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1. Taylor expansion
The Taylor expansion of a function f(x) about a point x = x0 to order n is given by

f(x) ≈ f(x0) + f (1)(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n

=

n∑

j=0

f (j)(x0)

j!
(x− x0)j , (1.1)

where f (j)(x0) is the jth derivative of the function f(x) evaluated at x = x0 with
the convention that the 0th derivative f (0)(x0) = f(x0). Note that the factorial in
the denominator ensures that the jth derivative of the Taylor expansion evaluated
in x = x0 equals f (j)(x0). Therefore, the Taylor expansion Equation (1.1) is the
polynomial of order n that best approximates the function f(x) about the point
x = x0. If x0 = 0, that Taylor expansion to order n is also known as the Maclaurin
expansion to order n.

(i) Find the Taylor expansion of the function f(x) = ln(1 − x) about the point
x = 0 to order 3 and show that

ln(1− x)→ −x for x→ 0. (1.2)

(ii) Do a Taylor expansion of the function

f(p) = p

[
1−

(
1− p
p

)3
]

for p > 0 (1.3)

about the point p = 1/2 to show that

f(p) ≈ B(p− 1/2) + C(p− 1/2)2 for p→ 1/2 (1.4)

and identify the coefficients B and C.

(iii) Plot the function f(p) and its Taylor expansion to second order versus (p−1/2)
for p > 1/2 on the same double-logarithmic graph. In which range of p − 1/2
does the Taylor expansion to second order well approximate the function f(p)?

2. Power-law probability density
You have been hired to build and manage a dam to prevent a river from overflowing.
A natural spring guarantees that the level h of the river is always positive, i.e.,
h ≥ hmin > 0. Measurements of the level of the river once a day show that it is
described by a power-law probability density,

P (h) =

{
Ah−2 for h ≥ hmin
0 otherwise,

(2.1)

where A is a constant.

(i) Show that the probability density is normalised if A = hmin.

(ii) (a) What is the probability, on a given day, of measuring a level h ≥ hmax with
hmax ≥ hmin?

(b) On average, how many days would you have to wait to see one event with
h ≥ hmax?

(iii) Your job contract has a clause that if the dam overflows, you get fired.
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(a) Can you build a dam that would guarantee your job forever? Explain your
answer.

(b) You would like to keep your job for N years with probability p. How high
should you build the dam?

(c) Find the height of the dam, assuming you want to keep your job for 10
years with 90% probability when hmin = 0.01 m.

(iv) (a) Find the average height 〈h〉 of the river.

(b) Discuss modification(s) to the probability density P (h) that would make
the model more physically realistic.
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3. Density of fractal object
The mass M of a fractal geometrical object grows with the linear size ` of the object
as

M(`) = `D.

The exponent D is the fractal dimension of the object.

n=3

n=0 n=1

n=2

Iteration n = 0 n = 1 n = 2 n = 3

Linear size ` 1 3 9 27

No. black unit squares 1 8 64 512

No. white unit squares 0 1 17 217

(i) Consider d = 2 and the object displayed above. At each iteration n, the linear
size ` is enlarged by a factor 3 and a black unit square is replaced with 3 × 3
unit squares in which the centre square is white, while a white unit square is
replaced with 3×3 white unit squares. Assume the mass of a unit square (black
or white) is 1.

(a) Express the mass M and the linear size ` of the geometrical object of
black squares as a function of the number of iterations n and show that
Dblack ≈ 1.89 < d.

(b) Find the density ρ(`) of the fractal object of black squares as a function of
`. What is the limit lim`→∞ ρ(`)?

(c) Show that, in the limit of `→∞, the geometrical object of white squares
has Dwhite = 2.

(ii) Oil resides in connected pores inside porous material in d = 3. Samples of
volumes 0.001 m3, 0.008 m3 and 0.064 m3 from an oil field have densities of oil
250 kg m−3, 177 kg m−3 and 125 kg m−3, respectively.

(a) Demonstrate that this is consistent with the oil residing on a fractal and
determine its fractal dimension Doil.

(b) How much oil can be recovered from an oil field of volume 103km3?
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4. Correlation function and critical exponent ν in d = 1 and a sum rule
Consider site percolation in d = 1. Define the site-site correlation function g(ri, rj)
as the probability that a site at position rj from an occupied site at position ri
belongs to the same finite cluster.

(i) Show that
g(ri, rj) = exp(−|ri − rj |/ξ) (4.1)

with an appropriate definition of the correlation length ξ.

(ii) Generally, we define the critical exponent ν by

ξ(p) ∝ |p− pc|−ν for p→ pc. (4.2)

Show that for d = 1 percolation, ν = 1.

(iii) The average cluster size χ(p) =
� ∞
s=1 s

2n(s,p)� ∞
s=1 sn(s,p) = 1+p

1−p for 0 < p < 1. Show that

the sum over all positions rj of the site-site correlation function

∑

rj

g(ri, rj) = χ(p). (4.3)

Hint: Remember to include the neighbours to the left and right of the occupied
site at ri.

(iv) Although the site-site correlation function is not given by Equation (4.1) in
dimensions d > 1, the sum rule in Equation (4.3) does remain valid for d > 1.
Explain in words why that is.

