
Group Theory

Solutions to Problem Set 8 December 7, 2001

1. A matrix A is said to be orthogonal if its matrix elements aij
satisfy the following relations:∑

i

aijaik = δj,k,
∑
j

aijakj = δij , (1)

i.e., the rows and columns are orthogonal vectors. This ensures
that AtA = AAt = I.

The direct product C of two matrices A and B, denoted by C =
A⊗B, is given in terms of matrix elements by

cik;jl = aijakl .

If A and B are orthogonal matrices, then we can show that C is
also an orthogonal matrix by verifying the relations in Eq. (1).
The first of these relations is∑

ik

cik;jlcik;j′l′

=
∑
ik

aijaklaij′akl′ =
(∑

i

aijaij′
)(∑

k

aklakl′
)

= δj,j′δl,l′ ,

where the last step follows from the first of Eqs. (1). The second
orthogonality relation is∑

jl

cik;jlci′k′;jl

=
∑
jl

aijaklai′jak′l =
(∑

j

aijai′j

)(∑
l

aklak′l

)
= δi,i′δk,k′

where the last step follows from the second of Eqs. (1). Thus, we
have shown that the direct product of two orthogonal matrices is
also an orthogonal matrix.
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2. The direct product of two matrices A and B with matrix elements
aij and bij is

cik,jl = aijbkl .

The trace of the direct product A⊗B is obtained by setting j = i
and l = k and summing over i and k:

tr(A⊗B) =
∑
ik

cik,ik =
∑
ik

aiibkk =
∑
i

aii
∑
k

bkk = tr(A) tr(B) ,

which is the product of the traces of A and B.

3. We have two groups Ga and Gb with elements

Ga = {ea, a2, a3, . . . , a|Ga|}

and

Gb = {eb, b2, b3, . . . , b|Gb|} ,

such that aibj = bjai for all i and j. We are using a notation
where it is understood that a1 = ea and b1 = eb. The direct
product Ga ⊗ Gb of these groups is the set obtained by forming
the product of every element of Ga with every element of Gb:

Ga ⊗Gb = {e, a2, a3, . . . , ana , b2, b3, . . . , bnb , . . . , aibj, . . .} .

To show that Ga⊗Gb is a group, we must demonstrate that these
elements fulfill each of the four requirements in Sec. 2.1.

Closure. The product of two elements aibj and ai′bj′ is given by

(aibj)(ai′bj′) = (aiai′)(bjbj′) = akbl ,

where the first step follows from the commutativity of elements
between the two groups and the second step from the group prop-
erty of Ga and Gb.
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Associativity. The associativity of the composition law follows
from

(aibi′ajbj′)akbk′ =
[
(aiaj)ak

][
(bi′bj′)bk′

]
=
[
ai(ajak)

][
bi′(bj′bk′)

]
= aibi′(ajbj′akbk′) ,

since associativity holds for Ga and Gb separately.

Unit Element. The unit element e for the direct product group is
eaeb = ebea, since

(aibj)(eaeb) = (aiea)(bjeb) = (eaai)(ebbj) = (eaeb)(aibj) .

Inverse. Finally, the inverse of each element aibj is a−1
i b−1

j because

(aibj)(a
−1
i b−1

j ) = (aia
−1
i )(bjb

−1
j ) = eaeb

and

(a−1
i b−1

j )(aibj) = (a−1
i ai)(b

−1
j bj) = eaeb .

Thus, we have shown that the direct product of two groups is
itself a group. Since the elements of this group are obtained by
taking all products of elements from Ga and Gb, the order of this
group is |Ga||Gb|.

4. Suppose we have an irreducible representation for each of two
groups Ga and Gb. We denote these representations, which may
be of different dimensions, by A(ai) and A(bj), and their matrix
elements by A(ai)ij and A(bj)ij. Since these representations are
irreducible, they satisfy the Great Orthogonality Theorem:

∑
ai

A(ai)
∗
ijA(ai)i′j′ =

|Ga|
da

δi,i′δj,j′ ,

∑
bj

A(bj)
∗
ijA(bj)i′j′ =

|Gb|
db

δi,i′δj,j′ ,
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where da and db are the dimensions of the irreducible representa-
tions of Ga and Gb, respectively. A representation of the direct
product of two groups, denoted by A(aibj), is obtained from the
direct product of representations of each group:

A(aibj)ik;jl = A(ai)ijA(bj)kl .

