◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quantum Theory of Matter Revision Lecture

Derek Lee

Imperial College London

May 2006

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Outline

2 Quantum Theory of Matter

- Phenomenology
- Microscopic theory

Outline

2 Quantum Theory of Matter

- Phenomenology
- Microscopic theory

3 Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

- Exam format
 - Two hours
 - 2 sections with 3 questions each
 - section A: phenomenology (chap 2 to 7); concentrates on understanding of basic phenomena.
 - section B: microscopic theory (chap 1, 8 to 12); involves a few questions with more technical content.
 - Answer 3 questions: at least one question from each section

Exam format

- Two hours
- 2 sections with 3 questions each
 - section A: phenomenology (chap 2 to 7); concentrates on understanding of basic phenomena.
 - section B: microscopic theory (chap 1, 8 to 12); involves a few questions with more technical content.
- Answer 3 questions: at least one question from each section
- Exam technique
 - take 5 minutes to read all the questions before you start
 - check your algebra by checking the dimensions of your answers at each step

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

Revision

Lecture notes

- your own notes
- my typed notes: extended description of lecture contents
- Lecture summaries: use as reminder of key points
- Problem sheets: do the problems!
 - in particular, key concepts are covered in questions assigned for **rapid feedback** (listed on course web page)
 - do not to refer to the solutions unless you are completely stuck
- Office hours: email to arrange meeting

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Outline

Quantum Theory of Matter

- Phenomenology
- Microscopic theory

3 Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Phenomenology

Superfluidity

• Superfluids flow without viscosity

- neutral: liquid helium 4 He (below 2K), optically trapped alkali atoms (nK)
- charged: superconductors \approx Cooper pairs (charge 2e, mass $m^* = 2m_e$)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Phenomenology

Superfluidity

• Superfluids flow without viscosity

- neutral: liquid helium 4 He (below 2K), optically trapped alkali atoms (nK)
- charged: superconductors \approx Cooper pairs (charge 2e, mass $m^* = 2m_e$)
- Landau criterion: can the fluid lose momentum/energy due to scattering with the container wall when travelling at a small relative velocity v?
 - inspect excitations in the rest frame: energy $\Delta E({\bf p})$ and momentum ${\bf p}=\hbar {\bf k}$

Superfluid if $\Delta E - \mathbf{v} \cdot \Delta \mathbf{p} > 0$ for all excitations

- ideal Bose gas: ΔE = p²/2m ⇒ not superfluid; but interacting Bose fluid: ΔE ∝ |p| (sound modes) ⇒ superfluid
- Fermi gas: particle-hole excitations $\Delta E = 0$ possible for $|\mathbf{p}| < 2\hbar k_{\rm F} \Rightarrow$ not superfluid; but BCS state has energy gap: $\Delta E(\mathbf{p} \rightarrow 0) = \Delta \Rightarrow$ superfluid

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

Phenomenology

Landau criterion: Bose systems

Superfluidity requires the excited states of the fluid remain higher in energy than the ground state after the Galilean transformation to the pipe frame: $\Delta E \rightarrow \Delta E - \mathbf{v} \cdot \Delta \mathbf{p}$

You should be able to state and apply the criterion.

Landau criterion: Fermi gas

Particle-hole excitations. The net momentum $\hbar q$ can be small (left) or of the order of $k_{\rm F}$ (right). The shaded region represents the possible energies and momenta of electron-hole pairs. The dotted line has slope $\hbar v_{\rm F}$.

・ロト・「聞・ 《田・ 《田・ 《日・

Phenomenology

Order parameter/condensate wavefunction

- Complex order parameter $\psi_{\mathrm{c}}=\sqrt{n_s}e^{i\theta}$
 - condensate wavefunction, e.g. totally condensed state used in variational treatment at $T=0\to$ non-linear Schrödinger equation
 - more phenomenologically: $\psi_{\rm c}(T)$ as an order parameter $|\psi_{\rm c}|$ non-zero below T_c

Phenomenology

Order parameter/condensate wavefunction

- Complex order parameter $\psi_{\mathrm{c}}=\sqrt{n_s}e^{i\theta}$
 - condensate wavefunction, e.g. totally condensed state used in variational treatment at $T=0\to$ non-linear Schrödinger equation
 - more phenomenologically: $\psi_{\rm c}(T)$ as an order parameter $|\psi_{\rm c}|$ non-zero below T_c
- Physical meaning of condensate phase θ
 - $\bullet\,$ phase twist in space \Rightarrow superfluid flow

