Core Course: What You Should Know

This set of notes gives an indication of the basic physics you are expected to know from
the core course. It is not a comprehensive list of the syllabus. Hopefully, it gives you
some perspective of the core course as a whole.

These notes are supposed to help you with your revision for the Comprehensive

papers. (Some hints about exam technique are included.) However, it is important
to remember that the Comprehensive questions are designed to test how you can apply
basic concepts to solve physics problems. They are not designed to test how much detail
you recall from individual courses.
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General

. Dimensional analysis. Check that your answers have the correct dimensions.

This will pick up most errors in algebra.

. Algebra. To avoid unnecessary mistakes, keep it neat and do not miss out too

many steps. Try to reduce your formulae before evaluating them numerically.

. Diagram. Draw a diagram to help visualise the problem. Define a suitable

coordinate system if needed — this helps you get the correct signs.

. Vectors. Don’t mix vectors with scalars. Otherwise, you will lose information

about the direction of a vector quantity (e.g., momentum, electric field.) Make
sure you know the direction of a cross product.

. Approximations. Use Taylor expansions for small changes, e.g. sinz ~ z, cos z ~

1—22/2,(1+2)* ~1+az,In(1+2) ~ 2 for z < 1.

. Differential equations in physics. Use of small volume elements in deriving

a differential equation describing the physics of the problem. (e.g., in mechanics,
consider the forces applied on the element and the acceleration that arises from
these applied forces.)

Mechanics

. Newton’s laws. Make sure you draw on a diagram all the physical forces on the

body, and then relate them to the resulting acceleration. Don’t mix up £ with
ma if you want to make sure the signs come out correctly.

. Inertial frames. “Fictitious” inertial forces in non-inertial frames.

. Rotation. Centrifugal force (or centripetal acceleration) as an inertial force.

Angular momentum and angular velocity: L = Iw. Derivation of moments of
inertia, I, for rods, discs and spheres.

. Travelling waves and standing waves. sin(kz — wt), cos(kz — wt),

. Gravity. Circular orbits. Geostationary orbits. Escape velocity.

. Simple harmonic motion. mi + kx =0

Recognise and solve the differential equation for SHM in different contexts. Natu-
ral frequency w. Derive general form for z(t) and w? = k/m. You should be able to
recognise the equations of motion for SHO in other situations outside mechanics,
e.g. in circuits.

. Damped harmonic oscillator. mi& — vz + kz =0

Underdamping, critical damping, and overdamping. Derive the behaviour of z(t)
in the three regimes (oscillatory vs. exponential decay.) @ factor of a resonance.

. Special Relativity. Lorentz transformation for 4-vectors: (z,t¢) and (p, E).

Lorentz contraction and time dilation (e.g., muon decay lifetime). Transforma-
tion for velocity. Rest mass. Derivation of kinetic energy in the non-relativistic
limit (v < ¢). Notion of simultaneity and causality in special relativity.

Waves
Ci(k’z—wt) .

Quantisation of k for standing waves.

. Principle of superposition. Beats. Relation to Fourier analysis.

. Wave velocities. Phase velocity w/k and group velocity dw/dk. Use latter for

flow of physical quantities, e.g. energy/information.

. Doppler effect. For waves in a medium. For electromagnetic waves (photons).

. Diffraction: narrow slits. Double slits and many slits (i.e. diffraction grating).

You should be able to derive the condition for constructive interference: nA =
dsin#, and to sketch the diffraction patterns for the two cases as a function of the
angle of diffraction 6.

. Diffraction: single slit/finite diffraction grating. Effect of finite slit width

for double slit. Effect of finite number of slits for diffraction grating. Implication
for theoretical resolution of optical instruments.

. Refraction. Explain refraction as a consequence of change in velocity. Snell’s

law.

Quantum Mechanics

. DeBroglie relations. p = ik and E = hw. What do we mean by this?
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. Heisenberg uncertainty principle: momentum and position. Ap Az >

h/2. Explain the meaning of Ap and Az. Relationship to single-slit diffraction.
Implication for the kinetic energy of confined particles.