Hint: Refer to the definition of the correlation function.
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5. Data collapse for the cluster number density in d = 1.

The cluster number density in d = 1 is

n(s, p) = (1− p)2ps = (1− p)2 exp(−s/sξ) (5.1)

with the characteristic cluster size

sξ(p) = − 1

ln(p)
. (5.2)

(i) In each of the three following sub-questions, plot the given quantities on the
same Figure for various values of the occupation probabilities, say p = 0.905, 0.99,
0.999, 0.9999.

(a) Figure (a): plot log[n(s, p)] versus log(s) for the four values of p.

(b) Figure (b): plot log[s2n(s, p)] versus log(s) for the four values of p.

(c) Figure (c): plot log[s2n(s, p)] versus log(s/sξ) for the four values of p.

(ii) Consider the following re-formulation of the cluster number density in d = 1

n(s, p) = (1− p)2 exp(−s/sξ)
= (pc − p)2 exp(−s/sξ) since pc = 1

= s−2[s(pc − p)]2 exp(−s/sξ)
≈ s−2(s/sξ)

2 exp(−s/sξ) since sξ(p) ≈ (pc − p)−1 for p→ p−c
= s−2G1d(s/sξ) (5.3)

where the function
G1d(x) = x2 exp(−x). (5.4)

Relate the equation
n(s, p) = s−2G1d(s/sξ) (5.5)

to your plot in Figure (c).

6. System of non-interacting spins.

(i) To gain experience in statistical mechanical calculations, work your way through
Section 2.2 (pages 124 – 131) in the book Complexity and Criticality for a system
of N non-interacting spins.

(ii) Find the total number of microstates. How many Ω(n) of these microstates has
n spins orientated parallel to the external field H?

(iii) In the ground state, all the spins are aligned with the external field, and Ω(N) =
1. In a first exited state, one spin is flipped, and Ω(N − 1) = N . For which n
is Ω(n) maximal? What is Ω(0)? Sketch Ω(n) as a function of n.
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7. Widom scaling and finite-size scaling.

Define the reduced (dimensionless) temperature, t, as a measure of the deviation
from the critical temperature Tc and reduced (dimensionless) external field, h,
by

t =
T − Tc
Tc

(7.1a)

h =
H

kBT
. (7.1b)

In a real-space renormalisation transformation, all spins si in a block I of volume
bd is replaced by a single block spin sI and all length scales are rescaled by the
factor b. Assume that the associated rescaled temperature and external field

t′ = tbyT yT > 0 (7.2a)

h′ = hbyH yH > 0. (7.2b)

It can be shown that the partition function Z(N ′, t′, h′) = Z(N, t, h) implying
that the free energy per spin is a homogeneous function, that is,

fs(t, h) = b−dfs(tb
yT , hbyH ) ∀b, yT > 0, yH > 0. (7.3)

(i) Show that
yT = 1/ν. (7.4)

(ii) Show that Equation (7.3) implies the the Widom scaling form of the singular
part of the free energy per spin

fs(t, h) = |t|2−αF±
(
h/|t|∆

)
for t→ 0± and |h| � 1. (7.5)

with

dν = 2− α (7.6a)

yH/yT = ∆. (7.6b)

(iii) Using Equation (7.5), find the scaling form of the heat capacity per spin.

Equation (7.3) may be generalised to a finite system of linear size L where

fs(t, h, L) = b−dfs(tbyT , hbyH , Lb−1) ∀b, yT > 0, yH > 0. (7.7)

(iv) Show that the susceptibility per spin in zero external field

χ(t, L) ∝ |t|−γχ±(L/ξ). (7.8)

(v) From your experience with finite-size scaling in percolation, find

χ(t, L) =

{
? for L� ξ

? for L� ξ
(7.9)

Explain how you might use this result to measure numerically the critical ex-
ponents.
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CONDENSED MATTER THEORY MOCK EXAM MAY 2001

The paper consists of three sections: A & B & C.
Section A contains two questions.
Section B contains two questions.
Section C contains two questions.
All questions carry equal marks.

Answer THREE questions, taking ONE question from section A, ONE question from
section B, and ONE question from section C.
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SECTION A

1. (i) Consider percolation on an infinite d = 2 square lattice at the critical occupation
probability p = pc. How does the mass M∞(pc, `) of the percolating (infinite)
cluster within a square of linear size ` depend on `? How does the corresponding
density of occupied sites P∞(pc, `) belonging to the infinite cluster within a
square of linear size ` depend on `? What is lim`→∞ P∞(pc, `)?

(ii) Consider a real space renormalisation of the lattice by a factor b, that is, ` →
`/b. Justify the relation

M∞(pc, `) = bDM∞(pc, `/b).

(iii) Assume that the occupation probability p > pc and let ξ denote the correlation
length. Let M∞(ξ, `) denote the mass of the infinite cluster within a square of
linear size `. Discuss M∞(ξ, `) in the limits ` � ξ and ` � ξ. Write a scaling
form for M∞(ξ, `) and identify the crossover function.