The sum in the Great Orthogonality Theorem for the direct prod-
uct representation is∑

ai

∑
bj

A(aibj)
∗
ik;jlA(aibj)i′k′;j′l′

=
∑
ai

∑
bj

A(ai)
∗
ijA(bj)

∗
klA(ai)i′j′A(bj)k′l′

=
[∑
ai

A(ai)
∗
ijA(ai)i′j′

]
︸ ︷︷ ︸

|Ga|
da

δi,i′δj,j′

[∑
bj

A(bj)
∗
klA(bj)k′l′

]
︸ ︷︷ ︸

|Gb|
db

δk,k′δl,l′

=
( |Ga||Gb|

dadb

)
δi,i′δk,k′δj,j′δl,l′ .

This shows that this direct product representation is, in fact,
irreducible. It has dimensionality dadb and the order of the direct
product is, of course, |Ga| × |Gb|.

5. If the ϕi are orthonormal, and if this property is required to be
preserved by the group of the Hamiltonian (as it must, to conserve
probability), then, in Dirac notation, we have

(i, j) ≡
∫
ϕi(x)∗ϕj(x) dx =

∫
[Rϕi(x)]∗Rϕj(x) dx

= (i|R†R|j) = δi,j .
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Therefore,

(i|R†R|j) =
∑
k,l

(k, l)Γ(R)∗kiΓ(R)lj

=
∑
k

Γ(R)∗kiΓ(R)kj

=
∑
k

[
Γ(R)†

]
ik

Γ(R)kj

=
[
Γ(R)†Γ(R)

]
ij
,

i.e., when written in matrix notation,

Γ(R)†Γ(R) = I .

Thus, the matrix representation is unitary.

6. We again use Dirac notation to signify basis functions ϕi and
ϕj corresponding to irreducible representations n and n′, respec-
tively: |n, i) and |n′, j). Then, the operations R in the group of
the Hamiltonian applied to these functions yield

R|n, i) =
∑
k

Γ(n)(R)ki|n, k) ,

R|n′, j) =
∑
l

Γ(n′)(R)lj|n′, l) .

Since the operators and their representations are unitary,

(n′, j|R† = (n′, j|R−1 =
∑
l

Γ(n′)(R)∗lj(n
′, l| ,

we have

(n′, j|R−1R|n, i) = (n′, j|n, i)

=
∑
kl

Γ(n′)(R)∗kjΓ
(n)(R)li(n

′, k|n, l) .
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If we now sum both sides of this equation over the elements of
the group of the Hamiltonian, and invoke the Great Orthogonality
Theorem, we obtain∑

R

(n′, j|n, i) = |G|(n′, j|n, i)

=
∑
kl

[∑
R

Γ(n′)(R)∗kjΓ
(n)(R)li

]
︸ ︷︷ ︸

|G|
dn
δn,n′δk,lδi,j

(n′, k|n, l)

= |G|δn,n′δi,j(n′, k|n, k) ,

where |G| is the order of the group of the Hamiltonian and dn is
the dimension of the nth irreducible representation. Therefore,

(n′, j|n, i) = δn,n′δi,j ,

since (n, k|n, k) = 1.

7. (a) A square is shown below:

1

23

4

In analogy with the procedure described in Problem Set 7, we
will use the following notation for the symmetry operations of
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this hexagon: (
1 2 3 4

a1 a2 a3 a4

)
,

where the ai denote the number at the ith vertex after the trans-
formation of the hexagon given in the indicated reference order.
Thus, the identity operation, which identifies the reference order
of the vertices, corresponds to(

1 2 3 4

1 2 3 4

)
.

The symmetry operations on this square consist of the identity,
rotations by angles of 1

2
nπ radians, for n = 1, 2, 3, two mirror

planes which pass through opposite faces of the square, and two
mirror planes which pass through opposite vertices of the square.
For the rotations, the effect on the square is

4

12

3 3

41

2 2

34

1

These operations correspond to

C4 =

(
1 2 3 4

4 1 2 3

)
,

C2
4 = C2 =

(
1 2 3 4

3 4 1 2

)
,

C3
4 =

(
1 2 3 4

2 3 4 1

)
.
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The two mirror planes which pass through opposite faces of the
square are

4

32

1 2

14

3

which correspond to

σv,1 =

(
1 2 3 4

4 3 2 1

)
,

σv,2 =

(
1 2 3 4

2 1 4 3

)
.

Finally, the two mirror planes which pass through opposite ver-
tices of the square are

1

43

2 3

21

4

These operations correspond to

σ′v,1 =

(
1 2 3 4

1 4 3 2

)
,

σ′v,2 =

(
1 2 3 4

3 2 1 4

)
.
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Elements in the same equivalence class must have the same order
and correspond to the same “type” of operation. Thus, there are
five equivalence classes of this group:

{E}, {C2 = C2
4}, {2C4}, {2σv}, {2σ′v} .