. Heisenberg uncertainty principle: energy and time. AE At > h/2. Impli-

cation for linewidths in atomic spectra.

. Observables & operators. Observables are represented by Hermitian operators.

Each operator has a set of eigenfunctions and eigenvalues. When this observable
is measured, the outcome has to be one of these eigenvalues. The wavefunction
for the system becomes the eigenfunction corresponding to this eigenvalue (“wave-
function collapse”).

. Operators for momentum, kinetic energy and total energy. p = —ih 9/0x.

What are the eigenfunctions of the momentum operator? Hamiltonian operator :
H = p?/2m + V(r). Eigenstates and energy levels.

. Schrédinger equations. Time-dependent and time-independent forms. Derive

the time-independent form from the time-dependent form.

. 1D scattering. Transmission and reflection at a potential step or a potential

barrier. Classically forbidden region. Tunnelling through a barrier: dependence
on barrier width.

. 1D potential wells. Bound states in a infinitely deep potential well and in a

finite potential well. Compare the eigenstates and energy levels in these two cases.
Bound states in a double well: tunnelling and energy level splitting.

. Simple harmonic motion. Quantum oscillator in a parabolic well: FE, =

hwo(n + 1/2). Sketch wavefunctions for the different energy levels.

Electromagnetism

. Maxwell’s equations. You are expected to remember these four equations.

. Gauss’ law. Electric field due to static charges. Applications: point charge, line

charge, charged plane, charged sphere (inside and outside).

. Ampere’s law. Magnetic field due to steady currents. Applications: field around

a current-carrying wire, inside a long solenoid.

. Faraday’s law. Electric field around a loop due to time-varying magnetic flux

through the loop. Application

. Electrostatic potential. Deriving electric field from the potential and wice

versa: E = —VV. Application: electostatic potential energy of a charged sphere.

10.

11.

12.

13.

Equipotentials and the method of images: charge near metallic sheet, metallic
sphere.

. Force on charge. F = ¢(E+vxB), e.g., cyclotron motion in a uniform magnetic

field.

. Dielectric. Permittivity € = €,€y and electric polarizability.

. EM wave in vacuo. ¢ = 1/p4¢y. Polarisation: linear/circular. In free space,

E L B and both are normal to direction of propagation.

. Poynting vector. S = E x B/ug gives energy density current (energy flowing

through unit area per unit time). Radiation pressure: p = 25/c for a perfectly
reflecting mirror.

Metals: Ohm’s Law. Conductivity ¢ and resistivity p. Relation between re-
sistivity and resistance R. Ohm’s law: J = oE where J is the current density
(charge flowing through unit area per unit time).

EM wave in dielectric. Refraction: Snell’s law, total internal reflection. Brew-
ster angle.

EM wave in conductors. Skin depth: absorption of EM wave in a conductor.

EM wave in waveguides. TE and TM modes.

Thermodynamics and Statistical Physics

. Basic concepts. Heat and reservoirs. Entropy. Reversibility. State variables.

. Laws of thermodynamics. 1st law: energy conservation dU = d@Q — dW.

(Define U, @Q and W carefully to get signs right.) 2nd law: dS > 0.

. Fundamental equation. dU = T'dS — pdV'.
. Equations of State. Ideal gas: pV = NkT. Van der Waals gas.

. Simple processes. Work done, heat exchanged, entropy change during adiabatic,

isothermal, free expansions.

. Engines. Carnot cycle. Definition of efficiency 7. Efficiency of Carnot engine.

. Free energies. Free energies as functions of state variables. Internal energy

U(S,V), Helmholtz F(T,V) = U—-TS, Gibbs G(T,p) = U—TS+pV. Expressions
for dF and dG. Maxwell relations.

. Classical statistical physics. Statistical definition of entropy: microstates and

macrostates. Boltzmann distribution for classical particles.
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. Quantum statistics. Identical particles: bosons and fermions. Pauli exclu-
sion principle and the Fermi energy. Bose-Einstein and Fermi-Dirac distributions.
Density of states. Application: black-body radiation, heat capacity.