(iv) Figure 1 below (double-logarithmic plot) displays the measured density P∞(p, `)
of sites belonging to the infinite cluster within a square of linear size ` at two
different values of p > pc in a finite lattice. The dashed line has slope −0.11.
Discuss the behaviour of the graphs as a function of `.

(v) Derive the hyper scaling relation D = d− β/ν.

10
0

10
1

10
2

10
3

`

P
∞

(p
,`

)

p = pc + 0.01

p = pc + 0.003
0.60

0.40

Figure 1: The density of the percolating cluster, P∞(p, `), as a function of window size `
for two different occupation probabilities p > pc in a system of size L = 2000.
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2. Bond percolation and real space renormalisation for a square lattice
Site percolation has a counterpart called bond percolation. Each bond between
neighbouring lattice sites can be occupied (open) with probability p and empty
(closed) with probability (1− p). A cluster is a group of connected occupied (open)
bonds. The percolation threshold for a square lattice is pc = 0.5.

In a bond percolation real space renormalisation on the square lattice, the lattice is
replaced by a new lattice, with bond length b, as shown by the dashed lines in the
figure below.

(i) Show that the probability to have a spanning (percolating) cluster diagonally
in a unit square is 2p2 − p4.

(ii) Identify the fixed points of the renormalisation transformation

Rb(p) = 2p2 − p4,

and comment on their nature.

(iii) Explain how the critical exponent ν is related to the renormalisation transfor-
mation Rb(p) and find the value of ν.
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SECTION B

3. A system consists of N non-interacting spins si, i = 1, . . . , N in an external field H.
Each spin is either parallel or anti-parallel to H.

(i) Justify that the total energy

E = −
N∑

i=1

siH,

with si = +1 for a parallel spin and si = −1 for an anti-parallel spin.

(ii) Show that, at temperature T , the partition function of the system Z(T,H) =
[2 cosh(βH)]N .

(iii) Calculate as functions of temperature T and the external field H the free energy
F , the entropy S, and the average energy 〈E〉.

(iv) Calculate the mean magnetisation of the i’th spin 〈si〉.
(v) Define and calculate the susceptibility χ. Why is the susceptibility also known

as a response function?
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4. (i) Starting from the Ising model energy

E = −J
∑

〈i,j〉
sisj −H

N∑

i=1

si

show that the mean-field energy can be written on the form

E = − (Jqm+H)

N∑

i=1

si,

where q is the coordination number and m = 〈sj〉.
(ii) In a system with N spins, show that the partition function

Z = [2 cosh (βJqm+ βH)]N

(iii) Find the free energy per spin f(T,H) = F
N and comment upon the result.

(iv) Find the magnetisation per spin m(T,H) and show that

m0(T ) = lim
H→0±

m(T,H) = tanh (βJqm0(T )) .

(v) Show that a critical temperature Tc exists and identify Tc.
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SECTION C

5. (i) Given a model system displaying self-organised criticality with an event size
probability

P (s) =

{
s−τ for s ≥ 1

0 otherwise.

Derive an inequality for τ such that P (s) can be normalised. Derive an inequal-
ity for τ such the the average avalanche size 〈s〉 =

∑∞
s=1 sP (s) diverges.

(ii) Consider the model system where the level of conservation is defined by a
parameter α and where the event size probability is given by

P (s) ∝
{
s−τH(1− s/sξ) for s ≥ 1

0 otherwise,

where the Heaviside function

H(x) =

{
1 for x > 0

0 otherwise

and the characteristic event size sξ ∝ (αc − α)−1/σ for α < αc. Make a sketch
of P (s) for three different level of conservation α1 < α2 < α3 < αc. What is
the limiting function of P (s) for α→ αc?

(iii) Assume the scaling form of P (s) given in (ii). Derive a scaling relation between
the scaling exponent γk describing the divergence of the k’th moment 〈sk〉 =∑∞

s=1 s
kP (s) when α→ αc and the critical exponents τ and σ.

(iv) Define explicitly the dynamical rules for the Olami-Feder-Christensen spring-
block model on a d = 2 square lattice in terms of the force Fi on block i and
the parameter α = K/(4K+KL), see figure below. (There is no need to derive
the rules). Discuss briefly: the time scale of drive/response, and the level of
conservation.

(v) Define the concepts of the OFC model being (a) critical and (b) noncritical.
How does the model behave for α = 0? How would you expect the model to
behave for α = 0.25? Discuss briefly the possibility for a phase transition, that
is, the existence of a critical value of αc above which the model is critical and
below which the model is noncritical.

fixed plate

K

K K

L

moving plate
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6. Not relevant for Statistical Mechanics 2006/2007

Define and discuss briefly the concepts of critical external magnetic field Hc(T ),
type I superconductors, and type II superconductors.

(i)(ii) Assume that an electric field E arises within a superconductor. Let j denote
the current density of the superconducting electrons. Using a free electron
dynamics approach, show that

dj

dt
=
nse

2

m
E,

where ns denotes the density of superconducting electrons.

Hence show that

∂

∂t

(
∇× j +

nse
2

m
B

)
= 0. (6.1)

(iii) Discuss whether Equation (6.1) together with the Maxwell equations

∇×B = µ0j

imply B = 0 inside a type I superconductor under the conditions T < Tc and
H < Hc(T ).

