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The fate of the Lifshitz tail for condensed bosons 
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AbslracL We determine the exlenl to which LiIsRilz tail stales can be defined in a 
condensed Bose system. This  provides a justification for lhe inert-layer picture in the 
sludy of helium on Vymr. We argue lhal, in three dimensions, hard-core bosons can be 
trapped by a sufficiently deep potential well despite a strong lendency for all panicles 
lo panicipale in the BosEinstein condensate. Tnis i s  demonstrared by a variant of 
the conventional spin-boson pmbkm. We find lhal phase fluctuations in the condensate 
tend to depress particle exchange between the trap and the rest of the system and hence 
has an enhancing effect in lerms of  Lifshitz-lail localization. However at low densities 
(near onset 01 condensation) we argue that the condensale will be relatively enhanced 
compared to the inen layer model, in agreement with experiment. 

1. Introduction 

’Ibrsion balance studies of 4He films on Vycor have shown that there is a critical 
coverage nc below which superfluidity is lost. Recent specific heat experiments have 
also found that the lambda peak moves to T = 0 as n approaches n, [I]. The 
disorder in the Vycor substrate has been associated with this behaviour-Hertz et a1 
[Z] have suggested that there is an Anderson-localized ‘Bose glass’ phase below the 
critical coverage. This Bose glass is envisaged to occur when the chemical potential 
lies in the localized part of the HartreeFock single-particle spectrum. It should be 
noted that interparticle repulsion is necessary to prevent the physically unrealistic 
situation where all the particles condense into the lowest localized (Lifshitz tail) 
states. Bose condensation can be restored by raising the chemical potential above the 
mobility edge since there is no barrier to the infinite occupation of an extended state. 

A phenomenological language has also evolved over the years parallel to the 
theoretical efforts. It has often been suggested that the adsorbed monolayer of 4He 
atoms that exists below n, will survive at  higher coverages where superfluidity is 
observed. In the language of localization theory, such a picture suggests that some 
particles remain in localized Lifshitz tail states of the substrate potential so that others 
may form an extended condensate over a much smoother landscape. Although this 
may be a plausible picture for a classical liquid film, it ignores the indistinguishable 
nature of the atoms. Since the identity of particles is a key concept behind the 
phenomenon of Bose condensation, this ‘inert layer’ picture has become a point of 
contention in the study of superfluid films. 

It is fairly difficult to make precise arguments in the Bose glass phase and most 
work has concentrated on the superfluid side of the transition. Fisher and coworkers 
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[3] have discussed this in the context of a scaling hypothesis. This is partly supported 
by results from renormalization group calculations such as the work of Giamarchi 
and Shultz [4] on the one-dimensional case. One of their conclusions is that the 
observed critical exponents are inconsistent with the inert-layer model. In this paper, 
we would adopt a more microscopic approach to understand how such a layer might 
exist (even though it may not play an important part in the critical behaviour of the 
localization transition.) Unlike previous work, our formulation faces directly the issue 
of the particle identity. 

Let us briefly discuss how the disorder in the substrate can be screened out in the 
system and when an inert-layer picture becomes necessary in such a context. At weak 
disorder, there is the mechanism of ‘condensate screening’ where the condensate 
wavefunction is distorted over the length scale of the healing length to screen out 
variations in the potential [5 ] .  (Weak disorder can be defined as the case when the 
potential fluctuations are small compared with the Hartree potential experienced by 
an additional test particle.) It can be shown that this is most effective in the limit 
of high density (n -+ m) and weak local interactions (U -+ 0) such that the Hartree 
potential CJn remains constant. In this limit, the system is totally condensed even 
when the chemical potential is in the Lifshitz tail of the bare potential. Away from 
this limit, the l/n corrections show that the zero-point fluctuations (principally in the 
phase of the condensate wavefunction) are enhanced by the presence of disorder. It 
is tempting to associate these fluctuations with incipient localization occuring in the 
wider excursions in the components of the random potential which are not effectively 
screened by this condensate mechanism, e.g. deep traps over a region smaller than 
the healing length. I n  other words, an inert-layer picture becomes relevant in the 
case of imperfect condensate screening in the sense that some uncondensed particles 
may occupy the Lifshitz tail states of the single-particle theory and thus plug up the 
worst excesses of the random potential. This would leave a weak residual potential 
which allows a condensate to form. The condensate screening mechanism can then 
screen out this residual disorder further. This distinction between screening via 
localized states and the condensate parallels the non-linear and linear screening in a 
disordered Fermi system. 

