
J. Phys.: Condens. Matter 2 (1990) 7753-7768. Printed in the UK 

Bosons in a random potential: condensation and screening 
in a dense limit 

D K K Leet and J M F Gunn$ 
t Cavendish Laboratory, Madingley Rd, Cambridge CB3 OHE, UK 
$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX, UK 

Received 14 February 1990 

Abstract. We demonstrate that an extended Bose condensate can be stable in a 
random potential for a suitable weak-repulsive limit of a dense Bose gas, even though 
the non-interacting case is pathological. The condensate exists primarily because the 
interactions allow screening of the random potential. This may happen even when 
the chemical potential is in the Lifshitz tails of the single-particle case. Indeed, we 
argue that there are no Lifshitz tail states in our dense but weakly-interacting system. 
Using a number-phase representation, we calculate the increase in the depletion of 
the condensate with increasing randomness (at fixed density) which indicates the 
eventual destruction of the condensed phase-perhaps to a localized phase. The 
physical picture discussed should be relevant to the understanding of helium thin 
films. 

1. Introduction 

Helium absorbed in Vycor (Reppy 1984, Finotello et a1 1988) or on various substrates 
(McQueeney e t  a1 1981) have shown many properties that are not found in pure 
systems. Perhaps most striking is the absence of superfluidity at  low concentrations. 
A natural interpretation of this phenomenon is that the 4He atoms are localized at  
particular locations where there is a strong van der Waals attraction for them. However 
the mechanism for the onset of superfluidity, above a certain critical density, is less 
immediately obvious. It may be that there are charged anologues of this behaviour- 
granular superconductors and superconductors with short coherence lengths, but we 
will not consider the Coulombic case in this paper. (The effect of randomness on 
charged systems have been discussed, for example, by Aabel,( 1980) and Gold (1983).) 

A common feature of the experiments is the heterogeneity of the substrates, albeit 
of a rather different nature in, say, Grafoil and Vycor. It is tempting to isolate the 
dominant aspect of the heterogeneity as randomness for a theoretical investigation. 
Indeed, it is widely believed that, at least in the 4He systems, disorder is a key factor 
in the destruction of off-diagonal long range order (ODLRO) as the boson density is 
decreased. In this paper, we wish to discuss some of the theoretical ideas behind this 
hypothesis in the context of a Bose gas in two dimensions. Instead of looking directly 
at  the disordered phase at  low boson coverage, we will explore the robustness of the 
condensed phase in the limit of high density. In particular, we will emphasize the 
role of the Bose condensate in the partial screening of the random potential. This 

0953-8984/90/387753+16$03.50 @ 1990 IOP Publishing Ltd 7753 



7754 D K K Lee and J M F Gunn 

requires the bosons to  be interacting (see below) and we discuss the case of short- 
range interactions in this paper. It will become clear that the dense Bose gas needs 
only weak repulsion to have a stable condensed phase. 

Theoretically, the study of quantum motion in a random potential has been mainly 
concerned with the szngle-particle Schrodinger equation (see e.g. Lee and Ramakrish- 
nan 1985). I t  is believed that ,  while the lowest eigenstates (Lifshitz tail states) are 
localized, there are extended states above a certain energy (mobility edge) for three 
dimensions and higher. In one and two dimensions, it is believed that all states are 
localized. This theory has been very successful for disordered electronic systems, given 
that it does not consider the effect of Coulombic interactions. Unfortunately, it is not 
immediately useful to Bose systems: non-interacting bosons will simply condense into 
the lowest eigenstate which is localized around a small region. To escape from this 
ridiculous situation, some repulsion between the bosons must be included so that the 
system has a finite compressibility (which is provided by the exclusion principle in 
Fermi systems). As already mentioned, we will focus on short-range repulsion in this 
paper. We will see that  it is this finite compressibility that  allows the bosons to screen 
out the randoin potential to  some extent. 

The first investigation of the problem of ziiteractzng bosons was concerned with 
the localized ‘Bose glass’ phase (Hertz et a1 1979) but the condensed phase has since 
received more attention. Ma e t  a1 (1986) considered a lattice model with hard-core 
repulsion. The occupation number at  each site is constrained to be 0 or 1. This 
can be mapped onto a spin-half ferromagnetic XY model with a random field in 
the z direction. It should be noted that disorder is an essential ingredient for this 
model-the ground state of the non-random X Y  model has ODLRO for all spins in all 
dimensions greater than one (Kennedy e t  a1 1988). In a semiclassical picture, the spins 
will tend to  line up their ;cy components a t  sites where the random field happens to 
be small. These sites polarize neighbouring spins and act as nucleation centres giving 
rise to  ODLRO across the system. Ma et a1 pointed out that  this XY ferromagnetism 
is destroyed a t  sufficiently strong disorder when the quantum nature of the spins is 
taken into account. 