(iv) The phenomenological London equation is

∇× j = − 1

µ0λ
2
L

∇×A = − 1

µ0λ
2
L

B.

Discuss the relationship of the London equation with Equation (6.1). Discuss
whether the London equation imply B = 0 inside a type I superconductor
under the conditions T < Tc and H < Hc(T ).

Show that the London equation imply that the current in a superconductor can
exist only within a layer of thickness λL.

(v) Consider a superconducting ring. Define the phenomenon of flux quantisation.
Identify the terms in the equation for the electrical current density

j = q jprobability =
q

m
[~∇Θ(r)− qA]ns

and show that the equation implies the London equation as well as the flux
quantisation. Comment on the value of the charge q.
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CONDENSED MATTER THEORY EXAM MAY 2001

The paper consists of three sections: A & B & C.
Section A contains two questions.
Section B contains two questions.
Section C contains two questions.
All questions carry equal marks.

Answer THREE questions, taking ONE question from section A, ONE question from
section B, and ONE question from section C.
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SECTION A

1. Consider the following percolation problem involving a cluster of a very large but
finite size s at the critical occupation probability p = pc. The part of the cluster
contained within a box of linear size ` has mass M(`,Rs), where Rs denotes the
radius of gyration.

(i) Define Rs and discuss the dependence of M on ` and Rs. Writing

M(`,Rs) = `Am(`/RBs ), (1.1)

identify the exponents A and B, and find the behaviour of the crossover function
m(x) for x� 1 and x� 1.

(ii) Consider a d-dimensional lattice of linear size L at the critical occupation prob-
ability p = pc and a real space renormalisation of the lattice by a factor b. Ex-
plain why a cluster containing s sites in the lattice Ld is mapped into a cluster
having only s′ = s/bD sites in the new lattice (L/b)d, where D denotes the
fractal dimension.

(iii) Let n(s, p) denote the cluster number density, that is, the average number of
clusters containing s sites per lattice site. Justify the relation

sn(s, pc, L) = b−ds′n(s′, pc, L/b), (1.2)

with s′ = s/bD.

(iv) Assuming the scaling form of the cluster number density

n(s, p) = s−τG(s/sξ) for p→ pc, s� 1,

show that in a d-dimensional lattice of size L one would expect

n(s, pc, L) = s−τg(s/LD). (1.3)

What is the form of the scaling function g(x)? Explain your answer.

(v) Combine Equations (1.2) and (1.3) to show the hyper-scaling relation

τ =
d+D

D
.
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2. Site percolation and real space renormalisation for a square lattice

(i) Define and outline the procedure of real space renormalisation transformation
applied to the percolation theory problem.

(ii) Consider site percolation on a square lattice in two dimensions. Using blocks
of size 2× 2 and adapting the spanning cluster (in any direction) rule to define
the real space renormalisation transformation, show that

Rb(p) = p4 − 4p3 + 4p2.

(iii) Find the fixed points for the real space renormalisation transformation above
and comment on their nature. What are the correlation lengths ξ associated
with the respective fixed points? Discuss the concept of flow in parameter
space (restricted to p-space) associated with the real space renormalisation
transformation Rb.

(iv) Identify the critical occupation probability pc, derive the equation used to de-
termine the correlation length exponent ν predicted by the real space renormal-
isation transformation, and evaluate ν. Compare the findings to the analytic
results and comment on the discrepancies.

(v) Discuss the concept of universality in the theory of percolation. Give examples
of quantities which are universal and non-universal, respectively.
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SECTION B

3. (i) Write down the energy E{si} for a ferromagnetic spin 1/2 Ising model with
coupling constant J and external field H. Discuss the approximations entering
into this model.

(ii) Write down the energy E1d in zero external field of a one-dimensional (d = 1)
Ising model consisting of N spins with periodic boundary conditions. What is
the ground state energy per spin E/N of the system and the associated ground
states? What is the associated magnetisation per spin m = M/N of the system
in the ground states?

(iii) Using the 2× 2 transfer matrix T with elements

Tsisi+1 = exp(Jsisi+1/kBT ),

show that the partition function

Z = Tr (TN )

(iv) Hence, show that the free-energy per site in the N →∞ limit is

f = −J − kBT ln[1 + exp(−2J/kBT )].

(v) Discuss the physics of the above result and comment on the possibility of a
phase transition in the d = 1 Ising model.
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4. (i) Consider a lattice where only a fraction p of the lattice sites are occupied by
ferromagnetic spins which can be in one of two states si = ±1 and the remaining
fraction 1 − p are nonmagnetic (empty). Consider a finite percolation cluster
of size s. What is the ground state of the cluster when T → 0?

(ii) Let J denote the coupling constant and consider a very low temperature
kBT � J and a small external field H. Show that the probability for a given
cluster of size s to point in the direction of H is

p↑↑ =
exp(sH/kBT )

exp(sH/kBT ) + exp(−sH/kBT )

and that the probability for the s−cluster to point in the opposite direction of
H is

p↑↓ =
exp(−sH/kBT )

exp(sH/kBT ) + exp(−sH/kBT )
.

(iii) Show that the magnetisation per s−cluster

ms−cluster = s tanh(sH/kBT ).

