◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ● ●

Quantum Theory of Matter Overview Lecture

Derek Lee

Imperial College London

January 2007

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Outline

- Introduction
- Superfluids
- Superconductors

- Course Plan
- Resources

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Outline

- Introduction
- Superfluids
- Superconductors
- 2 Course structure
 - Course Plan
 - Resources

Complex Materials

- Periodic table
 - \sim 100 elements
 - \rightarrow binary compounds
 - \rightarrow tertiary compounds
- Simple rules

. . .

- quantum mechanics
- Coulomb interactions
- \rightarrow but complex cooperative phenomena emerge

・ロト ・ 一下・ ・ ヨト

э

The sum is more than its parts

Superfluids

Kim & Chan, Science 2004

000000

Course structure

• Superfluids flow without viscosity

- liquid helium ⁴He (below 2K)
- optically trapped alkali atoms (nK)
- Not dragged by container walls → container rotates but superfluid stays still

(日)

э

• Bose-Einstein condensation

Superfluids

Kim & Chan, Science 2004

Course structure

• Superfluids flow without viscosity

- liquid helium ⁴He (below 2K)
- optically trapped alkali atoms (nK)
- Not dragged by container walls → container rotates but superfluid stays still

ヘロト ヘ部ト ヘヨト ヘヨト

э

- Bose-Einstein condensation
- supersolid ⁴He ?!

Superfluids

Course structure

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

A Question of Identity

- Two identical particles: complex wavefunction $\psi(\mathbf{r}_1,\mathbf{r}_2)$
 - Prob [one particle at ${\bf r}_1$ & another at ${\bf r}_2$] $\propto |\psi({\bf r}_1,{\bf r}_2)|^2$
 - Indistinguishable particles $\Rightarrow |\psi(\mathbf{r}_1, \mathbf{r}_2)|^2 = |\psi(\mathbf{r}_2, \mathbf{r}_1)|^2$

Only two possibilities in 3 dimensions: $\psi({f r}_1,{f r}_2)=\pm\psi({f r}_2,{f r}_1)$

A Question of Identity

- Two identical particles: complex wavefunction $\psi(\mathbf{r}_1,\mathbf{r}_2)$
 - Prob [one particle at ${\bf r}_1$ & another at ${\bf r}_2$] $\propto |\psi({\bf r}_1,{\bf r}_2)|^2$
 - Indistinguishable particles $\Rightarrow |\psi(\mathbf{r}_1,\mathbf{r}_2)|^2 = |\psi(\mathbf{r}_2,\mathbf{r}_1)|^2$

Only two possibilities in 3 dimensions: $\psi({\bf r}_1,{\bf r}_2)=\pm\psi({\bf r}_2,{\bf r}_1)$

Fermions: $\psi(\mathbf{r}_1, \mathbf{r}_2) = -\psi(\mathbf{r}_2, \mathbf{r}_1)$

- electrons, protons, ³He
- Pauli exclusion: no two particles in the same state

Bosons: $\psi(\mathbf{r}_1, \mathbf{r}_2) = +\psi(\mathbf{r}_2, \mathbf{r}_1)$

- $\bullet~^4\text{He},~^{87}\text{Rb},$ photons
- no Pauli exclusion principle

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Bose-Einstein Condensation

Bose-Einstein condensation

All particles in the one-particle eigenstate with lowest energy

Coherent quantum state \rightarrow no scattering ("all in step") [coherent photons \rightarrow lasers]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

http://www.colorado.edu/physics/2000/bec/

 $^4\mathrm{He}$ and $^{87}\mathrm{Rb}$ atoms are electrically neutral.

Superfluids

Course structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Charged superfluids?

 4 He and 87 Rb atoms are electrically neutral.

Are there charged superfluids?

Superfluids

Course structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Charged superfluids?

⁴He and ⁸⁷Rb atoms are electrically neutral.

Are there charged superfluids?

Cannot use electrons: Pauli exclusion...

Superfluids

Course structure

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Charged superfluids?

 4 He and 87 Rb atoms are electrically neutral.

Are there charged superfluids?

Cannot use electrons: Pauli exclusion...

Use electron pairs to defeat Pauli exclusion: $(-1) \times (-1) = +1$

Superfluids

Course structure

Charged superfluids?

⁴He and ⁸⁷Rb atoms are electrically neutral.

Are there charged superfluids?

Cannot use electrons: Pauli exclusion...

Use electron pairs to defeat Pauli exclusion: $(-1) \times (-1) = +1$

Condensation of electron pairs \rightarrow superfluidity of charge 2e bosons: Cooper pairs

э.

ヘロト 人間ト ヘヨト ヘヨト

Superconductors

Superconductors

Course structure

э

・ロト ・聞ト ・ヨト ・ヨト

Superconductors

Course structure

The Perfect Conductor

- Electrical current through a copper wire heats it up: $P_{\rm loss} = I^2 R$
 - Good for heating
 - Waste of energy for light bulb, TV, computer...
 - A large fraction of electrical power is lost between the power generator and your home through heat loss

Superconductors have no electrical resistance when cooled to a low temperature.

Perfect electrical conduction

Superconductors

Course structure

The Perfect Conductor

- Power applications
 - generation/transmission
- Powerful magnets
 - medical imaging (MRI)
 - maglev trains: 300 mph (Yamanashi test line)
 - particle accelerators

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Superconductors

Meissner Effect Perfect diamagnetism: superconductors expel magnetic fields

Field penetrates a normal metal, but not a superconductor.

Currents flow to cancel applied external field.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Superconductors

Meissner Effect Perfect diamagnetism: superconductors expel magnetic fields

Field penetrates a normal metal, but not a superconductor.