Nore recently, the destruction of ODLRO in the Bose problem was discussed in 
the context of a scaling hypothesis (Fisher and Fisher 1988). The general features 
of the phase diagram were discussed, partially supported by renormalisation group 
calculations (Fisher e t  a1 1989, Weichman and Kim 1989). A finzte on-site repulsion 
energy was used, as against a hard core, giving rise to the additional possibility of 
a Mott-insulating phase when the boson number is commensurate with the number 
of lattice sites. (This was first discussed in the non-random one-dimensional case by 
Haldane (1980).) These authors have suggested that the critical behaviour of the 
random system might be unconventional even in high dimensions. 

The random spin problem was further investigated by Brackstone and Gunn (1987) 
who looked a t  the quantum fluctuations using a large-S expansion. They found that,  
for a fixed amount of disorder (measured by comparing the average magnitude of the 
random field with the exchange fields J S ) ,  the system has ferromagnetic order for a 
sufficiently large S .  The large number of spin states (2S+1) may correspond loosely to 
a weak repulsion in the Bose condensation problem so that many bosons may occupy 
each site. This is by no means a proper mapping because the spin-model analogue 
unnecessarily restricts the boson occupation a t  each site to  a maximum of 2S+ 1. It is 
therefore interesting to  pursue the question of whether a suitable weak-repulszon limit 
with ODLRO exists in the boson problem. 
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We believe that the possibility of such a condensed limit in a disordered medium is 
associated with the screening behaviour of the system. In a naive picture of screening, 
the first 4He atoms to  be added will plug up the bumpy landscape of the substrate, 
allowing additional atoms to travel over a much smoother environment. This argument 
often leads to  the suggestion of an inert layer of localized atoms over which further 
atoms can undergo Bose condensation. We think that the Bose-Einstein statistics will 
not favour this assignment of distinct (localized and delocalized) roles to  the atoms. 
Fisher and Fisher (1988) have also suggested that the scaling behaviour of such a 
picture is inconsistent with experimental observations. Instead, we believe that  the 
condensate itself will bulge and contract to  perform the screening. In this paper, we 
will examine the extent to  which this can be done. 

We will concentrate on the case of two dimensions, although the concept of con- 
densate screening is applicable in higher dimensions as well. The one-dimensional 
problem has been discussed by Giamarchi and Schulz (1987) using the Haldane rep- 
resentation (Haldane 1981) for the bosons. This is a special case because even the 
pure system at  T = 0 has no finite condensate density. In fact, ‘superfluidity’ in one 
dimension is defined through power-law spatial correlations, ana.logous to  the classical 
Kosterlitz-Thouless phase. For a system with short-range interaction, it is believed 
that the lowest dimension for bhe existence of genuine ODLRO at  absolute zero is two 
for the pure case, based on the fact that  the mean-field theories are a t  least stable to 
small zero-point fluctuations. This is because the effect of these fluctuations a t  long 
wavelengths becomes less important in higher dimensions. (Azbel (1980) argues that ,  
for a charged system, there may be condensa.tion in one dimension.) The marginal di- 
mension for the existence of delocalized states in single-particle localisation theory also 
happens to be two. Therefore, the two-dimensional case seems the most interesting. 

Using a loose amlogy with spin models, we have already provided a theoretical 
motivation for finding a suitable ‘non-interacting’ limit where an extended Bose con- 
densate exists (i.e. stable to  zero-point fluctuations) even when the chemical potential 
is below the mobility edge of the single-particle spectrum. In the next section, we will 
also give a physical picture to  suggest that  this limit is a.chieved by the interaction 
vanishing and the density diverging such that the average of the repulsion a t  each site 
(i.e. the average Hartree potential) is kept fixed. We will then formalize the idea of 
screening described above. In sectmion 3,  we give some quantitat,ive indication of the 
effectiveness of the screening in a latt,ice model with weak disorder. In section 4, we 
will discuss the results of the calculat,ion and speculate on the case of strong disorder. 

2. The condensed phase: general considerations 

Although a gas of independent bosons is a bad starting point for the random problem, 
we will see that  there is a form of non-interacting limit that  is useful. To motivate this, 
let us  consider the Anderson model for interacting bosons with short-range repulsion 
on a lattice: 

1 H = -t e$,, + C(.Vn - p ) n n  + p n:. 
inn’) n n 

The operators CL and c, create and annihilate bosons at  site n. Vn is random with 
unit variance on each site and ~7 represents the magnitude of the random potential. 
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For simplicity, we will assume that the randomness is spatially uncorrelated, i.e. white 
noise. 

Our point may be made by examining the case where the hopping, t ,  is set equal to  
zero. In this case each site ‘fills up’ with an integral number of bosons until the energy 
to  add one more is above the chemical potential, p .  Let us assume that the disorder 
is weak so that  the number of bosons on every site is much greater than unity. Then 
the resulting ‘Hartree potential’, V, + Un,, varies around the chemical potential from 
site to  site by a fraction of the repulsive energy U (figure 1). This remaining variation 
(due to  integral occupation numbers) would be smoother than the original disorder if 
the repulsion is weak compared to g. 