Phenomenology

Order parameter/condensate wavefunction

- Complex order parameter $\psi_{\mathrm{c}}=\sqrt{n_s}e^{i\theta}$
 - condensate wavefunction, e.g. totally condensed state used in variational treatment at $T=0\to$ non-linear Schrödinger equation
 - more phenomenologically: $\psi_{\rm c}(T)$ as an order parameter $|\psi_{\rm c}|$ non-zero below T_c
- Physical meaning of condensate phase θ
 - $\bullet\,$ phase twist in space \Rightarrow superfluid flow
 - neutral superfluids:

superfluid velocity $\mathbf{v}_s = \hbar \nabla \theta / m$

number current density $\mathbf{J} = n_s \mathbf{v}_s$ ($n_s = total$ density at T = 0)

Order parameter/condensate wavefunction

- Complex order parameter $\psi_{\mathrm{c}}=\sqrt{n_s}e^{i\theta}$
 - condensate wavefunction, e.g. totally condensed state used in variational treatment at $T=0\to$ non-linear Schrödinger equation
 - more phenomenologically: $\psi_{\rm c}(T)$ as an order parameter $|\psi_{\rm c}|$ non-zero below T_c
- Physical meaning of condensate phase θ
 - $\bullet\,$ phase twist in space \Rightarrow superfluid flow
 - neutral superfluids: superfluid velocity v_s = ħ∇θ/m number current density J = n_sv_s (n_s = total density at T = 0)
 - charged superfluids: v_s = (ħ∇θ 2eA)/m^{*} electric current density J_e = n_sev_s (n_s = superconducting electron density)

should be able to derive velocity from momentum operator

Phenomenology

Characteristic lengths

 Neutral superfluids: kinetic energy vs interaction energy Non-linear Schrödinger equation:

$$-\frac{\hbar^2}{2m}\nabla^2\psi_{\rm c} + (u|\psi_{\rm c}|^2 - \mu)\,\psi_{\rm c} = 0 \qquad \text{with} \quad \mu = u\bar{n}$$

- ullet interaction with other bosons gives potential energy: $u|\psi_{\rm c}|^2$
- ightarrow characteristic length = healing length $\xi = \hbar/(mu\bar{n})^{1/2}$
 - interaction dominates at length scales $> \xi$, e.g. sound wave spectrum
 - low-energy configurations are smooth on the scale of $\boldsymbol{\xi}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Phenomenology

Characteristic lengths

 Neutral superfluids: kinetic energy vs interaction energy Non-linear Schrödinger equation:

$$-\frac{\hbar^2}{2m}\nabla^2\psi_{\rm c} + (u|\psi_{\rm c}|^2 - \mu)\,\psi_{\rm c} = 0 \qquad \text{with} \quad \mu = u\bar{n}$$

- ullet interaction with other bosons gives potential energy: $u|\psi_{\rm c}|^2$
- ightarrow characteristic length = healing length $\xi = \hbar/(mu\bar{n})^{1/2}$
 - interaction dominates at length scales $> \xi$, e.g. sound wave spectrum
 - $\bullet\,$ low-energy configurations are smooth on the scale of ξ
- Charged superfluids
 - analogous characteristic length: coherence length $\xi \simeq$ size of Cooper pairs
 - extra magnetic length scale: London penetration depth $\lambda_{\rm L} = (m_e/n_s e^2 \mu_0)^{1/2}$ ($n_s =$ electron density) \rightarrow Meissner effect

Superconductors: Meissner Effect

- ullet London theory ($|\psi_{\rm c}|\simeq$ constant except near wall/vortices)
 - (free) energy density in terms of magnetic field only:

$$F_{
m London}[\mathbf{B}] = rac{1}{2\mu_0} \int d^3 \mathbf{r} \left[\lambda_{
m L}^2 \left(\mathbf{
abla} imes \mathbf{B}
ight)^2 + \mathbf{B}^2
ight]$$

- Meissner effect: no fields or currents in bulk beyond London penetration depth from surface: $\lambda_{\rm L}=(m_e/n_s e^2 \mu_0)^{1/2}$
- London equation minimises energy: $\lambda_{\rm L}^2 \nabla^2 \mathbf{B} = \mathbf{B}$

Superconductor expels weak magnetic fields.

Should be able to derive

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Vortex/Flux lines

- Neutral superfluids under rotation: circulation $K = \oint_C \mathbf{v}_s \cdot d\mathbf{r}$ quantised in units of h/m
 - macroscopic angular momentum quantisation
 - vortex core is normal: size = healing length ξ
 - velocity away from core $\propto 1/r \Rightarrow$ energy $\propto \ln(R/\xi)$ (R= system size)
 - rotating superfluid: first vortex line penetrates when $\omega > \omega_{c1} \propto R^{-2} \ln(R/\xi) \rightarrow 0$ for macroscopic container

Should be able to derive quantisation and compare the two cases.