Atomic Physics

. Spectral lines. Use of spectral lines to understand atomic energy levels. Broad-
ening of spectral lines: intrinsic, Doppler, collisions.

. Hydrogen atom. Principal quantum number n and angular momentum [. En-
ergy levels: s, p, d, f,....

. Vector model. LS coupling: total angular momentum: J.
. Selection rules. Concept.

. Perturbation theory. Application of first-order perturbation theory in atomic
physics.

. Zeeman effect.
. Molecules. Bonding. Rotational modes and infra-red spectroscopy.

. Lasers. Spontaneous and stimulated emission. Population inversion.

Electrons in Solids/Solid State Physics

. Free electron model. Counting states in k-space. Density of states g(£). Fermi
level Er & Fermi wavevector kr. Metals: dependence of physical properties on
g(Er), e.g. electronic heat capacity.

. Electron bands in solids. Qualitative discussion of the formation of electrons
bands from localised orbitals. Particles and holes. Effective mass.

. Bloch’s theorem. Electrons in a periodic potential. Reciprocal space: Brillouin
zone.

. Insulators, semiconductors and metals. Explanation in terms of the Fermi
level relative to the position of electron bands. Importance of band gaps.

. Semiconductors. Intrinic carrier density by thermal properties. Extrinsic carri-
ers: n-type and p-type doping.

. p-n junction. Physics at the interface: shifted electron bands, depletion layer.
Application as diode: current-voltage characteristic, forward and reverse bias,
breakdown.
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. Variance. var z = ((x — p)?) = (2?) — (2)%. Standard deviation: o = (var x)

. Normal/Gaussian distribution. p(z) = (2rc?)

. Optical properties of semiconductors. p-n junction as a light-emitting diode

or light detector. Relation between the band gap and the photon energy.

Particle and Nuclear Physics

. Fundamental particles. Particles and antiparticles.
. Nuclear decay. Alpha, beta, gamma decays.
. Nuclear reactions. Fission and fusion: basic concepts of mass defect.

. Nuclear stability. Semi-empirical mass formula: origin of the terms and their

influence of the stability of the nucleus. Nuclear shell model.

Probability and Statistics

. Probability distributions. Discrete distributions: probabilities P; with nor-

malisation >; P, = 1. Continuous distributions: probability densities p(x) with
[ p(z)dz = 1. The sum/integration is taken over all possible values of the random
variable .

. Expectation values. For random variable z, the expectation value of any func-

tion f(x) is (f(z)) = 3, f(xz;) P; for discrete distributions, [ f(x)p(z)dx for con-

tinuous distributions.

. Mean. p = (z) = >;z; P, for discrete distributions, [zp(z)dz for continuous

distributions.

1/2.
~12 exp|—(z—pu)? /207, e.g. for
the result of an experimental measurement of a continuous variable with expected
value p and error o.

. Binomial distribution. Probability of M success out of N trials with probability

p for success in an individual trial. Mean and variance.

. Poisson distribution. P(n) = e #u"/n! for a rare event to occur n times if it

occurs on average p times. Variance = mean. e.g. number of nuclear decays in a
given interval of time among a large collection of radioactive nuclei.

. Independent events/measurements. The mean/variance of the sum is the

sum of the means/variances. So, suppose X = Zf;l x; is the sum of N outcomes
for the same random variable z, then (X) = N(x) and var X = N var .



9.

10.

11.

Central Limit Theorem. For large N, the sum X = Zj.vzl z; has a Normal
distribution with mean Ny and variance No? if  has mean g and variance o2,
irrespective of probability distribution for x.

Estimating the mean from data. For N independent measurements of z, best
unbiased estimate of p is 7 = N1 Z;'V:] ;. Fractional error oc 1/N1/2,

Estimating the variance from data. Unbiased estimate of variance is [N/(N —
DINTTEXE, a2 — 27