Hence, deduce that the total magnetisation per lattice site is

m(p,H) = ±P∞(p) +
∑

s

sn(s, p) tanh(sH/kBT ),

where n(s, p) is the cluster number density at occupation probability p. What
does P∞(p) represent?

(iv) Find the magnetisation per spin m0(p) = limH→0m(p,H) in zero external field
for p close to pc. Furthermore, show that for small external field H � kBT ,
the susceptibility per spin

χ

N
=

(
dm

dH

)

H=0

∝ |p− pc|−γ for p→ pc,

where γ is the critical exponent from percolation.

(v) For p < pc, use the general scaling ansatz for the cluster number density

n(s, p) = s−τG(s/sξ) for p→ pc, s� 1,

to show that

m(p,H) = (pc − p)βg(Hsξ) for p→ pc, s� 1.

Identify β and discuss the behaviour of g(x) for small and large x.

Note: tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) = x−O(x3) for small x.
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SECTION C

5. (i) Explain the difference between criticality (scale invariance) in equilibrium sys-
tems and non-equilibrium systems displaying self-organised criticality (SOC).

(ii) Define explicitly the Bak-Tang-Wiesenfeld sandpile model on a d = 2 square
lattice. Define and discuss briefly:

(a) the time scale of drive/response,

(b) the threshold value,

(c) avalanches,

(d) the transient period,

(e) statistically stationary states, and

(f) the attractor.

Explain why one would expect to see a broad distribution of avalanche sizes.

(iii) Given a model system of linear size L displaying self-organised criticality with
an event size probability

P (s, L) ∝ s−τ exp(−s/LD), for s� 1. (5.1)

Make a sketch of P (s, L) for three different system sizes L1 < L2 < L3. Explain
how to make a data collapse and identify the scaling function f .

(iv) Derive a scaling relation between the the scaling exponent γk describing the
divergence of the kth moment 〈sk〉 =

∑∞
s=1 s

kP (s, L) with system size and the
critical exponents τ and D.

(v) Consider the event size probability given in Equation (5.1) Assume the scaling
ansatz

P (s, L) ∝ L−βg(s/LD).

Find a scaling relation between the critical indices β, τ , and D. What is the
relation between the scaling functions g and f?
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6. Not relevant for Statistical Mechanics 2006/2007

Consider the phase-transition associated with a specimen displaying supercon-
ductivity. Define/discuss the concepts of critical temperature Tc, Cooper pairs
and order parameter.

(i)(ii) Consider the simple Landau theory for a 2nd order phase transitions based on
the expansion of the free energy in powers of the (norm of the) order parameter

FS = a0 + a2|Ψ|2 + a4|Ψ|4 + . . . , a4 > 0,

where the subscript S refers to the superconducting state. Truncate the power
series for the free energy FS to include only terms up to the 4th order. Based
on your knowledge of the phase transition in a superconductor, discuss why,
for T → Tc, we may write a2 = ã2(T − Tc), with ã2 > 0, and a0 = FN , with
subscript N referring to the normal state.

(iii) Assuming zero external magnetic field, use the Landau theory to find the differ-
ences in the free energy FS −FN and in the entropy SS −SN for T close to Tc.
Comment on the physical interpretation. Furthermore, discuss these results in
the light of the fundamental equation

F = 〈E〉 − TS.

(iv) Define the Meissner effect. Show explicitly, that the Meissner effect is not a
consequence of the material being a perfect conductor.

(v) The phenomenological London equation is

∇× j = − 1

µ0λ2
L

∇×A = − 1

µ0λ2
L

B.

Show that the London equation (together with Maxwell’s equations) imply the
Meissner effect and comment on the physical interpretation of λL.

Note:You may use the following differential vector identity: ∇ × (∇ × F ) =
∇(∇ · F )−∇2F .
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CONDENSED MATTER THEORY EXAM MAY 2002

The paper consists of three sections: A & B & C.
Section A contains two questions.
Section B contains two questions.
Section C contains two questions.
All questions carry equal marks.

Answer THREE questions, taking ONE question from section A, ONE question from
section B, and ONE question from section C.
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SECTION A

1. For percolation in a lattice of infinite size L = ∞, the average cluster size at occu-
pation probability p diverges like

χ(p, L =∞) ∝ |p− pc|−γ for p→ pc. (1.1)

(i) Assuming the scaling form of the cluster number density

n(s, p) = s−τG(s/sξ) for p→ pc and for all cluster sizes s, (1.2)

where the scaling function G is constant for small arguments and decays rapidly
for large arguments, find a scaling relation between the critical exponents γ, τ
and σ.

(ii) Let ξ(p) denote the correlation length at occupation probability p. Show that
for p close to pc,

χ(ξ, L =∞) ∝ ξγ/ν . (1.3)

(iii) (a) Argue why, for finite lattices L <∞, with L� ξ one would expect

χ(ξ, L) ∝ Lγ/ν (1.4)

(b) For finite lattices, L <∞, show that the average cluster size χ(ξ, L) obeys
the scaling law

χ(ξ, L) = ξγ/νf(L/ξ) (1.5)

Identify the behaviour of the scaling function f for L� ξ and L� ξ and
sketch log f(x) versus log x.