To compare between linear screening by the condensate ‘p and the formation of 
trapped states 4, we may start with the simplest (HartreeFock) wavefunction with 
one trapped state: 
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N 

Q, = CC%(”;)b(”J (1) 
1 = 1 r 2 1  

Even in the absence of disorder, it is plausible that @ has a lower energy than a 
uniform condensate, if the interactions are sufficiently strong-the condensate would 
be depressed in the vicinity of 4 allowing one boson to ‘self-trap’. It is interesting to 
note that weakly trapped states are possible if the trapped particle is distinguishable 
from the rest. However, for identical particles, strong coupling is necessary before 
self-trapping occurs [6]. This behaviour illustrates the extreme circumstances neces- 
sary for the coexistencc of the condensate with localized particles. Disorder docs not 
alter this conclusion. It is the purpose of this paper to investigate this strong-coupling 
regime in the presence of disorder. In the next section we will give a variational 
treatment using the trial wavefunction (1). The virtual exchange processes between a 
trapped particle and the condensate will be explored in section 3. This is discussed in 
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terms of a variant of the conventional spin-boson model. Finally, we would discuss 
how the concept of Lifshitz tail states in a Bose condensed system can be defined 
more precisely. 

2. Weak hopping on a lattice 

?b be more specific in our discussion, let us focus our attention on the Bose Hubbard 
model: 

The operators ct and c create and annihilate bosons at site n. In this section, we will 
argue that a single-panicle trapping instability may occur in the strong-coupling limit 
using the trial wavefunction (1). We have discussed in previous work [6] the weak 
trapping of a distinguishable particle where the spatial extent of the wavefunction of 
the trapped particle is large compared to the healing length. As mentioned above, 
this has no analogue in the case of identical particles. This can be seen by comparing 
the variational theories based on symmetrized and unsymmetrized versions of (1). 
Bose statistics encourages the particles to occupy states with strong overlaps so that 
a totally condensed trial state appears quite stable when the interaction parameter 
g = U / t  is small. lb pursue this further, let us consider the stability of a tightly- 
bound wavepacket in the weak-hopping (or strong repulsion) limit where g < 1. 
?b avoid the mathematical difficulties in determining the spatial structure of such a 
wavepacket, we will simplify the trial state to a particle trapped at a single site. This 
is stable when there is no hopping (t = 0). allowing us to treat the hopping term in 
(2) perturbatively. The discussion of the zero-point fluctuations between the trap and 
the condensed system is postponed to the next section. 

First of all, let us switch off the hopping integral i entirely. This means that there 
will be no kinetic energy cost for localising the particle and trapping phenomena can 
be easily seen, in particular revealing the role of non-orthogonality of the trapped 
state. Indeed the ground state of the 1 = 0 system will be a Mott insulator. The 
particles are evenly distributed on the lattice. The energy per particle is approximately 
$U(Z- 1) (or zero below monolayer coverage) instead of $UT for the condensed 
state. There is no need to look at single-particle instabilities to understand this ground 
state. However, if we would like to see single-particle self-trapping or the binding of 
a particle due to a potential well, this zero-hopping case is not a useful starting point. 

To obtain a more suitable model, let us suppose that the hopping is finite every- 
where eucepf around a site where it is particularly weak. Such a model will give us 
an extended condensate as well as the possibility of localization at the special site. 
The theoretical motivation to look at this situation is LO investigate the competition 
between the (Hartree) energy advantage in localization and the more subtle effects 
arising from Bose statistics which encourages condensation. It will be shown that the 
trapping of a single particle is indeed lower in energy than the condensed state in a 
certain region of the parameter space. 

Consider first the case when t = 0 near the defect site. We will use the lattice 
spacing as the unit of length. The lattice analogue of the trial wavefunction (1) is 
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used. The variational equations for the amplitudes at the defect site are: 
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$o+ S[  3 9 *  - 1 ] + = o  
(3) 

where V is the potential due to  a defect and E is the average number density on 
the lattice. The overlap of the wavefunctions is S = C,(o,q5,. Since we have 
no hopping from the defect site, there is no tendency for the wavefunction of the 
localized state to spread from that site. This can be checked explicitly. Therefore, 
we can put 4 = 1 at the defect and zero elsewhere. The condensate will be assumed 
to exist in the rest of the system so that (o is unity everywhere except on the defect. 
Hence, the condensate amplitude (oo on the defect is the only variable left. 