- .......... I . .. . . . .. . . . .. - 

Figure 1. Screening at zero hopping and weak disorder. 

To obtain a completely smooth potential, we can take the limit where U ---$ 0. Since 
we do not want to  i t e r  the source of the screening, namely the Hartree potential, we 
will also have to  let the average site occupation E diverge such that the product U i i  is 
fixed. (Commensuration effects disappear in this limit.) Imagine that we now add an 
extra particle to  the system, i t  will see a totally flat landscape, as in a homogeneous 
system. However, if we want to  have a phase with an ex tended  Bose condensate, we 
need to  restore the hopping term. In fact, we will see that the screening becomes 
imperfect when there is finite hopping. Nevertheless, motivated by this screening 
argument, our strategy is to  assume that a condensed phase exists and then to  establish 
whether it is stable to  zero-point fluctuations in our regime of a dense but weakly 
interacting gas. 

Before we investigate the stability of the condensate, we need a quantitative pic- 
ture of how the condensate adapts to  the random potential. (For the homogeneous 
interacting Bose gas this stage would not exist-one would proceed immediately to  
the Bogoliubov transformation.) The interacting Bose gas has a characteristic healing 
length, X = ( ~ ~ U ~ / U E ) ’ / ~ ,  over which the condensate wavefunction may vary signifi- 
cantly. ( U  is the lattice spacing.) We use this as our unit of length. In t.his section, 
we will use U5i as our unit of energy. For the formal discussion in this section, it 
is more convenient to  work in a continuum version of the problem. Assuming that  
each member of the grand canonical ensemble has a ‘totally’ condensed trial wave 
function Q for M particles of the form Q = nEl p(zi) ,  the expectation value of the 
Hamiltonian is given by: 

We have rescaled such that E1l2p is now the trial wavefunction. The condensate wave- 
function po minimizes this Hamiltonian, so that it satisfies the nonlinear Schrodinger 
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equation: 

- ;v2(P, + (aV - p + cp;)(P, = 0. (3) 

This ground-state wavefunction has no nodes. I t  should be extended because the 
energy penalty of the repulsive interaction forbids the bosons from condensing onto 
one region of the system. In the pure case, p, = 1. In general, we can see from (3) 
that  the condensate is unable to  adjust to  the variations in the random potential aV 
over a length scale smaller than the healing length A. This feature is absent from 
the zero-hopping picture above. Consequently, instead of getting a totally smooth 
potential, we are left with some residual disorder even when U + 0. In other words, 
screening is ineffective when t >> Uii .  

I t  is interesting to  observe that the chemical potential has to  be decreased in order 
to keep the number of bosons constant. Dividing (3) by po and taking the spatial 
average, we see that  the decrease in p should be - 

We will now formalize our heuristic picture of the residual disorder in a simple 
Hartree picture. A natural choice for t,he residual potential is: 

IVp,12/pi d2x .  

w = U V -  p +  (0;. (4) 

A single particle in this potential will have eigenstates pX defined by the Schrodinger 
equation : 

Note that the condensate wavefunction po is the zero-energy solution to  this 
Schrodinger equation. The rationale behind this choice of W is based on the ob- 
servation that  the excitations of our interacting system should be orthogonal to  the 
ground state. In our Hartree treatment here, a suitable basis set for these excitations 
should consist of wavefunctions orthogonal to the condensate. A natural basis set 
satisfying this orthogonality requirement is the set {pX}, excluding p,. Therefore, 
our definition for W has the advantage of giving us a natural set of wavefunctions for 
the discussion of the excitations of the system. 

As a matter of interest, we can ask what kind of excitation we are talking 
about when we add an extra particle to  the system in our heuristic argument 
above. The excited state is in fact described by the unsymmetrized wavefunction 
4 ( ~ ~ + ~ )  l-I!il po(xi). The eigenstates 4 = pX (with energies cX ) are obtained by 
minimising the Hamiltonian with respect to  4 and the Schrodinger equation obtained 
is the same as (5)! Therefore, our heuristic picture adds a distinguishable particle to 
the system. On the other hand, if our additional particle was identical with the rest, 
then we would have to  use a symmetrized wavefunction. The resultant Schrodinger 
equation is similar to (5) ,  with W + pi replacing W .  As already explained, the deci- 
sion not to use this alternative form as the residual potential is a decision based on 
mathematical convenience only. 