(c) Numerically, how would you determine the ratio γ/ν?

(iv) In finite lattices, L <∞, you may assume the cluster number density at p = pc
obeys the scaling law

n(s, pc, L) = s−τg(s/LD), (1.6)

where D is the fractal dimension and g(x) is constant for x � 1 and decays
rapidly for x� 1.

Combining Equations (1.5) and (1.6) or otherwise, derive the scaling relation

γ/ν = D(3− τ). (1.7)
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2. Bond percolation and the real space renormalisation transformation for a honeycomb
lattice
Consider bond percolation on the honeycomb lattice in two dimensions shown below
and let p denote the occupation probability. In a real space renormalisation trans-
formation approach, the cells containing dashed lines in the figure are replaced by
single bonds yielding a larger honeycomb lattice containing the dashed bonds only.

(i) (a) Show that the probability of having a cell with four bonds present with a
spanning cluster along the dashed line is 6p4(1− p)2.

(b) Using the spanning cluster rule (along the dashed line) to define the real
space renormalisation transformation Rb(p), show that

Rb(p) = 2p3 − p6, (2.1)

and identify b, assuming the original bond length is 1.

(ii) (a) Given that Rb(0.848) = 0.848, sketch the real space renormalisation trans-
formation in Equation (2.1) as a function of occupation probability p.

(b) Solve graphically the fixed point equation for the real space renormalisation
transformation Rb. Why are the fixed points p? of a real space renormali-
sation transformation associated with scale invariance?

(c) Identify the underlying scale invariance of the microscopic states associated
with the fixed points. What are the correlation lengths in these states?

(iii) Discuss the flow in p-space associated with the real space renormalisation trans-
formation Rb and relate it to the renormalisation of the correlation length.

(iv) Identify the critical occupation probability pc and determine the correlation
length exponent ν predicted by the real space renormalisation transformation.
Compare the findings to the known numerical results of pc ≈ 0.653 and the
exact value of ν in two dimensions. Comment on the discrepancies.
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SECTION B

3. The energy E{si} for a ferromagnetic spin 1/2 Ising model with coupling constant
J > 0 in zero external field is

E{si} = −J
∑

〈ij〉
sisj

where si = ±1 is the spin at lattice position i and the sum runs over different pairs
of nearest neighbour sites.

(i) ConsiderN spins on a regular cubic lattice in d dimensions with periodic bound-
ary conditions. At T = 0, what are the ground state energy E and the possible
values of the magnetisation M of the Ising model.

(ii) Describe qualitatively, the changes in the microscopic states as the temperature
T decreases from ∞ to 0. At which temperatures are the microscopic states
self-similar and what are the associated correlation lengths? Make a sketch of
the average magnetisation per spin m0 as a function of T .

(iii) The Landau theory for the Ising model expands the free energy per spin f in
terms of the order parameter m0 as

f(T,m0) = a0 + a2m
2
0 + a4m

4
0 (3.1)

Why are terms of odd powers excluded in the expansion Equation (3.1)? What
does a0 represent and why can we assume a4 > 0? What is the temperature
dependence of the term a2? Sketch the function f − a0 as a function of m0 for
(a) T > Tc, (b) T = Tc, and (c) T < Tc and explain why this is in accordance
with the figure from (ii).

(iv) Define the critical exponent β and determine the value predicted by the Landau
theory for the Ising model.
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4. Consider the diluted Ising model in zero external field with the energy

E{si} = −
∑

〈i,j〉
Jijsisj,

where si = ±1 is the spin at lattice position i, the sum runs over different pairs of
nearest neighbour sites, and the coupling constants

Jij =

{
J > 0 with probability p
0 with probability (1− p).

(i) Discuss how this problem is related to the theory of percolation.

(ii) In the following, assume the temperature T = 0K.

(a) What is the ground state of the diluted Ising model?

(b) Show that

〈sisj〉 =

{
1 i and j belong to the same percolation cluster
0 otherwise.

(c) Argue why the average magnetisation per spin m0(p) = 0 for p ≤ pc. Based
on your knowledge of percolation theory, find an expression for m0(p) when
p > pc.

(iii) You may assume, that for small non-zero external field H and low temperatures
kBT � J , the magnetisation per spin

m(p,H) = ±P∞(p) +
∑

s

sn(s, p) tanh(sH/kBT ),

where n(s, p) is the cluster number density

(a) What does P∞(p) represent? Find the magnetisation m0(p) in the limit of
H → 0.

(b) Define the susceptibility χT . Assuming H � kBT , show that the suscepti-
bility diverges when p→ pc.

(iv) A version of the fluctuation-dissipation theorem states that

χT =
1

kBT

∑

i

∑

j

{〈sisj〉 − 〈si〉〈sj〉}

where 〈si〉 = 〈sj〉 = m0. Assume p approaches pc from below and kBT � J .
Calculate the susceptibility using this formula and show it is consistent with
the result derived in (iii)(b).

Note: You may use the following expansion without proof
tanh(x) = x−O(x3) for x� 1.

29



SECTION C

5. (i) Define explicitly the one-dimensional Bak-Tang-Wiesenfeld sandpile model in
a lattice of size L.