We can investigate the self-trapping of a particle by neglecting the defect po- 
tential: V = 0. The totally condensed system of N particles should always be a 
solution. Its total energy is iUEN. (oo = 0 is another solution corresponding to 
disjoint wavefunctions so that there is no overlap between the localized state and the 
condensate at all-there is a 'complete hole' in the condensate. Compared with the 
condensed state, this state has an energy of A H  = ;UE(E- 2) and is therefore 
lower in energy when K < 2. A state with a 'partial hole' in the condensate can also 
be found for ii > 1. The condensate density at the special site is (oz = (E- 1) /2E .  
Its energy relative to the condensed state is A H  = iU(E2 + 2 5 -  7) so that it is 
negative for 1 < Ti < 2 f i  - 1. However, this solution is not the lowest in energy. 
Therefore, we find that the trapped state digs a complete hole in the condensate for 
5i < 2. As expected, this occurs when the system is sufficiently dilute, corresponding 
to the strong-coupling limit of the previous paper. In this simple example, we can see 
that the localized state is not necessarily stable even if there is no kinetic energy cost 
in its formation! As already mentioned, we have to attribute its disappearance above 
ii = 2 to a 'rule-of-thumb' tendency of the particles to occupy the same single-particle 
state. 

Let us restore the defect potential V. For a repulsive potential ( V  > 0), one 
might expect that the complete-hole localization would occur away from the defect. 
However there is also the possibility that a trapped state becomes easier to form 
because the concomitant hole in the condensate is favoured at the repulsive defect. 
This effect is able to stabilize the localized state at high densities if 1 - 2/5 i  < 
V / U E  < 1. For V > UTi, the condensate is completely repelled from the defect 
site and, seeing the bare potential, the extra particle does not localize there. For an 
attractive defect, the increase in the local condensate density discourages localization 
at the defect if it is sulficiently deep: '1/ /2Uii  < 1 - 1 /ii. The results are summarized 
in figure 1. (We have ignored the possibility of partial holes.) 

Having studied this zero-hopping case, we may ask whether it can be regarded as a 
limiting case of a weak-hopping regime for the localization instability. After all, some 
of the states considered are highly localized and are likely to possess a high kinetic 
energy when the hopping is restored. Therefore, we should investigate whether a 
perturbative solution in the hopping t can be obtained from the states considered 
above. We will restrict attention to the weak-hopping limit where the localized state 
@ does not spread beyond one lattice site from the defect. The variational equations 
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Figure 1. T'apping at weak-hopping limit. Regions (a) and (c): hole on defect. Regions 
(b) and (d): hole away from defect. Only regions (a) and (b) remain for non-zero 
hopping. 

are now given by 

where 6 joins nearest neighbours. To look for solutions confined to the defect and its 
nearest neighbours, we can take the solution with a complete hole in the condensate 
and consider perturbations O ( t )  U i i  on the amplitude of the condensate at the 
defect and on the amplitude of the localized state around it. This perturbation is 
small on a square lattice provided that 

3 t / 2 U  Q 1 -ii+ v/2u (5) 

and other conditions [ ( t / U i i ) 2  < 8E,t < 2 ( V  + 2UE)]  to ensure that the kinetic 
energy is not high enough to prevent localization over so few sites. These extra con- 
ditions are unimportant because they only serve to give us the simplest perturbative 
answer. On the other hand, the first condition (5) implies that some of the trapped 
solutions of the 1 = 0 case are unstable to the introduction of hopping. In particular, 
only the states in the region 

V / 2 U i i  > 1 - 1 /ii and i i < 2  (6) 

can be regarded as the zero-hopping limit of the localized states. 
The variational approach in this section suggests strongly that the particles may 

become localized and hence not participate in Bose-Einstein condensation. For a 
homogeneous system, this gives an absolute limit on the instability of the condensed 
phase to a Mott transition. However, it is unlikely that the actual instability can be 
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described by single-particle processes. For instance, the collective fluctuations of the 
phase of the order parameter (as the number fluctuations are suppressed when the 
interactions are strong) may be more significant in the destruction of Bose conden- 
sation. More importantly, single-particle trapping are of interest in inhomogeneous 
systems where they may be the local precursors of the instability to a Bose glass 
phase. 
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3. Bound states in condensed systems: a spin-boson model 

