0

0 0 2

 ,

b = 1
2


1
√

3 0
√

3 −1 0

0 0 2

 , c =


−1 0 0

0 1 0

0 0 1

 ,

d = 1
2


−1 −

√
3 0

√
3 −1 0

0 0 2

 , f = 1
2


−1

√
3 0

−
√

3 −1 0

0 0 2

 .
This representation is seen to be reducible and that it is the direct
sum of the representation in Example 3.2 (which, as discussed in
Example 3.4, is irreducible) and the identical representation.

7. We must show (i) that two matrices which are simultaneously di-
agonalizable commute and (ii) that two matrices which commute
are simultaneously diagonalizable. Showing (i) is straightforward.
For two d× d matrices A and B which are simultaneously diago-
nalizable, there is a matrix U such that

UAU−1 = DA and UBU−1 = DB ,

where DA and DB are diagonal forms of these matrices. Clearly,
therefore, we have that

DADB = DBDA .

Hence, transforming back to the original basis,

(U−1DAU)︸ ︷︷ ︸
A

(U−1DBU)︸ ︷︷ ︸
B

= (U−1DBU)︸ ︷︷ ︸
B

(U−1DAU)︸ ︷︷ ︸
A

,
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so A and B commute.

Now suppose that A and B commute and there is a transforma-
tion that brings one of these matrices, say A, into the diagonal
form DA:

UAU−1 = DA .

Then, with

UBU−1 = B′ ,

the commutation relation AB = BA transforms to

DAB
′ = B′DA .

The (i, j)th matrix element of these products is

(DAB
′)ij =

∑
k

(DA)ik(B
′)kj = (DA)ii(B

′)ij

= (B′DA)ij =
∑
k

(B′)ik(DA)kj = (B′)ij(DA)jj .

After a simple rearrangement, we have

(B′)ij[(DA)ii − (DA)jj] = 0 .

There are three cases to consider:

Case I. All of the diagonal entries of DA are distinct. Then,

(DA)ii − (DA)jj 6= 0 if i 6= j ,

so all of the off-diagonal matrix elements of B′ vanish, i.e., B′ is a
diagonal matrix. Thus, the same similarity transformation which
diagonalizes A also diagonalizes B.

Case II. All of the diagonal entries of DA are the same. In this
case DA is proportional to the unit matrix, DA = cI, for some
complex constant c. Hence, this matrix is always diagonal,

U(cI)U−1 = cI
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and, in particular, it is diagonal when B is diagonal.

Case III. Some of the diagonal entries are the same and some
are distinct. If we arrange the elements of DA such that the first
p elements are the same, (DA)11 = (DA)22 = · · · = (DA)pp, then
DA has the general form

DA =

(
cIp 0

0 D′A

)
,

where Ip is the p × p unit matrix and c is a complex constant.
From Cases I and II, we deduce that B must be of the form

B =

(
Bp 0

0 D′B

)
,

where Bp is some p× p matrix and D′B is a diagonal matrix. Let
Vp be the matrix which diagonalizes B:

VpBpV
−1
p = D′′B .

Then the matrix

V =

(
Vp 0

0 Id−p

)

diagonalizes B while leaving DA unchanged. Here, Id−p is the
(d− p)× (d− p) unit matrix.

Hence, in all three cases, we have shown that the same transfor-
mation which diagonalizes A also diagonalizes B.

8. The matrices of any representation {A1, A2, . . . , An} of an Abelian
group G commute:

AiAj = AjAi
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for all i and j. Hence, according to Problem 7, these matrices can
all be simultaneously diagonalized. Since this is true of all repre-
sentations of G, we conclude that all irreducible representations of
Abelian groups are one-dimensional, i.e., they are numbers with
ordinary multiplication as the composition law.

9. To verify that the matrices

e =

(
1 0

0 1

)
, a = 1

2

(−1
√

3
√

3 1

)
(2)

form a representation for the two-element group {e, a}, we need
to demonstrate that the multiplication table for this group,

e a
e e a
a a e

is fulfilled by these matrices. The products e2 = e, ea = a, and
ae = a can be verified by inspection. The product a2 is

a2 = 1
4

(−1
√

3
√

3 1

)(−1
√

3
√

3 1

)
=

(
1 0

0 1

)
= e ,

so the matrices in (2) form a representation of the two-element
group.

Since these matrices commute, they can be diagonalized simulta-
neously (Problem 7). Since the matrix is the unit matrix, we can
determine the diagonal form of a, simply by finding its eigenval-
ues. The characteristic equation of a is

det(a− λI) =

∣∣∣∣∣−
1
2
− λ 1

2

√
3

1
2

√
3 1

2
− λ

∣∣∣∣∣
= −(1

2
− λ)(1

2
+ λ)− 3

4
= λ2 − 1 .
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which yields λ = ±1. Therefore, diagonal form of a is

a =

(
1 0

0 −1

)
, (3)

so this representation is the direct sum of the identical represen-
tation {1, 1}, and the “parity” representation {1,−1}. Note that,
according to Problem 8, every representation of the two-element
group with dimensionality greater than two must be reducible.

10. The relations in (3.9) and (3.11) can be proven simultaneously,
since they differ only by complex conjugation, which preserves the
order of matrices. The (i, j)th matrix element of n-fold product
of matrices A1, A2, . . . , An is

(A1A2 · · ·An)ij =
∑

k1,k2,...,kn−1

(A1)ik1(A2)k1k2 · · · (An)kn−1j .

The corresponding matrix element of the transpose of this prod-
uct is

[(A1A2 · · ·An)t]ij = (A1A2 · · ·An)ji .

Thus, since the ki are dummy indices,

[(A1A2 · · ·An)t]ij =
∑

k1,k2,...,kn−1

(A1)jk1(A2)k1k2 · · · (An)kn−1i

=
∑

k1,k2,...,kn−1

(At
1)k1j(A

t
2)k2k1 · · · (At

n)ikn−1

=
∑

k1,k2,...,kn−1

(At
n)ikn−1(At

n−1)kn−1kn−2 · · · (At
2)k2k1(At

1)k1j

We conclude that

(A1A2 · · ·An)t = At
nA

t
n−1 · · ·At

1
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and, similarly, that

(A1A2 · · ·An)† = A†nA
†
n−1 · · ·A†1


