
Group Theory

Solutions to Problem Set 6 November 23, 2001

1. The Great Orthogonality Theorem states that, for the matrix
elements of the same irreducible representation {A1, A2, . . . , A|G|}
of a group G,

∑
α

(Aα)ij(Aα)∗i′j′ =
|G|
d
δi,i′δj,j′ .

Thus, we first form the vectors V ij whose components are the
(i, j)th elements taken from each matrix in the representation in
some fixed order. The Great Orthogonality Theorem can then be
expressed more concisely as

V ij · V ∗i′j′ =
|G|
d
δi,i′δj,j′ .
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these vectors are:
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Note that, since all of the entries are real, complex conjugation is
not required for substitution into the Great Orthogonality Theo-
rem. For i = j and i′ = j′, with |G| = 6 and d = 2, we have
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all of which are in accord with the Great Orthogonality Theorem.
For i 6= j and/or i′ 6= j′, we have
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which is also in accord with the Great Orthogonality Theorem.

2. For the following two-dimensional representation of the three-
element group,
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we again form the vectors V ij whose components are the (i, j)th
elements of each matrix in the representation:
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Calculating the summation in the Great Orthogonality Theorem,
first with i = j and i′ = j′, we have
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all of which are in accord with the Great Orthogonality Theorem
with |G| = 3 and d = 2. Performing the analogous summations
with i 6= j and/or i′ 6= j′, yields

V 11 · V 12 = 0− 1
4

√
3 + 1

4

√
3 = 0 ,

V 11 · V 21 = 0 + 1
4

√
3− 1

4

√
3 = 0 ,

V 11 · V 22 = 1 + 1
4

+ 1
4

= 3
2
,

V 12 · V 21 = 0− 3
4
− 3

4
= −3

2
,

V 12 · V 22 = 0− 1
4

√
3 + 1

4

√
3 = 0 ,

V 21 · V 22 = 0 + 1
4

√
3− 1

4

√
3 = 0 ,

which is not consistent with the Great Orthogonality Theorem,
since all of these quantities must vanish. If there is even a single
violation of the Great Orthogonality Theorem, as is the case here,
the representation is necessarily reducible.
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3. All of the irreducible representations of an Abelian group are one-
dimensional (e.g., Problem 4, Problem Set 5). Hence, for Abelian
groups, the Great Orthogonality Theorem reduces to∑

α

AkαA
k′∗
α = |G|δk,k′ .

If we view the irreducible representations as |G|-dimensional vec-
tors Ak with entries Akα,

Ak = (Ak1, A
k
2, . . . A

k
|G|) ,

then the Great Orthogonality Theorem can be written as a “dot”
product:

Ak ·Ak′∗ = |G|δk,k′ .

This states that the irreducible representations of an Abelian
group are orthogonal vectors in this |G|-dimensional space. Since
there can be at most |G| such vectors, the number of irreducible
representations of an Abelian group is less than or equal to the
order of the group.

4. (a) From Problem 2 of Problem Set 5, the irreducible representa-
tions of the three element group are:

e a b
Γ1 1 1 1
Γ2 1 e2πi/3 e4πi/3

Γ2 1 e4πi/3 e2πi/3

In the notation of Problem 3, we have

A1 = (1, 1, 1), A2 = (1, e2πi/3, e4πi/3), A3 = (1, e4πi/3, e2πi/3) .

Note that some of these entries are complex. Thus, the distinct
inner products between these vectors are

A1 ·A1∗ = 1 + 1 + 1 = 3 ,
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A2 ·A2∗ = 1 + 1 + 1 = 3 ,

A3 ·A3∗ = 1 + 1 + 1 = 3 ,

A1 ·A2∗ = 1 + e−2πi/3 + e−4πi/3 = 0 ,

A1 ·A3∗ = 1 + e−4πi/3 + e−2πi/3 = 0 ,

A2 ·A3∗ = 1 + e−2πi/3 + e2πi/3 = 0 ,

all of which are consistent with the Great Orthogonality Theorem.

(b) In view of the fact that there are 3 mutually orthogonal vec-
tors, there can be no additional irreducible representations of this
group.

(c) For cyclic groups of order |G|, we determined that the irre-
ducible representations were based on the |G|th roots of unity
(Problem 3, Problem Set 5). Since this produces |G| distinct irre-
ducible representations, our procedure yields all of the irreducible
representations of any cyclic group.

5. Every irreducible representation of an Abelian group is one-dimen-
sional. Moreover, since every one of these representations is either
a homomorphism or isomorphism of the group, with the operation
in the representation being ordinary multiplication, the identity
always corresponds to unity (Problem 9, Problem Set 3). Now,
the order n of a group element g is the smallest integer for which

gn = e .

For every element in any group 1 ≤ n ≤ |G|. This relationship
must be preserved by the irreducible representation. Thus, if Akg
is the entry corresponding to the element g in the kth irreducible
representation, then

(Akg)
n = 1 ,
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i.e., Akg is the nth root of unity:

Akg = e2mπi/n, m = 0, 1, . . . , n− 1 .

The modulus of each of these quantities is clearly unity, so the
modulus of every entry in the irreducible representations of an
Abelian group is unity.

This is consistent with the Great Orthogonality Theorem when
applied to a given representation (cf. Problem 3):

∑
α

AkαA
k∗
α =

∑
α

∣∣∣Akα∣∣∣2 = |G| . (1)


