Group Theory

Solutions to Problem Set 9 December 14, 2001

1. The Lie group GL(n,R) has n? parameters, because the transfor-
mations can be represented as n x n matrices (with real entries).
The requirement that the Euclidean length dimensions be pre-
served by such a transformation leads to the requirement that,
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Ty +ry +--t+x, =1+ + -+,

Proceeding as in Sec. 7.2, we note that there are n conditions
from the requirement that the coefficients of z;, « = 1,2,...,n
be equal to unity. Then, there are 3n(n — 1) conditions from the
requirement that the coefficients of the unique products x;z;, ¢ #
j vanish. Thus, beginning with n free parameters for GL(n,R),
there are

n—n—inn—1)=n"—n-1in"+1in=1In(n-1)

free parameters for O(n).

2. Beginning with the three conditions
ajy + a3, =1, ajaiz + azaz =0, ajy + a5y =1,

we take the product of the first by the third equations and sub-
tract the square of the second equation to obtain
(af) + a3)(aty + a3y) — (anais + azias)?
= a%la%Q + a%la% + a%laé + a§1a§2 - a%la%
—2a11a12a21022 — a§1a§2
= G%I(I%Q + aglafg — 2&11&12&21@22
= (a11a22 - a12a21)2

=1.



Thus, the three constraints for orthogonal groups in two dimen-
sions imply that the square of the determinant of such transfor-
mation must be equal to unity.

. Forming the product of the the matrices corresponding to R(1)
and R(¢o) yields

( cos(p; —siny; ) ( COS Py — sin Y9 )
sin g COs (V1 sin 9 COS (g
( COS (P COS Py — SIN Y1 SIN (P — COS (P71 SIN Y9 — SIN Y1 COS P2 )

Sin 1 COS Yy + COS Y1 SiN (P — SN (Y1 SIN Yy + COS Y1 COS P2

By invoking the standard trigonometric identities for the sines
and cosines of the sum and difference of two angles,

cos(z £y) = cosxcosy Fsinzsiny,

sin(x +y) = sinzcosy £ cosxrsiny,
we can write
<cosg01 —sing01> (congQ —sing02>
sin 1 COS V1 sin g COS (Po
B [cosm T ps) —sin(py + 902)]
sin(pr +¢2)  cos(pr+ @) |

Thus,

R(p1+ ¢2) = R(p1)R(p2) -



4. The expression

R(p) =¥,

0 —1
X = ,
1 0
is defined by its Taylor series:
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where
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Successive powers of X yield
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X3 = . Xi= ,
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whereupon this sequence is repeated. We can write this sequence
in matrix form as X? = —1, X% = —X, X* = I,..., where I is
the 2 x 2 unit matrix. The powers of X are therefore given by

I, n even
X2n —
—I, n odd
for even powers and
X, n even
X2n+1 —
—X, nodd
for odd powers Thus, the Taylor series in (1) may be written as

X — = (_1)” 2n[ = (_1)” 27L+1X
¢ ;}(gn)!*p +n§::0(2 T

n
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= ITcosp+ Xsing

<cosg0 —singo)
B sin ¢ cos ’

which is the rotation matrix in two dimensions.

. The two parameter group
¥ =axr+0b

was discussed in Example 7.1. The identity was found to cor-
respond to the parameters a = 1 and b = 0. The infinitesimal
transformations are therefore given by

¥ =(1+da)r+db=2x+xda+db.

If we substitute this into some function f(x) and expand to first
order in the parameters a and b, we obtain

f(@") = f(z +xda+db) = f(x)+x%da—|— %db,

from which we identify the infinitesimal operators

0 9,
Xl—flf%, XQ—%

. The group Cy, contains all two-dimensional rotations and a ver-
tical reflection plane, denoted by o, in the z-z plane. Since this
reflection changes the parity of the coordinate system, it changes
the sense of the rotation angle ¢. Thus, a rotation by ¢ in the
original coordinate system corresponds to a rotation by —¢ in the



transformed coordinate system. Denoting the reflection operator
by S, we then must have that

SR(¢)S™" = R(—¢). (2)

Since S = S™!, we can see this explicitly for the two-dimensional
rotation matrix R(¢p):

(1 0) (cosgp —Siﬂgp) <1 0) ( Cos Sin(p)
0 -1 sin ¢ COs 0 -1/ \- sing cos ’
where the matrix on the right-hand side of this equation is R(—¢).

Equation (2) shows that (i) the group is no longer Abelian, and
(ii) the equivalence classes correspond to rotations by ¢ and —.