(ii) (a) Describe the attractor of the dynamics.

(b) Define the avalanche size s and relate it to the energy dissipated during an
avalanche.

(c) Assuming sand is deposited at random positions i ∈ [1, L], show that the
avalanche size probability is

P (s, L) =

{
1/L for 1 ≤ s ≤ L
0 otherwise.

(iii) Rewrite the avalanche size probability in the scaling form

P (s, L) = s−τf(s/LD).

Identify the critical exponents τ and D and the scaling function f .

(iv) (a) Sketch P (s, L) versus s for three different system sizes L = 25, 50, and 100.

(b) Outline the procedure for making the data collapse onto one universal
function and identify this function.

(v) Explain the concept of self-organised criticality using the one-dimensional Bak-
Tang-Wiesenfeld sandpile model as an example. Why might the occurrence of
earthquakes be related to the concept of self-organised criticality?
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6. Not relevant for Statistical Mechanics 2006/2007

(i) Sketch the absolute value |Ψ| of the order parameter for a superconducting
phase transition as a function of temperature T . What is the physical interpre-
tation of |Ψ|?

(ii) Consider a specimen displaying superconductivity.

(a) Explain the physical origin of the formation of Cooper pairs at low enough
temperature T .

(b) Argue whether the formation of Cooper pairs increases or decreases the
entropy S of the specimen?

(c) Argue whether the formation of Cooper pairs increase or decrease the in-
ternal energy U of the specimen?

(d) The thermodynamic definition of the free energy F is

F = 〈E〉 − TS.

In view of your answers to questions (b) and (c) above argue why a phase
transition will occur at low enough temperature T . Sketch the free energy
F as a function of temperature T for a specimen in the superconducting
state and in the normal state.

(iii) The phenomenological London equation states

j = − 1

µ0λ2
L

A,

where j is the superconducting current density, A the vector potential (i.e.,
B = ∇×A), µ0 the permeability, and λL the London penetration depth. Show
that the superconducting current density is confined within a thickness λL of
the surface of a superconductor.

(iv) Consider a specimen displaying type I superconductivity.

(a) Define the concept of critical external magnetic field Hc(T ).

(b) Assuming that T < Tc, sketch the magnetisation M versus the applied
external magnetic field H.

(c) You are given a superconductor at T < Tc in zero external magnetic field.
What happens if the external magnetic field is increased to a value H <
Hc(T )? Explain the physics of this phenomenon.

Note: You may use the following differential vector identity:
∇× (∇× F) = ∇(∇ · F)−∇2F.
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CONDENSED MATTER THEORY EXAM MAY 2003

The paper consists of three sections: A & B & C.
Section A contains two questions.
Section B contains two questions.
Section C contains two questions.
All questions carry equal marks.

Answer THREE questions, taking ONE question from section A, ONE question from
section B, and ONE question from section C.
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SECTION A

1. Consider percolation in a lattice of infinite size L = ∞ with critical occupation
probability pc.

(i) (a) Define the order parameter P∞(p, L =∞) for the geometrical phase tran-
sition.

(b) Describe the behaviour of the order parameter as a function of p. Illustrate
your explanation with a sketch.

(c) Let n(s, p, L =∞) denote the number of s-clusters per lattice site. Justify
the relation

P∞(p, L =∞) = p−
∞∑

s=1

sn(s, p, L =∞). (1.1)

In the following p > pc. Let ξ(p) denote the correlation length and assume that the
order parameter becoming non-zero for p approaching pc from above is characterised
by the critical exponent β, that is,

P∞(p, L =∞) ∝ (p− pc)β for p→ p+
c . (1.2)

(i) (a) Show that for p → p+
c , P∞(ξ, L = ∞) ∝ ξ−β/ν , where ν is the critical

exponent characterising the divergence of the correlation length as p→ pc.

(b) Argue why, for finite lattices L <∞, with L� ξ one would expect

P∞(ξ, L) ∝ L−β/ν . (1.3)

(c) Numerically, how would you determine the ratio −β/ν?

(ii) In finite lattices, L <∞, you may assume the cluster number density at p = pc
obeys the scaling law (for all s)

n(s, pc, L) = s−τg(s/LD), (1.4)

where τ is the cluster number exponent, D is the fractal dimension and the
scaling function g(x) is constant for x � 1 and decays rapidly for x � 1. In
addition, you may assume that

P∞(pc, L) =
∞∑

s=1

s s−τg(0) −
∞∑

s=1

sn(s, pc, L). (1.5)

(a) Show that Equation (1.5) is correct in the limit of L→∞.

(b) Combining Equations (1.3), (1.4) and (1.5) or otherwise, derive the scaling
relation

−β/ν = D(2− τ). (1.6)
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2. Consider site percolation on the square lattice in d = 2.

(i) (a) How many different microstates are associated with a 2× 2 lattice?

(b) Sketch all the microstates and list the probability of each.

(ii) (a) Using cells of size b×b and adopting the rule of having a vertically spanning
cluster to define a real space renormalisation transformation Rb(p), show
that

Rb(p) = 2p2 − p4, (2.1)

when b = 2 and p denotes the occupation probability.