Vortex/Flux lines

- Neutral superfluids under rotation: circulation $K = \oint_C \mathbf{v}_s \cdot d\mathbf{r}$ quantised in units of h/m
 - macroscopic angular momentum quantisation
 - vortex core is normal: size = healing length ξ
 - velocity away from core $\propto 1/r \Rightarrow {\rm energy} \propto \ln(R/\xi)$ ($R={\rm system size})$
 - rotating superfluid: first vortex line penetrates when $\omega > \omega_{c1} \propto R^{-2} \ln(R/\xi) \rightarrow 0$ for macroscopic container
- Charged superfluids in magnetic fields: magnetic flux Φ through superconductor quantised in units of $\Phi_0=h/2e$
 - \Rightarrow flux lines for type II superconductors ($\lambda_{
 m L}>\xi$)
 - flux line core is normal: size = coherence length ξ
 - screening: velocity away from core $\propto e^{-r/\lambda_{\rm L}} \Rightarrow$ energy $\propto \ln(\lambda_{\rm L}/\xi)$
 - finite magnetic field needed to first flux line to penetrate: $B_{c1}\simeq \Phi_0/4\pi\lambda_{\rm L}^2$

Should be able to derive quantisation and compare the two cases.

Superconductor: flux quantisation

Superconductor with cavity

A long thin solenoid introduces magnetic flux through the cavity. Screening currents are set up at the surface of the cavity (in the ring within the dashed line). Flux enclosed by C_s is quantised in units of h/2e.

Flux line through superconductor \simeq shrink cavity radius to coherence length

Should be able to derive and discuss.

Quantum Theory of Matter

Summary

< ∃→

= 900

Phenomenology

Superconductor: phase diagrams

Ginzburg parameter $\kappa = \lambda_L / \xi$: $< 1/\sqrt{2} \Rightarrow$ type I, otherwise type II Phase diagram of applied field *B* vs temperature *T*:

Qualitative discussion for critical fields: no need for derivation.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Phenomenology

Dynamics of a neutral superfluid

- Dynamics: collective modes in a neutral superfluid
 - density fluctuations \rightarrow velocity oscillations = phase oscillations
 - Gross-Pitaevskii equation
 - normal modes $\omega_{\mathbf{k}} \sim c_s k$ for $k \xi \ll 1$

Should be able to derive from GP equation and discuss symmetry

Phenomenology

Dynamics of a neutral superfluid

- Dynamics: collective modes in a neutral superfluid
 - density fluctuations \rightarrow velocity oscillations = phase oscillations
 - Gross-Pitaevskii equation
 - normal modes $\omega_{\mathbf{k}} \sim c_s k$ for $k\xi \ll 1$
- Symmetry considerations
 - $\omega_{\bf k} \to 0$ as $k \to 0$: no restoring force for global phase shift/global translation of fluid
 - similarly with *longitudinal vibrations in solids*: no energy cost for global translation of solid
 - \rightarrow after second quantisation: no energy gaps $\hbar\omega_{\bf k}$ for excitations (phonons)

Should be able to derive from GP equation and discuss symmetry

Phenomenology

Phenomenology: other topics

• Flux line motion

- ullet convection: vortex/flux lines flow with the local superflow \mathbf{v}_s
- flux lines see Lorentz force and drag force for relative motion with superflow

$$\begin{aligned} \mathbf{f}_{\text{Lorentz}} &= n_s e \Phi_0 (\mathbf{v}_s - \mathbf{v}_L) \times \hat{\mathbf{n}} \\ \mathbf{f}_{\text{drag}} &= \eta (\mathbf{v}_s - \mathbf{v}_L) \times \hat{\mathbf{n}} \end{aligned}$$

- Josephson effect: superconducting weak links/tunnel junctions
 - DC effect: finite current at zero voltage if there is applied flux
 - AC effect: oscillating voltage with DC current (↔ phase slip picture)