A qualitative indication of the smoothness of the residual disorder is to  ask whether 
(5) gives us any states localized around a region of the lattice. First of all, we notice 
that the nonlinear Schrodinger equation yields an extended state a t  zero energy. We 
will show below that  2 0 for all the basis functions pX. Since these states lie 
above an extended state, we expect that  they are not strongly localized, a t  least in 
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the low-energy tail of the spectrum. To prove that the spectrum of eigenvalues are 
non-negative, we use a variational approach. Any time-independent trial wavefunction 
Q in (2) which is orthogonal to  po can be written in the form: 

The primed summation excludes X = 0. The consequent quadratic deviation, 6H, of 
the Hamiltonian H[4] from its minimum value is given by the functional: 

= cT(e + 2UN)c  + dTed (7) 

where we have written the real coefficients, cx and d,, as column vectors, c x x ,  = ~ ~ 6 , ~ ~  
and Nxx l  = ~ ~ p c P ; y ~ c p x l  d'x. The asymmetry between c and d arises because we have 
chosen po t o  be real. By the variational principle, 6H cannot become negative for any 
choice of 4.  By choosing c = 0 in particular, we can see that the second quadrat'ic 
form in (7)  has to  be non-negative and we get the desired result that  2 0 for all 
A.  Thus, we argue that the residual potential W does not have any localized states 
a t  the bottom of the spectrum. Since we are using these eigenstates as a basis for 
describing the excitations of our system, we can say that these excitations are also 
extended a t  low energies. In the final section, we will compare this problem with 
the case of amorphous materials where long-wavelength phonons see a nearly uniform 
effective medium. 

The above result suggests that  the smooth residual potential W does not have 
traps wide and deep enough to  give rise to localized states. This is most apparent 
in the case of weak disorder (CT << UE) where the variance of the Fourier component 
W, has been reduced by a factor proportional to  k4 from that of the bare potential 
V, for IC << 1 (see next section). Therefore, the variation of W is small over long 
length scales so that large potential wells are likely to be shallow. There are deeper 
wells of smaller dimensions but the cost in kinetic energy for confining a particle there 
will be large. This picture a t  weak disorder makes the possible absence of low-energy 
localized states plausible. 

Having found a natural basis set for the excitations, we will use it to  look at  the 
depletion of the condensate a t  zero temperature. The zero-point fluctuations involving 
these excitations involve exchange processes not included in the simplified discussion 
above. In particular, particles will be scattered into and out of the condensate. If 
the condensate indeed exists as we have assumed, then the fractional decrease in the 
number of particles in the condensate due to these processes will have to  be small. We 
examine this condensate depletion in a second-quantized formulation of the problem. 
Write the field operators in terms of our basis: 

We have ignored the operator nature of cx=o and replaced it by its expectation value 
E l l 2 .  This is the Bogoliubov approximation which is justified in our condensed limit 
with a large number of bosons in the condensate. This is most apparent in the number- 
phase representation of the boson operators which we discuss in the next section. 
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The Hamiltonian can be organized into terms with an increasing number of op- 
erators with coefficients that  have decreasing powers of ‘ii. Following the Bogoliubov 
procedure, we will keep only terms up to  second order in the operators. The Hamil- 
t onian be comes 

H = 51h[cp0] + E’ [(CA,/ + UNXXf)C~CX‘ + ~uNx,/(c:c:f +.,CA/)] + ’ .  . * 

AX ’  
(9) 

The  rest of terms are - 0(1/‘ii). As it + CO, it is clear that the Hamiltonian is 
dominated by the condensed term E’h[pO] in which case the zero-point harmonic fluc- 
tuations should have vanishing importance. Thus, our limit is a ‘classical’ one, leading 
us to a stable condensate. (Compare with the S +. CO limit in spin systems.) 

However, before making such a claim, we should consider the effect of the zero- 
point fluctuations more carefully. We can diagonalize the harmonic part of the Hamil- 
tonian by a Bogoliubov transformation: 

with uuT - vvT = 1 and uvT - vuT = 0 to preserve the commutation relations for 
bosons for the new operators: [ y p ,  y i t ]  = In a first-quantized formulation, the 
above procedure corresponds to finding the normal modes of the condensate. The 
solutions, labelled by p ,  are: 

The normalisation of + will then give us the conditions on U and v. 

eigenvalues E = E, satisfying the the secular equation: 
The harmonic Hamiltonian, diagonalized in terms of the new operators, has energy 

We can see that this Bogoliubov spectrum depends on the dimensionless parame- 
ters t / U E  and a/Uii .  The change of sign of E in the determinant is related to the 
relationship between U and v. 

What are the low-energy excitations of the system? In the pure case, it is well 
known that  these are long-wavelength phase fluctuations. This originates from the 
fact that  a uniform phase change in p = ‘po = 1 will not alter the expectation value 
h[cp]. This continuous symmet,ry remains intact in our random system so that we 
should have a gapless spectrum, by the Goldstone theorem. As in the pure case, these 
collective phase fluctuations at  low energies should be the dominant factor accounting 
for the zero-point depletion of (#he condensate. Following conventional nomenclature, 
we will henceforth call these excitations ‘phonons’. 

If the condensate is indeed stable with respect to the fluctuations, the single- 
particle density matrix (c;cnf) should not have more than one macroscopically large 
eigenvalue (Yang 1962). In our ‘px representation, the appropriate matrix is (c:cx,). 



