
Group Theory

Solutions to Problem Set 7 November 30, 2001

1. A regular hexagon is shown below:
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The following notation will be used for the symmetry operations
of this hexagon:

(
1 2 3 4 5 6

a1 a2 a3 a4 a5 a6

)
,

where the first row corresponds to the reference order of the ver-
tices shown in the diagram and the ai denote the number at the
ith vertex after the transformation of the hexagon.

The symmetry operations of this hexagon consist of the identity,
rotations by angles of 1

3
nπ radians, where n = 1, 2, 3, 4, 5, three

mirror planes which pass through opposite faces of the hexagon,
and three mirror planes which pass through opposite vertices of
the hexagon. For the identity and the rotations, the effect on the
hexagon is
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These operations correspond to

E =

(
1 2 3 4 5 6

1 2 3 4 5 6

)
,

C6 =

(
1 2 3 4 5 6

2 3 4 5 6 1

)
,

C2
6 = C3 =

(
1 2 3 4 5 6

3 4 5 6 1 2

)
,

C3
6 = C2 =

(
1 2 3 4 5 6

4 5 6 1 2 3

)
,

C4
6 = C2

3 =

(
1 2 3 4 5 6

5 6 1 2 3 4

)
,

C5
6 =

(
1 2 3 4 5 6

6 1 2 3 4 5

)
.

The three mirror planes which pass through opposite faces of the
hexagon are
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which correspond to

σv,1 =

(
1 2 3 4 5 6

6 5 4 3 2 1

)
,

σv,2 =

(
1 2 3 4 5 6

2 1 6 5 4 3

)
,

σv,3 =

(
1 2 3 4 5 6

4 3 2 1 6 5

)
.

Finally, the three mirror planes which pass through opposite ver-
tices of the hexagon are
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These operations correspond to

σd,1 =

(
1 2 3 4 5 6

1 6 5 4 3 2

)
,

σd,2 =

(
1 2 3 4 5 6

3 2 1 6 5 4

)
,
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σd,3 =

(
1 2 3 4 5 6

5 4 3 2 1 6

)
.

That these 12 elements do, in fact, form a group is straightforward
to verify. The standard notation for this group is C6v.

2. The order n of an element a of a group is defined as the smallest
integer such that an = e. If group elements a and b are in the
same class, then there is an element g in the group such that

b = g−1ag .

The m-fold product of b is then given by

bm = (g−1ag)(g−1ag) · · · (g−1ag)︸ ︷︷ ︸
m factors

= g−1amg .

If this is equal to the unit element e, we must have

g−1amg = e ,

or,

am = e .

The smallest value of m for which this equality can be satisfied
is, by definition, n, the order of a. Hence, two elements in the
same class have the same order.

3. For two elements a and b of a group to be in the same class,
there must be another group element such that b = g−1ag. If the
group elements are coordinate transformations, then elements in
the same class correspond to the same type of operation, but in
coordinate systems related by symmetry operations. This fact,
together with the result of Problem 2, allows us to determine the
classes of the group of the hexagon.
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The identity, as always, is in a class by itself. Although all of the
rotations are the same type of operation, not all of these rotations
have the same orders: C6 and C5

6 have order 6, C3 and C2
3 have

order 3, and C2 has order 2. Thus, the 5 rotations belong to three
different classes.

The two types of mirror planes, σv,i and σd,i, must belong to differ-
ent classes since there is no group operation which will transform
any of the σv,i to any of the σd,i. To do so would require a rotation
by an odd multiple of 1

6
π, which is not a group element. All of

the σv,i are in the same class and all of the σd,i are in the same
class, since each is the same type of operation, but in coordinate
systems related by symmetry operations (one of the rotations)
and, of course, they all have order 2, since each reflection plane
is its own inverse.

Hence, there are six classes in this group are

E ≡ {E} ,

2C6 ≡ {C6, C
5
6} ,

2C3 ≡ {C3, C
2
3} ,

C2 ≡ {C2} ,

3σv ≡ {σv,1, σv,2, σv,3} ,

3σd ≡ {σd,1, σd,2, σd,3} .

4. As there are 6 classes, there are 6 irreducible representations, the
dimensions of which must satisfy the sum rule

6∑
k=1

d2
k = 12 ,
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since |C6v| = 12. The only positive integer solutions of this equa-
tion are

d1 = 1, d2 = 1, d3 = 1, d4 = 1, d5 = 2, d6 = 2 ,

i.e., there are 4 one-dimensional irreducible representations and 2
two-dimensional irreducible representations.