Second quantisation

- Collective excitations: from waves to particles
 - classical dynamics: small fluctuations around ground state = superpositions of independent normal modes, frequencies $\omega_{\mathbf{k}}$ *e.g.* one-dimensional chain
 - quantum mechanics: normal modes \rightarrow quantised bosonic excitations with energy $\hbar\omega_{\mathbf{k}}$ e.g. phonons for 1D chain
 - zero-point fluctuations (T = 0)
- Creation and annihilation operators for boson: $\hat{c}^{\dagger}_{\mathbf{k}}$, $\hat{c}_{\mathbf{k}}$
 - basic commutator: $[\hat{c}_{\mathbf{k}}, \hat{c}_{\mathbf{q}}^{\dagger}] = \delta_{\mathbf{k},\mathbf{q}}, \quad [\hat{c}_{\mathbf{k}}, \hat{c}_{\mathbf{q}}] = [\hat{c}_{\mathbf{k}}^{\dagger}, \hat{c}_{\mathbf{q}}^{\dagger}] = 0$
 - number operator $= \hat{c}^{\dagger}_{\mathbf{k}} \hat{c}_{\mathbf{k}}$ for bosons with wavevector \mathbf{k} Should be able to derive basic properties and calculate expectation values at T = 0.

Quantum Crystal

- Collective excitations: atomic displacements
 - harmonic Hamiltonian for small oscillations of a 1D chain
 - ${\ensuremath{\, \bullet }}$ oscillations = superposition of Fourier modes
 - choice of wavevectors according to boundary conditions PS6:Q2

• harmonic Hamiltonian
$$\hat{H} = \sum_{\mathbf{k}}' \hbar \omega_k (\hat{a}_k^{\dagger} \hat{a}_k + 1/2)$$

Should be able to derive final form of Hamiltonian

- Quantum dynamics
 - independent excited states with energy $\hbar\omega_k\propto\sin(ka/2)$
 - $\bullet\,$ rms displacement diverges with L in 1D

Should be able to calculate rms displacement

Bose fluid: second quantisation

- Collective excitations: density and phase fluctuations
 - for small density and phase fluctuations:

$$\hat{H} \simeq \int d^3 \mathbf{r} \left[\frac{\hbar^2 \bar{n}}{2m} \left(|\boldsymbol{\nabla} \hat{\theta}(\mathbf{r})|^2 + \frac{1}{4} |\boldsymbol{\nabla} \hat{\nu}(\mathbf{r})|^2 \right) + \frac{u \bar{n}^2}{2} \hat{\nu}(\mathbf{r})^2 \right]$$

 $\nu({\bf r})={\rm fractional}$ density change $\delta n({\bf r})/\bar{n}$

• in terms of Fourier modes: $\hat{H} = \bar{n} \sum_{\mathbf{k}} \left[A_{\mathbf{k}} \hat{\theta}_{\mathbf{k}} \hat{\theta}_{-\mathbf{k}} + \frac{B_{\mathbf{k}}}{4} \hat{\nu}_{\mathbf{k}} \hat{\nu}_{-\mathbf{k}} \right]$

Should be able to derive Fourier form of \hat{H} , PS7:Q3

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Second quantisation of density-phase oscillations
 - excitation spectrum $E_{\mathbf{k}} = [\epsilon_{\mathbf{k}}(2u\bar{n} + \epsilon_{\mathbf{k}})]^{1/2} (\epsilon_{\mathbf{k}} = \hbar^2 k^2 / 2m)$
 - gapless excitations: $E_{\bf k} \rightarrow 0$ as $k \rightarrow 0$, no restoring force for global phase shift/global translation of fluid PS7:Q4

Should be able to derive excitation energies and discuss symmetry

Microscopic theory

Bose fluid: zero-point fluctuations

- Zero-point fluctuations
 - operators for density and phase fluctuations: $[\delta n_{\mathbf{k}}, \theta_{\mathbf{k}}] = i$
 - \Rightarrow Heisenberg uncertainty: $\Delta n_{\mathbf{k}} \Delta \theta_{\mathbf{k}} \geq 1/2$
 - number-phase uncertainty \Rightarrow zero-point fluctuations: phase fluctuations are large: $(\Delta \theta_{\mathbf{k}})^2 = \langle 0|\hat{\theta}_{-\mathbf{k}}\hat{\theta}_{\mathbf{k}}|0\rangle = \epsilon_{\mathbf{k}}/4\bar{n}E_{\mathbf{k}} \sim 1/k$ for $k\xi \ll 1$
 - condensate depletion even at T = 0: $\langle \hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}} \rangle$ also $\propto 1/k$ at small kFraction out of condensate $\propto 1/\bar{n}\xi^D$ for D dimensions
 - for fixed interaction strength u, depletion is small at a dilute 3D Bose fluid.