Consider a Bose system with a sufficiently low density such that the variational ap- 
proach in the previous section allows some particles to be pulled out of the condensate 
to occupy bound states in deep local fluctuations of a random potential. This can be 
regarded as a picture of the possible ‘inert layer‘ found in Vycor experimena. How 
do these particles coexist with the condensate? Heuristically, one would expect that 
each trapped particle will be coupled to the condensate by virtual hopping excitations 
out of its binding potential. In other words, the zero-point fluctuations in the ground 
state consists of a continuous exchange of particles between the potential well and its 
condensed environment. If the binding energy in the potential is decreased, then we 
might expect a transition or gradual crossover to the screening limit of [SI where no 
particles occupy localized states. We will attempt to formalize this physical picture in 
this section. 

To simplily the problem, we will consider a lattice model where each localized 
particle is confined to one site only. This avoids the necessity of knowing about the 
structure of the localized wavefunction within the wells. Sincc we are interested in the 
exchange between thc well and the condensate, we can exclude the possibility of the 
multiple occupancy at the defect site by considering hard-core bosons. If we further 
suppose that the parameters of the system can be adjusted so that these defects 
are dilute, then we can treat the sites as independent two-level systems (empty or 
occupied). From now on, we will focus on one particular defect site. 

As is well known, a lattice system of hard-core bosons can be represented by a 
spin-half A’ Y model. However, further approximations arc necessaly to circumvent 
the mathematical dXiculties of such a model. In particular, we will ObSeNC the hard- 
core constraint at the defect site only. Bose-Einstein condensation will be assumed 
to exist in the rest of the system. If the spin-up state represents an occupied site, 
then the on-site term in the Hamiltonian is 

where U’ is the z-component of the Pauli matrix and A, = p - V is the energy to 
remove a trapped particle and place it in the condensate. It should be positive to trap 
a particle. V is the site energy at the defect. p is the chemical potential introduced 
to conserve the total particle number : ( ( U ’ )  + 1) + C,(cLc,,). 

The rest of the system is approximated by the finite-interaction Bose Hubbard 
model with random site energies. The interaction U plays the role of a pseudopo- 
tential. We will discuss this later. The hopping between the trap and the condensate 
occurs at a special site R so that the total Hamiltonian is given by: 
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In this model, the defect site is singled out as a special site which the condensate does 
not penetrate so that there is no repulsion between the condensate and the trapped 
particle. Hence, in contrast to the models discussed previously, the condensate density 
is not depressed at site R Indeed, the opportunity to take part in the exchange 
process with the trapped site will produce a local bulge in the condensate. Thus, this 
model is designed to illustrate the hopping exchange between the trapped states and 
a Bose-condensed environment (see figure 2). 

' \  t defect Lite 

R 

Figure 2. A defect sile coupled 10 a uniform Bose syslstem 

3.1. A mean-jield description 

Let us now consider the mean-field solution to this model. In other words, we 
will focus on the hopping of a particle between the trap and the condensate. In 
the language of this spin model, the existence of a condensate means that the spin 
experiences a field proportional to t which causes it to cant towards the zy-plane. 
Suppose that the canted spin makes an angle e with the z-axis (0 < 0 < T). The 
wavefunction of the system is then of the form: 

I@) = eid cosi6 I T ;  N condensed) + e-'+' sin40 I 1; N + 1 condensed}. (9) 

The azimuthal direction + of the spin can only be determined relative to the global 
phase of the condensate. (Compare with Josephson coupling.) Choosing the con- 
densate wavefunction to be real, we can fix + = 0 so that C$ is 'aligned' with the 
condensate phase. In terms of the Bose system, the trial state is a superposition of 
two pemunents-one describes a trapped particle outside a condensate and the other 
describes a totally condensed state. On a technical level, the adoption of this hvo- 
permanent variational wavefunction (9) is the main difference between the approach 
in this section and those in the previous one, where only a single permanent was 
used. In this context, we have allowed for more freedom in our variational ground 
state. (Of course, we have also traded away other degrees of freedom, such as the 
spatial structure of the trapped state, to make the problem tractable.) Indeed, this 
is necessary if we wish to discuss the hopping exchange between the trap and the 
condensate. 