Currents flow to cancel applied external field.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

This generates an *upward* force on the superconductor. (Analogy: garden hose) \Rightarrow Superconducting Levitation

Superconductors

Course structure

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Superconducting Levitation

Magnet levitated by a superconductor

Course structure

Superconductors

Superconducting Levitation

sumo levitation

Superconductors

Flux Quantisation

Aharonov-Bohm effect: (momentum $\mathbf{p} \rightarrow \mathbf{p} + q\mathbf{A}$) Charges see magnetic flux through loop Flux = $\Phi = \int \mathbf{B} \cdot d\mathbf{S} = \oint \mathbf{A} \cdot d\mathbf{r}$ Cooper pair wavefunction acquires phase: $\psi \rightarrow \psi \ e^{2ie\Phi/\hbar}$ Flux through superconductor is possible if $e^{2ie\Phi/\hbar} = e^{2\pi M i} = 1 \implies \Phi = M \frac{h}{2\pi}$

B

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Superconductors

Flux Quantisation

Aharonov-Bohm effect: (momentum $\mathbf{p} \to \mathbf{p} + q\mathbf{A}$) Charges see magnetic flux through loop Flux = $\Phi = \int \mathbf{B} \cdot d\mathbf{S} = \oint \mathbf{A} \cdot d\mathbf{r}$ Cooper pair wavefunction acquires phase: $\psi \to \psi \ e^{2ie\Phi/\hbar}$ Flux through superconductor is possible if $e^{2ie\Phi/\hbar} = e^{2\pi M i} = 1 \implies \Phi = M \frac{h}{2e}$

Magnetic field penetrates in discrete flux quanta of h/2e

STM image of vortex lattice NbSe₂. Hess et al (1989).

Superconductors

Superconducting QUantum Interference Device

- Current flows around coil to ensure quantised flux through centre
- Sensitivity to small local fields *e.g.* non-destructive testing of aircraft wheels

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Course structure

Superconductors

High-temperature Superconductors

- The cuprate family of superconductors, e.g. $La_{2-x}Sr_x CuO_4$
- No electrical resistance below -120°C.
 This is warm! Liquid nitrogen boils at -196°C (77K).
- Cables and wires carry current with no heat loss \Rightarrow power generation, medical imaging (magnets for MRI), ...

Superconductors

Course structure

A New Kind of Metal?

- $La_{2-x}Sr_xCuO_4$ ($T_c = 60K$) Bednorz & Müller 1986 YBa₂Cu₃O_{7-x} ($T_c = 90K$) Chu 1987
- Doping $x \simeq 10\%$ for superconductivity
- Common features
 - electrical conduction in CuO planes: "flatland"
 - parent compound (x = 0): not a metal but an insulator!

• superconductivity in competition with *magnetism*

Does conventional theory of metals and superconductors still work?

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Outline

Course content

- Introduction
- Superfluids
- Superconductors

- Course Plan
- Resources

Course Plan

Phenomenology: Neutral Superfluids

• Bose condensation & superfluidity

- ideal Bose gas: total Bose condensation
- interacting Bose liquid
- criterion for superfluidity
- Condensate wavefunction and phase

$$\psi_{\rm c} = \sqrt{N} e^{i\theta}$$

- Condensate phase twist = current
 - Vortices: quantised angular momentum

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Course Plan

Spontaneous Broken Symmetry

- Ferromagnet with spin rotation symmetry
 - global magnetisation can point in any direction
 - degenerate ground states can be generated by a global rotation of all the spins through an angle ϕ

- Magnet *spontaneously* chooses a magnetisation direction, breaking the spin rotation symmetry
- Superfluid: magnetisation \rightarrow condensate phase

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Course Plan

Phenomenology: Superconductors

London theory

- charged superfluid
- condensate phase: coupling to vector potential

$$\nabla \theta \to \nabla \theta - 2e\mathbf{A}$$

- London equation for screening of magnetic fields \rightarrow Meissner effect
- Flux quantisation: flux quantum h/2e
- Josephson effect
 - phase coupling between superconductors
 - dc current without voltage

Many-body Theory

- From classical waves to quantum particles
 - $\bullet \ \mbox{sound} \ \mbox{waves} \rightarrow \ \mbox{phonons}$
 - $\bullet \ \ \text{electromagnetic waves} \to \text{photons}$
- Quantum field theory
 - particle creation and annihilation
 - elementary excitations in a correlated system
 - zero-point motion: vacuum fluctuations
- Applications
 - quantum crystals: zero-point vibrations
 - superfluids: zero-point phase fluctuations
 - conventional superconductors: Cooper pairing, BCS theory

▲日▼▲□▼▲□▼▲□▼ □ ののの

- J.F. Annett, *Superconductivity, Superfluids and Condensates* (Oxford Univ Press, 2004). Closest to course.
- D.R. Tilley & D.R. Tilley, *Superfluidity and Superconductivity* (Institute of Physics, 1990).
- P. Nozières & D. Pines, *The Theory of Quantum Liquids Vol* 2 (Perseus 1999). Classic text aimed at postgraduates.
- P.G. de Gennes, *Superconductivity of Metals and Alloys* (Addison Wesley 1989). Classic postgraduate text.
- M. Tinkham, *Introduction to Superconductivity* (Dover 2004). Comprehensive postgraduate textbook.

Course material

• WebCT or:

http:

//www.cmth.ph.ic.ac.uk/people/dkk.lee/teach/qtm/

- course plan: aims & objectives
- lecture notes (with errata)
- problem sheets & solutions
- recommended texts
- Email: dkk.lee@imperial.ac.uk

• Office hours:

Monday 1-2pm, Thursday 4-5pm (Blackett 809)

• Rapid feedback sessions:

Every other Friday 1pm, starting week 3. Demonstrator: Tanja Duric (tanja.duric@imperial.ac.uk)