Microscopic theory

Many-electron systems

- Fermion creation and annihilation operators
 - antisymmetry under exchange \Rightarrow anticommutation relations $\{ \hat{c}_{\mathbf{k}}, \hat{c}_{\mathbf{q}}^{\dagger} \} = \delta_{\mathbf{k},\mathbf{q}}, \quad \{ \hat{c}_{\mathbf{k}}^{\dagger}, \hat{c}_{\mathbf{q}}^{\dagger} \} = \{ \hat{c}_{\mathbf{k}}, \hat{c}_{\mathbf{q}} \} = 0$
 - number operator $\hat{c}_{\mathbf{k}}^{\dagger}\hat{c}_{\mathbf{k}}$: eigenvalues 0 or 1, *i.e.* Pauli exclusion
- Fermi liquid
 - Screening between electrons: electrons dressed by positive cloud \Rightarrow net charge for distant electrons \simeq 0
 - Coulomb interactions screened: Fermi liquid of weakly-interacting fermionic "quasiparticles" (effective theory for low-energy excitations)
 - Fermi surface survives moderate interactions

Superconductors: BCS theory

- \bullet Electron-phonon interaction \Rightarrow retarded effective electron attraction
 - electron leaves temporary "footprint" of positive ionic distortion, attracting other electrons
 - energy scale = $\hbar\omega_{\rm D}$ ($\omega_{\rm D}$ = typical phonon energies) $\ll E_{\rm F}$
 - $\Rightarrow\,$ affects thin shell of electrons with energies within $\hbar\omega_{\rm D}$ from Fermi surface

Qualitative discussion only

- Cooper instability: 2 electrons near Fermi surface PS8:Q4
 - pair wavefunction $\phi(\mathbf{r}_1 \mathbf{r}_2)$ using states less than $\hbar\omega_{\rm D}$ above Fermi surface; spin S = 0
 - $\lambda_{\rm BCS} = \tilde{U}g(E_{\rm F})/V$ is dimensionless measure of attractive strength
 - Schrödinger equation \Rightarrow binding energy $= 2\hbar\omega_{\rm D} e^{-2/\lambda_{\rm BCS}}$
 - pairing for arbitrarily weak attraction

Should be able to derive Cooper instability

Superconductors: BCS ground state

- BCS wavefunction $\prod_{\mathbf{k}} \left(u_{\mathbf{k}} + v_{\mathbf{k}} \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} \right) |\text{vac}\rangle \text{ with } u_{\mathbf{k}}^2 + v_{\mathbf{k}}^2 = 1$
 - Fermi gas: $u_{\bf k}=0, v_{\bf k}=1$ for $k < k_{\rm F}$ and $u_{\bf k}=1, v_{\bf k}=0$ for $k > k_{\rm F}$
 - does not have a definite particle number, but fractional number variation is small: $\Delta N/N \sim 1/N^{1/2}$
- Order parameter = BCS gap: $\Delta = \frac{\tilde{U}}{V} \sum_{\mathbf{k}} \langle \hat{c}^{\dagger}_{\mathbf{k}\uparrow} \hat{c}^{\dagger}_{-\mathbf{k}\downarrow} \rangle = \frac{\tilde{U}}{V} \sum_{\mathbf{k}} u_{\mathbf{k}} v_{\mathbf{k}}$
 - Variational theory:

$$1 = \frac{\tilde{U}}{2V} \sum_{\mathbf{k}}' \frac{1}{(\Delta^2 + \epsilon_{\mathbf{k}}^2)^{1/2}} \quad \Rightarrow \quad \Delta = 2\hbar\omega_{\mathrm{D}} e^{-1/\lambda_{\mathrm{BCS}}}$$

($\epsilon_{\mathbf{k}}$: energy measured from E_{F})

- $|\Delta|$ also energy gap for excitations: $E_{\bf k}=(\Delta^2+\epsilon_{\bf k}^2)^{1/2}$
- coherence length $\xi=\hbar v_{\rm F}/\Delta\simeq$ Cooper pair size

Understand derivations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Microscopic theory

Superconductors: BCS coherence factors

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

Microscopic theory

Superconductors: other topics

- Pairing symmetries
 - $\Delta_{\mathbf{k}}$ can depends on \mathbf{k}
 - even angular momentum: s, d-wave requires S = 0
 - odd angular momentum: p-wave requires S = 1
- Excitations
 - nature of excitations: neither particle nor hole...
 - probing excitations: EM absorption, photoemission, ...

Outline

Exam and Revision

Quantum Theory of Matter

- Phenomenology
- Microscopic theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

Revision

Lecture notes

- your own notes
- my typed notes: extended description of lecture contents
- Lecture summaries: use as reminder of key points
- Problem sheets: do the problems!
 - in particular, key concepts are covered in questions assigned for **rapid feedback** (listed on course web page)
 - do not to refer to the solutions unless you are completely stuck
- Office hours: email to arrange meeting