Because it is advantageous to exploit the hopping term fully, we will assume that 
the condensate wavefunction is of the same form for both spin states; this ensures 
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the maximum overlap of the total wavefunctions when hopping. The non-linear 
Schrodhger equation (NLSE) for the condensate wavefunction I,O is obtained from 
minimizing the Hamiltonian: 
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where we have substituted p = --xt + UTi for the chemical potential. The source 
term describes the effect of the exchange with the spin which encourages a bulge in 
the condensate as already mentioned. The angle of the spin depends in turn on the 
local condensate amplitude: 

The occupation of the defect is cos2f0. As expected, this quantity decreases from 
unity when the hopping into the condensate is introduced. As in the XY model, 
the zy-component of the canted spin indicates the participation of the particle in the 
condensate. TO be more precise, it indicates the admixture of the totally-condensed 
state with the trapped-particle state. 

The ‘homogeneous’ case can be obtained by setting V = 0 and choosing the 
mean-field occupation of the hard-core site to be the same as the number density 
asymptotically far away from the bulge in the condensate. One possible procedure 
is to fix K and adjust U such that the chemical potential p = A,( V = 0) gives us 
the desired (S,) for the spin state. Therefore, as already mentioned, U is treated as 
a pseudopotential for the dilute hard-core gas from which we started in this section. 
For instance, a filled lattice requires 0 = 0 and hence both A,( V = 0) and U must 
diverge, reflecting the fact that the hard-core condition has to be enforced rigorously. 

The coupled equations for the spin ducction and the condensate distortion can 
bc simplified when 0 remains close to zero. This limit arises when the kinetio 
energy advantage t i t ’ / ’  - 1 of hopping into the condensate B nullified by a much 
greater cost A, of leaving the well-i.e. weak hopping and a deep trap, In such a 
case, the source term in (IO) is linearly related to the local value of the condensate 
waveCunction, having the same effect as a local potential well (-t‘/A,) 6nR. The 
depth of this well can be understood in terms of thc virtual hopping process where 
the condensate and the trap exchange a particle. An estimate of the magnitude 
of the condensate at R can be obtained by balancing the energy - ( t ’ /A , )q2  for 
taking advantage of this well and the repulsive energy cost 4U?ia904. This gives 
p: rr 1 + (t/LTFi)(t/A,) if the deviation from unity is small. Note that this bulge 
in the condensate is small when the trap is deep or the hopping is weak (Ao/t W 1). 
This is expected because the defect site is inaccessible to the condensate if a particle 
is tightly bound there. 

Having discussed lower spin state, we will now turn  to the excited state. This 
corresponds to a spin flip: Q - s - 0 and d -+ 4 + 7i (keeping the same associated 
condensate wavefunction.) For 0 2 0, this excited state is predominantly a number 
excitation, i.e. the trapped particle has jumped out of the defect site. I n  other words, 
the particle appears to be occupying the condensed-phase analogue of a Lifshitz tail 
state. The new excitation energy, which we shall denote by A,  is not surprisingly 
similar to the original trapping energy Arr- As the depth of the trap is reduced so 
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that A, 4 0,  both the lower and higher spin states cant towards the ry-plane. The 
difference in the occupation of the defect site between the two states is cos0 so that it 
decreases as 0 -, i7r. Hence, the excitation loses its number-like character, becoming 
‘phase-like’ in the sense that its azimuthal angle q5 is antiparallel to the phase of the 
condensate. This is reflected in the excitation energy (for B - in) which can be 
estimated hy the effect of the phase flip on the spin-condensate coupling in the 
Hamiltonian: A 2 t K 1 / 2 9 R .  Hence, in the limit of a weak trap or strong hopping 
(A,/t?illz - 0), the system can be interpreted as a Josephson weak link between the 
trap and the condensate with a finite ‘charging enerpy‘ A. 

Therefore, we can see that the mean-field solution to the ground state has a 
gradual crossover from a bound-state picture to a Josephson-like picture of the system. 