. Proceeding as in Section 7.4, the infinitesimal rotations in four
dimensions which leave the quantity z? + 3? + 2% + w? invariant
are

! 1 ¥1 P2 P3 x
N e AR
2 - —¥Y2 P4 1 Y6 z
w' —p3 —ps —pe 1 w

Substituting this coordinate transformation into a differentiable
function F(z,y, z, w),

F(x/7y/7 2/7 wl)
= F(z+ 01y + p22 + 3w,y — @17 — paz + psw,

Z — Qo + QY + YW, W — P3T — P5Y — PeZ) -
and expanding to first order in the ;, yields

oOF oF
F / / / / :F — R
(337972:111) (x7y7zaw)+gol<yax xay)
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From these equations and, if necessary, a change in sign of the
corresponding ¢;, we can identify the following differential oper-
ators

P R S
I_Zay Y9 2=, T on 3= Yor xf)y’

0 0 0 0 0 0
Bl_l‘a—t%, Bgzya—ta—, B3:Za—t&

. With the infinitesimal generators calculated in Problem 7, we de-
termine the commutators in the standard fashion. For the com-
mutators between the A;, we have

[Ay, Ao f = Ai(Aaf) — Aa(Arf)

= (s ~va2) (52 ~200) ~ (o~ =3) (55, - 32)

°f L 0f o*f  of 0*f

B mayaz — 0yox B :vy@ + y% + yzazam
of 0 f O*f  , O*f o0 f
_xﬁy B xzazé?y Ty 022 te 0xdy * Y 0102
_ o of
- Yoz oy



[Ay, As|f = A(Asf) — As(Arf)

~ (5952 =) = e =) (55 =v50)

T U3 0 A
ar  Poyoz oy Y bzar ' Vozay

_Za2f +y , O°f +m262f 8f 82f
4 0x 0y 0x0z Oy? oz Gyﬁz

5f af
G:E 82’

= _AQf )

[Ag, As]f = Az(Asf) — As(Azf)

= (e ~202) 3~ 75,) ~ (s ~3) (e = 5)

0*f an 82f of 32f
= zy +2== + g
020x azay Y= or? dy 83:8y
R S B
Yo: " Voza: TV os2 oydz 6y83:
_of _ of
"oy Y52

Thus, we can summarize these results as
[AZ', AJ] = 5ijkAk .
Similarly, for the B;, we calculate the pertinent commutators as

[B1, Bo]f = Bi(Baf) — Ba(B1f)



= (v~ va0) (5~ v5,) ~ (v~ w3y ¢
-\ ow oz 8w oy y@w Jy
TS TS T ),
~ o (9y owdy Y ozdw 0xy
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Yor ~ 8y
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[B1, Bs|f = Bi(Bsf) — Bs(B1f)

(7~ ae) (o —52) ~ (o~ v5) (75
N xf)w ox ow 0z Z@w 82 ow
0 fof *f 0 +t282f
N $28w2 xaz v Owoz Zwaxﬁw 0x0z
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(?x 82
== _AQfa
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= (30~ v35) i~ 50) ~ (o~ ws) (v~
~ Vow 8y ow 0z “ow Voz)\Yow
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*f of >*f >*f , 0°f
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=Aif.
These results can be summarized as
[Bi, Bj] = €iju Ak -
Finally, for the commutators between the A; and B;, we note first
by inspection that
[Ai, Bi| =0,

for i = 1,2, 3, since A; and B; involve mutually exclusive pairs of
variables. For the remaining commutator pairs, we have

[A1, By] = Ay(Baf) — Ba(Aif)

~ (5952 05 =v5) = (aw —v3) (5, 732)

—za—f+ O'f zwan — 9 O'f + yw OF
ow ¥ oyow 82 Y azow 7V ozay
L L S ) S
Y owdy Y owdz 0y? 87: oY 0yoz
B (‘9f 8f
o Vo2
= B3f7

[A1, Bs] = Ai(Bs f) — B3(Af)

= (o3 va) Cow —2) ~ (a2 (55 - 52)
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_ 2 P 0*f af 0*f 5

= agow  oyor Yow Y ozow oz

2 OF O O, OO
3way Y2 5wo2 y 8zay V5.2
W2 af

8y Y ow

= _B2f7

[A2, B3] = Az(Bsf) — Bs(Azf)

= (e =232 (i~ 2) = (s ) (e = <5)

x@f 0*f _Iwa%f_ o*f N 0% f
ow 0z0w 022 Ooxow = 0x0z

of L 0f  of Of 0*f

T woz T2 dwdr oz b Vo2 T oras
of 9of
v “or
=Bf.
Thus

[AZ', BJ] = €ijkBk .

9. Consider the following linear combinations of the operators in
Problem 7:
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We can now use the commutation relations derived in Problem &
to derive the commutation relations for the J; and Kj. For the

J;, we have

[Jiv*]j]

[Kiij]

[‘]iv Kj]

1lAi + Bi, A; + By

L[4, Aj] + [, Bi] + [Bi, Aj] + [B;, B
i(gijkAk + ik Br + €41 Br, + €ijiuAk)
gijk%(Ak + By)

Eijk Ik

ilAi — Bi, A; — Bj]

1[4 Al = [Ai, B = [Bi, A + (B, B)))
i(gijkAk — eijkBr — €iji Br + €ijiuAk)
€¢jk%(z4k — By)

€ijk Kk

ilAi + Bi, A; — Bj]
i([AZ?AJ] - [Aw BJ] + [Bu A]] - [B27 B]D

1
1(€ijnAr + €iju Be — €4k Br — €ijuAr)

e}