7760 D Ii Ii’ Lee and J M F Gunn 

I x t  
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Figure 2. Schematic phase diagram in the parameter space defined by 1 / E  and 
E / u .  t / f i  is fixed. We have extrapolated our weak-disorder calculation for the 
entire phase boundary which is defined by the criterion =(U) = E. 

The depletion E is measured by the number of part,icles not in the condensate (Gross 
1966): 

x 

Note that E is a function of the dimensionless ratios t / U i i  and u/Uii. Extrapolating 
from the pure case, we expect that  E increases when t / U i i  is decreased. It also seems 
sensible that the randomness will give rise to  more particles being scattered out of 
the condensate so that  the depletion increases when a / U F  is increased. When the 
fractional depletion E/ii reaches unity, the condensate will no longer exist and the 
system will have had a transition to an uncondensed phase such as the localized Bose 
glass. 

In the pure case, the transition occurs when ( U i i / t ) 1 / 2  - 5. Therefore, the stability 
of the homogeneous condensate can always be ensured in our ‘classical’ ii - CO limit. 
I t  is clear that  the depletion would have to  dzverge to  indicate an instability to  
a phase transition in this limit. In the pure case, a likely physical origin of such 
a singularity is a vanishing group velocity for the long-wavelength quasiparticles- 
‘phonons’. Can this case arise in the random system? As ii + CO, the Hamiltonian is 
dominated by the condensate term ‘iTh[yo] and this term gives a compressional ‘sound’ 
velocity of the condensate which would be a good approximation for the group velocity 
in question. Since the compressibility of the condensate itself should be finite even in 
the disordered case, we expect that the low-lying excitations should have a finite (if 
small) group velocity in the classical limit. Another possible source of a divergence in 
Z is the density of states of these excitations. However, since we have suggested that 
the low-lying states are not strongly localized, it is unlikely that there are any radical 
differences between the pure and disordered cases which leads to  a non-integrable 
singularity in the summation in E. 

We have now arrived a t  the conclusion that E/ii -L 0 in the dense limit for any finzte 
t / U E  and a / U E  because Z can only have a singularity a t  infinity as a function of Ui i l t  
or a/U?t. In other words, there is always a finite interval 0 < l/ii < l /K , ( t /UE,  a/Ulz)  
where Bose condensation is stable as long as neither the disorder nor the healing length 
is infinite (see figure 2). Therefore, condensation may exist even when the chemical 
potential is far below any single-particle mobility edge of the original randam potential. 



Bosons in  a randoin potential 776 1 

Provided that t,he critical velocit,y is non-zero (not the case for a perfect Bose gas), 
the existence of such an extended condensate yo indicates superfluidity in our system, 
as defined by the quantisation of circulation (see e.g. Leggett 1973). 

3. Screening in the lattice model 

In the condensed phase, we have argued that the system has a vanishing depletion of 
the condensate by virtue of good screening in the limit of U -+ 0 and ?i + 00 with 
U i i  fixed. We have also pointed out that  the screening should be good when 1 U?i 
(small bandwidth) and ineffective when t >> Ui t  (large bandwidth). Let us now exam- 
ine this in more detail. We will concentrate on the lattice Hamiltonian of (1) in the 
case of weak disorder, i.e. U << Uii .  Since the fractional depletion is small i n  this dense 
limit, the Bogoliubov approximation is valid. The effect of disorder will be incorpo- 
rated perturbatively as the scattering processes of the Bogoliubov quasiparticles and 
the condensate particles. We will ignore other processes such as disintegration and 
recombination. This parallels the Hartree treatment in the previous section. From 
now on, 2U'it is used as the unit of energy. 

To illustrate our previous arguments, we give an estimate of the condensate deple- 
tion from the limit of (cLc,,) a t  large separation. We have argued in the last section 
that the low-lying excitations are not strongly localized, we can try to  calculate the 
group velocity c in the long-wavelength limit. These 'phonons' should consist of phase 
fluctuations (and weak density fluctuations to satisfy the number-phase uncertainty 
relation) giving rise to  the depletion of the condensate. In the pure case, c is given 
by t 1 / 2  and the fractional depletion of the condensate is ( 2 ~ A / ~ i t ) - '  for wB < 1 and 
(4w,'it)-' for wB >> 1 where w B  = 21.t is the bandwidth of the lattice model. ( 2  is 
the number of nearest neighbours.) We see that the decrease in c is accompanied by 
an increase in the depletion. Indeed, the 'softening' of these phonon modes eventually 
gives us a transition to  an uncondcnsed phase. We would like to see how this carries 
over into the disordered system and so it should be interesting to investigat,e this issue 
in our perturbative model. 