Note that, as in the case of the regular hexagon (Problem Set
7), all of the rotations need not belong to the same class, despite
being the same “type” of operation because they must also have
the same order.

(b) The order of this group is 8 and there are 5 equivalence classes.
Thus, there must be five irreducible representations whose dimen-
sionalities must satisfy

d2
1 + d2

2 + d2
3 + d2

4 + d2
5 = 8 .

The only solution of this equation (with positive integer values
for the dk) is

d1 = 1, d2 = 1, d3 = 1, d4 = 1, d5 = 2 .

These dimensionalities imply that the energy levels for a Hamilto-
nian with this symmetry are either nondegenerate or are two-fold
degenerate. From the expression given for the energy eigenval-
ues, we see immediately that the energy eigenvalues with p = q
are non-degenerate, and those with p 6= q are two-fold degen-
erate (but see below). Thus, the dimensions of the irreducible
representations are consistent with these degeneracies.

(c) The simplest way to obtain a two-dimensional representation
of this group is to consider the action of each group element on
some generic point (x, y). Then the action on this point of each
of the operations given above can be determined by inspection.
We begin with the figure below:
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From the diagrammatic representation of each symmetry opera-
tion, we will be able to determine the corresponding representa-
tion, simply by inspection. The action on this point by the three
rotations acn be represented as

These rotations are thus seen to transform the point (x, y) into
(−y, x), (−x,−y), and (y,−x), respectively. The two reflections
that pass through the center of faces are

so they transform the (x, y) into (−x, y) and (x,−y), respectively.
Finally, for the two reflection planes which pass through vertices,
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which transform the point (x, y) into (y, x) and (−y,−x), respec-
tively. These transformations enable us to construct the char-
acters corresponding to the “coordinate” representation. Then,
together with the identical and parity representations, we have
the following entries of the character table for this group:

E C2 2C4 2σv 2σ′v
Γ1 1 1 1 1 1
Γ′1 1 1 1 −1 −1
Γ′′1 1
Γ′′′1 1
Γ2 2 −2 0 0 0

The group multiplication table and the orthogonality of columns
allows us to immediately complete the entries for the classes {C2}
and {2C4}:

E C2 2C4 2σv 2σ′v
Γ1 1 1 1 1 1
Γ′1 1 1 1 −1 −1
Γ′′1 1 1 −1
Γ′′′1 1 1 −1
Γ2 2 −2 0 0 0

The remaining four entries can be determined from the orthog-
onality of either rows or columns and again invoking the group
multiplication table:
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E C2 2C4 2σv 2σ′v
Γ1 1 1 1 1 1
Γ′1 1 1 1 −1 −1
Γ′′1 1 1 −1 1 −1
Γ′′′1 1 1 −1 −1 1
Γ2 2 −2 0 0 0

(e) The eigenfunctions ϕ1,1(x, y) and ϕ2,2(x, y) are given by

ϕ1,1(x, y) ∝ cos(1
2
πx) cos(1

2
πy)

and

ϕ2,2(x, y) ∝ sin(πx) sin(πy) .

Since ϕ1,1(x, y) is invariant under the interchange of x and y and
under changes in their signs, it transforms according to the iden-
tical representation. However, although ϕ2,2(x, y) is invariant un-
der the interchange of x and y, each sine factor changes sign if
their argument changes sign. Thus, this eigenfunction transforms
according to the parity representation.

(f) The (degenerate) eigenfunctions ϕ1,2(x, y) and ϕ2,1(x, y) are(
ϕ1,2

ϕ2,1

)
∝
[

cos(1
2
πx) sin(πy)

sin(πx) cos(1
2
πy)

]
.

The transformation properties of these eigenfunctions can be de-
termined from the results of part (c). This yields the following
matrix representation of each symmetry operation:

E =

(
1 0

0 1

)
, C4 =

(
0 1

−1 0

)
, C2

4 =

(−1 0

0 −1

)
,

C3
4 =

(
0 −1

1 0

)
, σv,1 =

(
1 0

0 −1

)
, σv,2 =

(−1 0

0 1

)
,

σ′v,1 =

(
0 1

1 0

)
, σ′v,2 =

(
0 −1

−1 0

)
.
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This produces the following characters:

{E} = 2, {C2} = −2, {2C4} = 0, {2σv} = 0, {2σ′v} = 0 ,

which are the characters of the two-dimensional irreducible repre-
sentation Γ2, which is the “coordinate” irreducible representation.