3.2 Hopping fluctuations 

Let us now examine the zero-point fluctuations in the system. In a homogeneous sys- 
tem, these are the collective fluctuations of the condensate. In the long-wavelength 
limit, they are predominantly fluctuations in the phase of the condensate wavefuno 
tion. In the present model, this phase is in fact coupled to the azimuthal angle + that 
parametrizes the spin state in (9). Variations in this angle does not alter the varia- 
tional ground-state energy. Therefore, we can expect that the quantum fluctuations 
in our system to be similarly dominated by gapless Goldstone modes. In addition, 
the virtual exchange of particles between the trap and the rest of the system can be 
studied. We will focus on these processes because we are interested in the survival 
of trapped states in t h e  presence of a condensate. Therefore, in the treatment that 
follows, we will not consider the effect of the trap on the condensate and we will 
simply assume that the number density of the condensate is E. For the dilute system 
we are discussing, significant depletion of the condensate is expected so that E *: 5. 

It is convenient to rotate the axis of quantization to coincide with the mean-field 
spin direction: 

-, cos0 uz - sine us i cos0 U= + sin0 U‘ cry - cry. (12) 

From the discussion of the previous sections, we know that we should be studying 
the dilute limit of our system for trapping. Therefore, the conventional Bogoliubov 
c-number procedure can be employed in a first approximation: c,, - n1/’q, + cn. 
The spin part of the Hamiltonian becomes: 

- 

Hspi,, i -$A a’ where A = &sec 8. (13) 

A is the new splitting as discussed in the mean-field description. Note that this is 
always larger than the original trapping energy A. The coupling between the spin 
and the rest of the system is described by: 

The Hamiltonian for the bosons can be truncated at the quadratic level so that a Bo- 
goliubov transformation can be performed. The formal description of the Bogoliubov 
transformation with an inhomogeneous condensate has been given our previous paper 
[5]. However, we will only be concerned with the effect of the long-wavelength phase 
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fluctuations on the trapped state. Since the bulge in the condensate should not ex- 
tend to length scales larger than the healing length, we will ignore the inhomogeneous 
corrections and use the Bogoliubov excitations of a uniform system. 

We can now express the Hamiltonian in terms of the Bogoliubov excitations, 
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H = -$Aa.' + cRkol!ak + H ,  
k 

(U* - UE)(coSO a= + +sin0 (a. - l ) ) (ar .  -I- 4 1  (15) 
where uk and vk are the coherence factors. R, is the dispersion relation for the 
Bogoliubov excitations. It should be linear at long wavelengths: R, 2 ck. The 
phonon velocity c is given by cz = 21UE. (R is chosen as the origin. N is the 
number of sites.) 

This is an example of the 'spin-boson problem' which has been exhaustively stud- 
ied. For a review, see Leggett ef af 171. We will now use this model to argue that 
the 'Lifshitz tail state' is stable in three dimensions with respect to its coupling to 
a condensed system provided that the trapping energy A, is much greater than the 
hopping matrix element t. The two-dimensional case is more subtle. 

Let us focus on the first term of H, which represents the strongest coupling: 

N, = - C i a Y g , ( a k  - oL) (16) 
k 

where gr. = t(u!, + x k ) / 2 N 1 1 2  - k-'/? at long wavelengths. We may attempt to 
tackle this coupling perturbatively when the trap is deep. The ground state energy 
then lowered from -$A by 

in the limit of strong trapping A > A, > R,. 10) is the ground state at zero 
coupling, i.e. spin-up eigenstate in the Bogoliubov vacuum. R, is the bandwidth of 
the Bogoliubov excitations. This expression converges in two and three dimensions. 
The fractional change in the ground-state energy is -C(l/A)(R,/A) where C is a 
dimension-dependent constant of the order of unity. This perturbative result is what 
might be expected when the energy cost for hopping out of the well is high. 

We may also adopt a variational approach to examine when the effect of the 
coupling overwhelms the influence of trapping energy. We follow the approach of 
Silbey and Harris [SI here and use the canonical transformation: 

where fk is the variational parameter. The variational energy Of the state U 10) is 
1 (U- 'HL' )  = -+AR + n( J z  - 2 J k g k )  

k k  

L k  J 
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We can regard AR as a renormalized spin splitting. The exponential reduction in 
the effective spin splitting originates from the reduced overlap of the two different 
phonon wavefunctions associated with each spin state. However, one should be careful 
in interpreting this canonical transformation as introducing different c-number shifts 
in the Bogoliubov phonons according to the influence of the spin-up and spin-down 
states. (This would be the case if we replaced UY with U’ in the transformation.) As 
we have seen in the mean-field theoly, this tends to decouple the two spin states and 
the system will be unable to take advantage of the hopping between the trap and its 
environment. On the contrary, the spin-up and spin-down states have in fact become 
strongly admixed because of this reduction in the splitting. Therefore, the hopping 
term tends to decouple the eigenstates of uy. 