In addition to  phonons, the spectrum may also have a part a t  higher energies 
which is mainly single particle in character (in the Bogoliubov approximation). Since 
it is natural to  deal initially with a spectrum with only one type of behaviour, we will 
focus our discussion on the case of wB << 1 where the spectrum is mainly colleetive. 
Moreover, the effect of disorder on the single-particle excitations should be small 
because their kinetic energies are high compared with the variations in the random 
potential (- g). 

In order to  make the importance of the collective phase fluctuations manifest, we 
will work in the number-phase representation: CL nil2 exp(iq5,). This representa- 
tion is useful in our case because the existence of a condensate brings phase coherence 
so that  the fluctuations in the phase of the order parameter is small compared to 
27r. Moreover, the fractional fluctuations in the boson number would be small in our 
dense 'ii -+ 03 limit. In the pure case, for example, the fractional number fluctuation 
on each site is - O(l/it1/2). Hence, the operators can be defined by suitable Taylor 
expansions. In particular, the square root of the number operator is defined by a 
Taylor expansion around its c-number part i.e. its condensate value, E,. 

Substituting just this c-number leading term in that expansion into (l), we may 
minimize the Hamiltonian with respect to  E,. We obtain a lattice version of the 
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nonlinear Schrodinger equation: 

where we have summed over the nearest neighbours n’ of site n. Hence, E’/’ corre- 
sponds to  the condensate wavefunction. 

In the pure case, E, = E where U i i  = ,U + rt .  For weak disorder, we can write 
n, = ii(1 + uv,) + O(u2)  and obtain the fractional deviation, av,, from the pure 
case as a perturbation in powers of U .  Defining Fourier transforms such as vk to  be 
N - 1 / 2  E, vn exp(-iIC - n) into (14), we get the first-order correction as: 

- 

where wk = 2t sin2(k 6 / 2 )  is the tight-binding spectrum. ( b is any vector joining 
nearest neighbours.) Note that vk is small for wk >> 1 that the condensate wave- 
function does not adjust to the potentia.1 on a length scale shorter than the healing 
length. The variance of the residual potential as defined in (4) has the behaviour 
lWkI2 - u 2 w i ,  as mentioned in the last section. 

At the second order in the randomness, we have to  lower the chemical potential 
to  keep the overall number density unchanged: 

This correction has already been pointed out in the last section. 
Let us now examine the zero-point fluctuations in the system. From now on, we 

will discuss only the low-lying collective excitations in the case of wB << 1, for the 
reasons already mentioned. It is convenient to  use the rescaled (real) operators A and 
@ as defined by 

(17) 
- n, = n, + (2fi)’/’A, 4, = @,/(2ii)1? 

Note that  A and @ are conjugate variables: [A,, @,,I = -i S,,, . From this, we can 
now define ‘number-phase bosons’ by the creation and annihilation operators aA and 
a ,  : 

satisfying [a,, a:,] = s,,, . 
In the homogeneous case, it is easy to  check that the spectrum calculated using this 

representation is the same as that calcula.ted via the conventional Bogoliubov method 
which uses the bosons operators c, directly. Moreover, to  order l/Z, the effect of at  
is the same as ct .  (The casual treatment of the a,nnihilation and creation operators of 
the condensed (IC = 0) state as c-numbers is a surreptitious use of the leading order 
approximation of this representation.) One appealing feature of the number-phase 
representation is that  we can borrow the language of Josephson junctions for our bulk 
case. More profoundly, the dense limit allows one to  discuss condensation in k-space 
conveniently in a basis set which is based in real space. This is because the fractional 
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fluctuation on each site is small so that,  unlike the dilute gas, there are always a 
large number of particles on each site, giving us a well defined E,,. Thus we may 
handle disorder, naturally expressed in real space, along with condensation in k-space. 
Moreover, it is the long-range phase-order which is associated with condensation and 
this is naturally discussed in the number-phase representation. 

To lowest order in l/E, we need only treat the terms quadratic in quantum fluctu- 
ations, which are scattering processes. Truncated a t  this level, the pure Hamiltonian, 
H,, is diagonalized by the Bogoliubov transformation: 

(19) t = U k a k  - V k a - k .  t ak = ukak - Vka-k  

The coherence factors can be written as uk = cosh 6, and vk = sinhQk where 6k > 0. 
H, has become 

where exp(2Ok) = Rk/Wk. The slope of flk in the long-wavelength limit is the phonon 
velocity, c. 

In the number-phase representation, the residual disorder is in fact off-diagonal, 
appearing in the hopping part of the Hamiltonian. (Diagonal disorder will be present 
if we also have a random U but it does not alter the scattering matrix elements below 
in a qualitatively significant manner.) 