5. (a) For the identical representation, all of the characters are 1.
For the parity representation, the character is 1 for operations
which preserve the parity of the coordinate system (“proper” ro-
tations) and −1 for operations which change the parity of the
coordinate system (“improper” rotations). Additionally, we can
enter immediately the column of characters for the class of the
unit element. These are equal to the dimensionality of each ir-
reducible representation, since the unit element is the identity
matrix with that dimensionality. Thus, we have the following
entries for the character table of C6v:

C6v E 2C6 2C3 C2 3σv 3σd
Γ1 1 1 1 1 1 1
Γ′1 1 1 1 1 −1 −1
Γ′′1 1
Γ′′′1 1
Γ2 2
Γ′2 2

(b) The characters for one of the two-dimensional representations
of C6v can be obtained by constructing matrices for operations
in analogy with the procedure discussed in Section 3.2 for the
equilateral triangle. One important difference here is that we
require such a construction only for one element in each class
(since the all matrices in a given class have the same trace). We
will determine the representations of operations in each class in
an (x, y) coordinate system shown below:
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x

y

Thus, a rotation by an angle φ, denoted by R(φ), is given by the
two-dimensional rotational matrix:

R(φ) =

(
cosφ sinφ

− sinφ cosφ

)
.

The corresponding character χ(φ) is, therefore, simply the sum
of the diagonal elements of this matrix:

χ(φ) = 2 cosφ .

We can now calculate the characters for each of the classes com-
posed of rotations:

χ(2C6) = χ(1
3
π) = 1 ,

χ(2C3) = χ(2
3
π) = −1 ,

χ(C2) = χ(π) = −2 .

For the two classes of mirror planes, we need only determine the
character of one element in each class, which may be chosen at
our convenience. Thus, for example, since the representation of
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σv,1 can be determined directly by inspection:(−1 0

0 1

)
,

we can obtain the character of the corresponding class as

χ(3σv) = 0 .

Similarly, the representation of σd,2 can also be determined di-
rectly by inspection: (

1 0

0 −1

)
,

which yields the character

χ(3σd) = 0 .

We can now add the entries for this two-dimensional irreducible
representations to the character table of C6v:

C6v E 2C6 2C3 C2 3σv 3σd
Γ1 1 1 1 1 1 1
Γ′1 1 1 1 1 −1 −1
Γ′′1 1
Γ′′′1 1
Γ2 2 1 −1 −2 0 0
Γ′2 2

(c) The one-dimensional irreducible representations must obey
the multiplication table, since they themselves are representations
of the group. In particular, given the products

C3C
2
3 = E, C3

3 = E ,

if we denote by α the character of the class 2C3 = {C3, C
2
3}, then

these products require that

α2 = 1, α3 = 1 ,
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respectively. Thus, we deduce that α = 1 for all of the one-
dimensional irreducible representations. With these additions to
the character table, we have

C6v E 2C6 2C3 C2 3σv 3σd
Γ1 1 1 1 1 1 1
Γ′1 1 1 1 1 −1 −1
Γ′′1 1 1
Γ′′′1 1 1
Γ2 2 1 −1 −2 0 0
Γ′2 2

(d) Since the character for all one-dimensional irreducible rep-
resentations for the class 2C3 = {C3, C

2
3} is unity, the product

C6C3 = C2 requires that the characters for the classes of C6 and
C2 are the same in these representations. Since C2

2 = E, this char-
acter must be 1 or −1. Suppose we choose χ(2C6) = χ(C2) = 1.
Then, the orthogonality of the columns of the character table
requires that the character for the classes E and 2C6 are orthog-
onal. If we denote by β the character for the class 2C6 of the
representation Γ′2, we require

(1× 1) + (1× 1) + (1× 1) + (1× 1) + (2× 1) + (2× β) = 0 ,

i.e., β = −3. But this value violates the requirement that∑
α

nα|χα|2 = |G| . (1)

Thus, we must choose χ(2C6) = χ(C2) = −1, and our character
table becomes

C6v E 2C6 2C3 C2 3σv 3σd
Γ1 1 1 1 1 1 1
Γ′1 1 1 1 1 −1 −1
Γ′′1 1 −1 1 −1
Γ′′′1 1 −1 1 −1
Γ2 2 1 −1 −2 0 0
Γ′2 2
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(e) The characters for the classes 2C6, 2C3, and C2 of the Γ′2
representation can now be determined by requiring the columns
corresponding to these classes to be orthogonal to the column
corresponding to the class of the identity. When this is done, we
find that the values obtained saturate the sum rule in (1), so the
characters corresponding to both classes of mirror planes in this
representation must vanish. This enables to complete the entries
for the Γ′2 representation:

C6v E 2C6 2C3 C2 3σv 3σd
Γ1 1 1 1 1 1 1
Γ′1 1 1 1 1 −1 −1
Γ′′1 1 −1 1 −1
Γ′′′1 1 −1 1 −1
Γ2 2 1 −1 −2 0 0
Γ′2 2 −1 1 2 0 0

The remaining entries are straightforward to calculate. The fact
that each mirror reflection has order 2 means that these entries
must be either +1 or −1. The requirement of orthogonality of
columns leaves only one choice:

C6v E 2C6 2C3 C2 3σv 3σd
Γ1 1 1 1 1 1 1
Γ′1 1 1 1 1 −1 −1
Γ′′1 1 −1 1 −1 1 −1
Γ′′′1 1 −1 1 −1 −1 1
Γ2 2 1 −1 −2 0 0
Γ′2 2 −1 1 2 0 0

which completes the character table for C6v.