The stationary points in the energy are given by f k  = gk/[l + ARC2;*]. For our 
coupling function gk - k-1/2,  it can be shown that a local minimum is obtained only 
if AR = 0 so that f k  = gk. The variational energy is then given by A = - Ck g i / C l k .  
The low4 contribution to this quantity diverges logarithmically in two dimensions! In 
other words, the spectrum for the linearized model here does not have a lower bound. 
The infinitely negative contribution comes from the u g  term. The actual pathology of 
an unbounded energy spectrum is of course an artefact of the approximations made. 
The finite compressibility of the actual Bose system and hence the anharmonicity in 
its gas of Bogoliubov excitations should prevent this from occurring. Nevertheless, 
this problem indicates that the perturbative consideration of single hops between the 
trap and its surroundings is inadequate in two dimensions. 

In three dimensions, the variational energy is A E - ; ( t*UE/n:)  - -1. When 
]AI > $A, this variational energy will be lower than the perturbative result An- 
ticipating that the variational state is quite different from the perturbative one, a 
condition for the stability of the trapped state should be t < A. 

How different are the variational and perturbative methods in dealing with the 
coupling term H,? It has already been mentioned that the variational ansatz ad- 
mixes the eigenstates of U* strongly and decouples the eigenstates of d. To 
compare the two states , one might naively say that the perturbative state is sim- 
ply the leading correction to the decoupled state 10) in the ’bylor expansion of 
the variational state U 10) with f k  = gk. More quantitatively, we can compute 
their overlap S = (pertlU10). The exponent in U can be normal-ordered using 
exp(A+ B) = expAexpBexp - +[A, B], giving 

u(fk = gk) = exp -imy C g k a : / O k  exp -iuY ~ g ~ o ~ / n ~ ]  
[ k  I [  k 

xexp -$Cgi/fi2 . (20) 
[ k  1 

The last c-number factor is the same as (A,/A)’l4 and it vanishes due to an 
infra-red divergence in the exponent. Therefore, the variational state U 10) does not 
have any overlap with wavefunctions constructed perturbatively from the decoupled 
system! In other words, all the matrix elements of L‘ vanishes in the representation 
of the Hilbert space which uses the eigenstates of the decoupled system as a basis 
set. U has been called an ‘improper unitary operator’ and the states generated by 
it from the eigenstates of the decoupled system are said to form an ‘improperly 
equivalent’ Hilbert space 191. I n  condensed matter physics, this is better known as the 
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‘orthogonality catastrophe’, first formulated by Anderson [IO] in terms of a metallic 
analogue of the present problem. It is a generic feature that may arise in systems 
with an infinite number of degrees of freedom. In our case, it arises as an infra-red 
pathology, i.e. in the thermodynamic limit, when the wavefunctions of the macroscopic 
number of excited Bogoliubov quasiparticles associated with the eigenstates of up 
have no overlap at all. As hinted above, this is the origin of the vanishing A R  which 
is an off-diagonal transition matrix element for the ug eigenstates. In the language 
of the problem of dissipative tunnelling between double wells, this corresponds to a 
particle being stuck in one of the wells [ll]. 

Following Beck er a1 [12], we may describe a second-order transition between the 
two rkgimes we are discussing. The order parameter is identified as p = Ck ig,(ak- 
a!) which implies a c-number shift to the Bogoliubov quasiparticles. A random phase 
approximation gives ( C Y )  = p/2A and a Hamiltonian of the form 

HRPA=-fAu.’  - p ~ ~ + ~ S 2 ~ ~ ~ & f p ~ / 4 A  (21) 
k 

where pk and pL are Bogoliubov operators after the subtraction of their expectation 
values. For this Hamiltonian, the expectation value of uw is given in terms of p 
as p / ( 4 p z  + AZ)’I?. lb make this calculation self-consistent, we sce that p = 0 
for A < A/4 and there is a second-order transition to finite p at ,I = A / 4 .  This 
transition in terms of the Bogoliubov quasiparticles has to be treated with caution 
because the c-number shift may well be suppressed by the anharmonic effects which 
we have ignored. Nevertheless, it gives an energy scale for the validity of the mean- 
field picture. It should be noted that the energy A does not feature prominently in 
the discussion of the conventional spin-boson literature (e.g. [7]). This is because it 
has been compensated explicitly by a counterterm. Such a formulation would enable 
one to isolate the effect of a ‘classical’ dissipative term on the quantum dynamics of 
the spin. However, this is not the purpose Of the present investigation. 