I t  is expressed in terms of the spatial variation (Tvk of the condensate. The conse- 
quent scattering processes, a t  tthe leading order in the randomness, are given by 

We also have an additional non-random part, H,. This comes from the coefficient of 
the A: terms from the number-phase expansion of the hopping part of the Hamilto- 
nian. Since we are interested in the low-lying collective excitations, we will just look 
at  the low k contribution which is most conveniently written as: 

The reason for keeping these second-order terms will shortly become clear. 
We perform a unitary transformation e-A on the Hilbert space to  eliminate the 

terms linear in the disorder uv. Under this transformation, the Hamiltonian, H ,  
becomes H' = e-AHeA. The appropriate choice sa,tisfies [H,, A] = -HI. Hence, 
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The treatment of the a k  = sZq terms will be discussed presently. Then, the Hamilto- 
nian becomes 

H' = H ,  + H ,  + [H,, A ] / 2  + . . . ( 2 4 )  

while each state IS) in the Hilbert space becomes IS') = e-AIS).  
Now that the Hamiltonian has become second order in the randomness, we will 

average over the disorder. (We can now see why the second-order non-random term H, 
has been retained.) Diagrammatically, the averaging will include only the minimally 
crossed terms in the self energy of the quasiparticles. This approximation breaks down 
as we approach the transition where condensation is destroyed. However, since we 
- believe that a condensed phase does exist in two dimensions, the averaged Hamiltonian, 
H ,  should still have physical interest in such a phase. The first two terms in H are 
not random and the last term, [H,, A ] / 2 ,  averages to 

The average Hamiltonian p = H, + H, + p3 can be diagonalized by a second Bogoli- 
ubov transformation: 

where we can write U ;  = sinhOI, and V I ,  = cosh8;. vk should be of the order of U' 

and U L  approximately unity. The ground state of the averaged Hamiltonian in the 
new Hilbert space is defined by 

We now return to  consider the definition of the transformation and the transformed 
Hamiltonian where there are terms with vanishing denominators. The scattering ma- 
trix elements have simple poles a t  f l k  = f l q  because some virtual processes involve the 
normal scattering of state 12 into a state q with the same energy. These degeneracies 
give rise to a finite lifetime, Tk = for the quasiparticles. The decay rate r k  is 
the imaginary part of Tik obtained by separating out the principal part of the sum 
in i? across the poles. This is identical with a conventional calculation via Fermi's 
Golden rule. We estimate that 

Since these decay rates are small for weak disorder, we should be safe in ignoring 
them. I t  should be noted that  decay due to  any nonlinear processes is not included. 

Let us examine the modification to  the low-lying states, labelled by small k vectors. 
We wili use for simplicity a constant density of states for the non-interacting spectrum 
(ignoring the logarithmic singularity which occurs a t  midband for a square lattice). 
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The perturbed spectrum, i j k ,  gives us an altered phonon velocity. Compared with the 
pure case, c has changed by a factor of (1 - a’)’/’ for wB << 1. 

What  is the depletion of the system described by ’iT? We estimate this from the 
limit of (cLcn,) a t  large separation. The number of bosons not in the condensate 
should then be given by 

(The primed summa.tions exclude the k = 0 contribution.) This can be expressed 
further in terms of the operators PL a.nd Pk defined in the second Bogoliubov trans- 
formation. The expectation values in t.he ground state can be calculated using (25). 
For example, we need 

Collecting together the second-order terms in U, we obtain for the deplet>ion: 

The first term shows the combined effect of t.he t,wo Bogoliubov transformations. The 
second term comes from the application of (25) and is the effect of the unitary trans- 
formation trliat we employed to  eliminat,e disorder to  lowest order. Since the 0 param- 
eters of both Bogoliubov transformations are positive, we can see t41iat the depletion 
is increased-by a factor of 

1 + c(o/~uE)’ for W B  << 1 (29) 

where C = 9 - 2 In 2 is a constant of the order of unity. 
We have shown in this section that the RPA treatment of the dense condensed 

limit is well behaved for the case of small bandwidth and good screening. While the 
depletion increases with a decreasing bandwidth, the condensate can adjust better 
to  the bare potential. Thus,  the screening capability improves and the change in the 
contribution of the low-lying collective excitations to  the depletion due to  disorder can 
be small. It can be seen that the depletion does not scale with the phonon velocity 
as in the pure case. Nevertheless, an increase in depletion is still associated with a 
decrease in the phonon velocity. 

4. Discussion 

Interaction between the bosons has two conflicting d e s  in determining their response 
to  a random potential. If there are no repulsive interactions, then the ground state and 
low-lying excited states are localized (Hertz ef a1 1980). However if the interactions 
are too strong then the bosons localize to  form a Mott insulator (if there is an integral 
number per site). In both cases the extended condensate is destroyed. An intermediate 
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regime is required for the stability of the condensate by allowing it t o  screen the 
random potential. Our U + 0 and 5 + X I  limit should serve this purpose. 