(g) We have that the energies E6,7 and E2,9 are given by

E6,7 = E7,6 =
h̄2π2

8m
(62 + 72) = 85

h̄2π2

8m

and

E2,9 = E9,2 =
h̄2π2

8m
(22 + 92) = 85

h̄2π2

8m
,

so this energy is fourfold degenerate. However, since the group
operations have the effect of interchanging x and y with possible
changes of sign, the eigenfunctions ϕ6,7 and ϕ7,6 are transformed
only between one another, and the eigenfunctions ϕ2,9 and ϕ9,2

are transformed only between one another. In other words, this
fourfold degeneracy is accidental , resulting only from the numer-
ical coincidence of the energies of two twofold-degenerate states.

(h) We have already determined that ϕp,p with p even transforms
according to the identical representation, while if p is odd, ϕp,p
transforms according to the parity representation. Moreover, the
pair of eigenfunctions ϕp,q where p is even and q is odd transforms
according to the coordinate representation.

Consider now the case where the eigenfunctions are of the form
ϕp,q where both p and q are even. The matrices corresponding to
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the symmetry operations are

E =

(
1 0

0 1

)
, C4 =

(
0 1

1 0

)
, C2

4 =

(
1 0

0 1

)
,

C3
4 =

(
0 1

1 0

)
, σv,1 =

(
1 0

0 1

)
, σv,2 =

(
1 0

0 1

)
,

σ′v,1 =

(
0 1

1 0

)
, σ′v,2 =

(
0 1

1 0

)
.

The corresponding characters are

{E} = 2, {C2} = 2, {2C4} = 0, {2σv} = 2, {2σ′v} = 0 .

This representation must be reducible, since its characters do not
correspond to those of any of the irreducible representations in
the table determined in Part (d). A straightforward application
of the Decomposition Theorem (or simple inspection) shows that
this representation is the direct sum of the Γ1 and Γ′′1 irreducible
representations. This means that there is a linear combination of
these eigenfunctions that diagonalizes the matrices corresponding
to each symmetry operation of this group.

For the eigenfunctions of the form ϕp,q where both p and q are
odd, the matrices corresponding to the symmetry operations are

E =

(
1 0

0 1

)
, C4 =

(
0 −1

−1 0

)
, C2

4 =

(
1 0

0 1

)
,

C3
4 =

(
0 −1

−1 0

)
, σv,1 =

(−1 0

0 −1

)
, σv,2 =

(−1 0

0 −1

)
,

σ′v,1 =

(
0 1

1 0

)
, σ′v,2 =

(
0 1

1 0

)
.

The characters are now

{E} = 2, {C2} = 2, {2C4} = 0, {2σv} = −2, {2σ′v} = 0 .
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which correspond to a reducible representation composed of the
direct sum of the Γ′1 and Γ′′′1 irreducible representations. Thus,
all of the irreducible representations occur in the eigenfunctions
of the two-dimensional square well.

8. The character table of the regular hexagon is reproduced below:

C6v E 2C6 2C3 C2 3σv 3σd
Γ1 1 1 1 1 1 1
Γ′1 1 1 1 1 −1 −1
Γ′′1 1 −1 1 −1 1 −1
Γ′′′1 1 −1 1 −1 −1 1
Γ2 2 1 −1 −2 0 0
Γ′2 2 −1 1 2 0 0

A transformation properties of a vector perturbation can be de-
duced in a manner analogous to that for the equilateral trian-
gle (Section 6.6.2). Applying each symmetry operation to r =
(x, y, z) produces a reducible representation because these oper-
ations are either rotations or reflections through vertical planes.
Thus, the z axis is invariant under every symmetry operation of
this group which. Together with the fact that an (x, y) basis gen-
erates the two-dimensional irreducible representation Γ2 [Problem
5(b), Problem Set 7], yields

Γ′ = Γ1 ⊕ Γ2 .

The corresponding characters are

C6v E 2C6 2C3 C2 3σv 3σd
Γ1 ⊕ Γ2 3 2 0 −1 1 1

to determine the selection rule for an initial state that transforms
according to the parity representation (Γ′1, we must calculated

Γ′1 ⊗ Γ′ = Γ′1 ⊗ (Γ1 ⊕ Γ2) .

The characters associated with this operation are
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C6v E 2C6 2C3 C2 3σv 3σd
Γ′1 ⊗ (Γ1 ⊕ Γ2) 3 2 0 −1 −1 −1

Finally, either by inspection, or by applying the decomposition
theorem, we find that

Γ′1 ⊗ (Γ1 ⊕ Γ2) = Γ′1 ⊕ Γ2 ,

so transitions between states that transform according to the par-
ity representation and any states other than those that transform
as the parity or coordinate representations are forbidden by sym-
metry.