4. Discussion and conclusions 

We now see that there is Some parallel With the case of fermions in a random 
potential. There, if the mobility edge is below the Fermi energy, the ground state 
consists of both localized and extended single-particle states, if the fermions do not 
interact. There are excited states where holes reside in the localized states. 

Both of these results have their counterparts in the bosonic case, at least at the 
Hartree-Fock level, as indicated in section 2. As well as the condensate wavefunction 
being multiply occupied, a localized state was occupied in the ground state. This 
presence of non-macroscopically occupied single particle stat= in the ground state is 
the prerequisite for a sensible definition of a ‘hole’ excited state in a Bose system. In 
the case of the uniform condensate, the only state that is occupied is the condensate, 
there is no discernible change in the occupancy if one particle is removed. However 
in the case of a singly occupied state occuring in the ground state, the change in 
occupancy is not negligible if it is removed. Thus an approximately orthogonal excited 
state would consist of taking the particle from the localized state and placing it in the 
condensate. This implies that at the HartreeFock level, a Lifshitz tail can be said to 
exist in a Bose system. 
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Interaction amongst the bosons presents a mechanism for the ground state to be 
a superpasition of the fully condensed state and the state with one boson in the tail 
state. The condensate and localized state may be thought of as the tyo components 
in a Josephson junction, with the ‘charging energy‘ increasing as the energy of the tail 
state becomes more negative. This suggests a gradual transition to a fully condensed 
state as the depth of the tail state is decreased, with the hole excited state becoming a 
phase excitation. At the Bogoliubov level we saw that this picture might breakdown- 
there being a genuinely ‘localized’ state if the well depth was large enough, at least 
in three dimensions. In two dimensions the results were difficult to interpret due to 
infrared divergences, requiring consideration of anharmonicity among the Bogoliubov 
excitations. 

The simplest application of these results to a spatially random potential is the 
following. In the Vycor experiments, localization sets in at low coverages, however 
one peculiarity of the results is that the condensate fraction is larger than n -nf close 
to the transition, where nf is the critical coverage errrapolafed from high coverages 
(see figure 3). This implies that the ‘inert layer’ dissolves to some extent as the 
transition approaches. We may ask if there is some sign of this in our work. Let us 
consider the inequality that determines whether the trapped solution is the ground 
state: it is 1A1 < aA, where CY is a constant of order unity as we saw in the last 
section. How does this change as the density of bosons is lowered? A contains 
one power of n in both the numerator and in the denominator (through OC), so it 
does not vary with n. However, A contains one power of n through the Hartree 
contribution to the chemical potential, and so A decreases as n - nC. 

A 

..‘ 
rupeiiluid 

densily 

coverage 

Figure 3. A schemalic diagram of the condensate fraction as afunction of coverage. 

The consequence of the decrease in A and the constancy of A is that the inequal- 
ity for the stability of the trapped state may be violated at low density. Assuming 
a distribution of trap depths, as the density is lowered there will be a liberation of 
bosons from the traps that form the inert layer, which will place the condensate frac- 
tion above the na’ive estimate (linear extrapolation from high density). These details 
of this process are beyond the scope of this paper. 

In summary, we have argued that Lifshitz tail states can coexist with the con- 
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densate in a Bose system, justifying the inert-layer picture in the study of helium 
on Vycor. In three dimensions, hard-core bosons can be trapped by a sufficiently 
deep potential well despite a strong tendency for aU particles to participate in the 
Bose-Einstein condensate. We found that phase fluctuations in the condensate tend 
to depress particle exchange between the trap and the rest of the system and hence 
has an enhancing effect in terms of Lifshitz-tail localization. However at low densities 
(near onset of condensation) the condensate will be relatively enhanced compared to 
the inert layer model, in agreement with experiment 
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