Associated with the non-zero compressibility, necessary for screening, is the trans- 
formation of the excited states into collective modes-at least at low energies. I t  is 
interesting to ask what relationship our problem has with other localisation problems 
where the low-energy modes have a similar collective nature with linear dispersion 
relations, for instance light and sound (for a review see John 1988). The  randomness 
is incorporated as white noise in the properties determining propagation such as the 
dielectric function for light and elastic constants for sound. Field-theoretic arguments 
have been used to indicate tha t ,  in two dimensions, even low-frequency waves are 
weakly localized with a localisation length diverging as as w + 0 (see John 
1985 and references therein). However, we cannot deduce this for our problem as the 
wave equation for the collective variable, 4(z), has a different form from the ordinary 
wave equation. This equat,ion is most conveniently expressed i n  terms of the rescaled 
variables ip’ = 

This difference makes our comparison incomplete as we do  not know if this equation 
is in the same universality class as the wave localisation equation considered by John 
(1985). Futliermore depletion of the condensate has no clear parallel in the light and 
sound cases The  closest phenomenon would be a divergent Debye-Waller factor i n  

the latter case; we know of no calculations in this direction. 
If we move away from the collective limit, what is the effect of letting the more 

highly excited states become single-particle in nature? Qualitatively it is expected 
that the screening will become worse as t is increased compared to U .  One difficulty 
that such a calculation will encounter, on a technical level, is ‘ultraviolet’ problems in 
the simple perturbative scheme (Thouless 1974)-at least if a white noise potential is 
used. This occurs near the upper edge of the Bogoliubov spectrum which has retained 
much of the single-particle properties of the non-interacting case. This problem can be 
avoided if a finite spatial correlation length is introduced into the random potential, 
i.e. coloured noise. We have not done so here because we are interested i n  looking at 
a system dominated by the  collectzoe excitations. 

In this paper so far, we have concentrated on comparisons between the bosonic 
and single-particle localisation problems. Another comparison has been made in the 
literature: tha t  of percolation with the condensation transition a t  finite temperature 
(e.g. Fishman and Ziman 1982). The  relation comes from a physical picture of regions 
locally ‘condensing’ as the temperature is lowered, the regions growing until they 
percolate. 

We will now argue tha t  even a t  zero temperature there is a limit i n  which the 
problem of the existence of the condensate is of a percolative nature. Amongst other 
things, we require that we have strong disorder in the sense that the chemical potential 
is deep in the Lifshitz tail of the bare potential a V ,  i.e. /I < 0, lpl /a > 1 and tha t  
a >> t .  Some other conditions will be specified presently. At strong disorder, there are 
particles in only a fraction of the lattice sites. The  wavefunction po has exponential 
tails outside these dense ‘lakes’ but remains extended. In our dense limit, there are 
a large number of bosons even in the tails. This offers the hope of retaining phase 
coherence among the lakes. Consider the case when a - O(VE) .  This gives us a 
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lattice coverage where two lakes are typically separated by a site where uV, is very 
large. In simple perturbation theory, the effective hopping t,, between the two lakes 
is approximately ( t E 1 / 2 ) 2 / u  0: t 2 i i  since U - U i i  is fixed. For a given t ,  we will not 
have to  worry about this as a weak coupling regime in our dense limit so that the 
phase coherence is always ensured across the system, as discussed in section 2.  

To obtain the percolation limit, we construct a more tenuous scenario where the 
effective hopping between the lakes remains small. This is achieved by decreasing the 
hopping such that t -+ t/ii '+'/' while ii -+ CO. Although this increases the overall 
depletion Z, the fractional depletion Z/E will scale as l/t'/'?t - E'-3/4. Therefore, 
the condensate can be maintained as a network of weakly coupled lakes provided 
that 0 < < %. If we further require the degeneracy temperature Td - t5i (in two 
dimensions) to  be finite, then we should also have E 5 f. These Josephson-like links 
have random strengths so that the phase coherence across the entire system should 
be determined by a percolative criterion. Thus we would expect the condensate to 
be destroyed when the lattice coverage, controlled by the ratio u / p ,  falls below the 
percolation threshold. This occurs when u/p 2: u/Uii  N O(1). In other words, we 
have proposed a way in which t may vanish (together with U -+ 0 , i i  -+ CO) such that 
the destruction of condensation is determined by geometrical factors rather than the 
dynamical considerations presented in the previous sections. 

In summary, the U -+ 0 and ii -+ CO limit of our problem gives us an extended 
ground state po. We have exploited this to  find a regime of robust condensation. In 
this regime (small U and large ii with U i i  fixed), the depletion of the Bose condensate 
is small. We attribute this to the effective screening of the randoin potential by 
the condensate. In particular, good screening is achieved when the healing length 

is short, i.e. t << Uii .  Using this argument, a RPA calculation of the effect of 
weak disorder has been set up to illustrate our point. This screening behaviour is a 
new factor in the interacting random problem that is absent from the single-particle 
theory. It is clearly responsible for the possibility of a simple perturbative scheme for 
the disorder in two dimensions, a t  least in the regime we have considered. Physically, 
this has brought about Bose-Einstein condensation even when p is in the Lifshitz tail 
of the bare potential. 
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