1. **Introduction**
 a. Symmetry in physics
 b. Discrete and continuous symmetries
 c. Symmetry in quantum mechanics

2. **Mathematical Background for Discrete Groups**
 a. Groups
 b. Subgroups
 c. Cosets
 d. Conjugacy classes

3. **Representations of Groups**
 a. Reducible and irreducible representations
 b. Schur’s lemmas and the Great Orthogonality Theorem
 c. Character tables
 d. Direct products and their decomposition

4. **Physical Applications of Discrete Groups**
 a. The group of the Hamiltonian
 b. Eigenfunctions and irreducible representations
 c. Bloch's theorem
 d. Selection rules

5. **Continuous Groups, Lie Groups, and Lie Algebras**
 a. Linear transformation groups
 b. Infinitesimal generators
 c. Algebra of infinitesimal generators

6. **Irreducible Representations of SO(2) and SO(3)**
 a. Orthogonality relations and the density function
 b. Basis functions for irreducible representations of SO(2)
 c. Spherical Harmonics and characters for SO(3)

7. **Unitary Groups**
 a. Unitary groups and particle physics
 b. Basis states for SU(N)
 c. Multiparticle states and direct products
 d. Young tableaux

Recommended Books

Basic course material:

Related and advanced treatments:
R. Hermann, *Lie Groups for Physicists* (Benjamin, 1966)