(b) Sketch the graph of the real space renormalisation transformation in Equa-
tion (2.1) and identify clearly the fixed points p?.

(c) Identify the critical occupation probability pc and determine the correlation
length exponent ν predicted by the real space renormalisation transforma-
tion.

In the diagrams below, lattices of size L×L = 64×64 with different initial occu-
pation probabilities pa, pb, and pc have been renormalised (L→ L/2→ L/4→
L/8) using the real space renormalisation transformation Equation (2.1).

(iii) (a) Discuss the sequences of renormalised lattices in diagrams (a), (b) and (c)
in terms of the flow in p-space.

(b) Relate the concept of fixed points for a renormalisation group transforma-
tion to scale invariance.

(a) (b) (c)
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SECTION B

3. A bead of mass m is suspended from a spring with spring constant k such that it rests
inside a circular ring of radius a, which lies in the vertical plane. The acceleration
due to gravity is g and you may assume there is no friction. Under the weight of the
bead the spring extends from its natural length a to a length l. The spring makes
an angle θ to be measured positive counterclockwise from the vertical. Geometry
reveals that l = 2a cos θ.

a

l

k

m

θ

�

g

(i) Show that the total energy of the mass-spring system is

U(θ) =
1

2
ka2(2 cos θ − 1)2 −mga cos 2θ,

where the zero of the gravitational potential energy is defined at the horizontal
passing through the centre of the circle.

(ii) (a) Show that the system is in equilibrium when θ = 0 or θ = ± arccos( ka
2(ka−mg) ).

(b) Show that ka ≥ 2mg for the existence of a non-trivial equilibrium angle θ.

Expanding the function U(θ) around θ = 0 up to fourth order, we find that

U(θ) = (
1

2
ka2 −mga) + a(2mg − ka)θ2 +

a

12
(7ka− 8mg)θ4.

(iii) (a) Explain why only terms of even order appear in the expansion.

(b) Sketch the function U(θ) − ( 1
2ka

2 − mga) for 2mg > Ks and 2mg < ka
assuming the coefficient of θ4 is positive.

(c) Sketch the physical solution θ as a function of the ratio 2mg
ka . Relate the

graph to the sketch from (iii)(b).

(d) Briefly outline the Landau theory of second-order phase transitions for the
ferromagnetic spin 1/2 Ising model.

(e) What is the order parameter of the mass-spring system? Explain your
answer.
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4. Not relevant for Statistical Mechanics 2006/2007

(i) The order parameter for a superconducting phase transition is a complex num-
ber

Ψ(r) = |Ψ(r)| exp(iΘ(r)). (4.1)

(a) What is the physical interpretation of |Ψ(r)|2?

(b) Explain why one can assume that |Ψ(r)|2 does not change significantly in
space, that is, we can write |Ψ(r)|2 = |Ψ|2.

(ii) You may assume without proof the equation of continuity for probabilities

jprob =
1

2m
[Ψ?(r)(−i~∇− qsA)Ψ(r) + Ψ(r)(i~∇− qsA)Ψ?(r)]. (4.2)

(a) Identify clearly all the terms in the equation of continuity and explain why
the right hand side is a real number.

(b) Derive the equation for the electrical current density

j =
qs
m

[~∇Θ(r)− qsA]|Ψ|2. (4.3)

(c) What is the classical equivalent of Equation (4.3)?

Consider a superconducting ring.

(iii) (a) Describe the phenomenon of flux quantisation.

(b) Show that Equation (4.3) for the electrical current density implies flux
quantisation.

(iv) Consider the diagrams below which displays a superconducting ring in an ex-
ternal magnetic field at temperature (a) T > Tc and (b) T < Tc. In (c), the
external magnetic field has been switched off. Explain what happens when
going from (a) to (b) and from (b) to (c). Indicate whether you will observe
flux quantisation in the settings (a), (b) and (c). What is the source of the
magnetic loops in diagram (c)?
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SECTION C

5. (i) (a) Write down the energy E{si} for a ferromagnetic spin 1/2 Ising model with
coupling constant J and external field of strength H. Clearly identify all
the symbols.

(b) Discuss the simplifications entering into the Ising model.

(c) Argue why such a simple model might be relevant for a real physical fer-
romagnet near the critical temperature Tc.

In the following, assume zero external magnetic field H = 0.

(ii) (a) Define the order parameter for the Ising model.

(b) Discuss the microscopic states and the associated value of the order pa-
rameter in the limits T → 0 and T →∞.

(c) Describe the behaviour of the order parameter as a function of T . Illustrate
your explanation with a sketch. Relate the sketch to your answer in (ii)(b).
Discuss qualitatively the microscopic states associated with T = Tc.

(iii) Given that the free free energy at temperature T is

F = 〈E〉 − TS,

where where 〈E〉 is the internal energy and S the entropy, explain why you
would expect the Ising model to exhibit a phase transition.
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6. (i) The figure below displays the number of earthquakes N(E) with energy release
larger than E per year. Explain why this indicates that the seismic system
might be viewed as being self-organised critical.
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(ii) In the Ising model at the critical temperature T = Tc, the susceptibility

χ =
(
∂〈M〉
∂H

)
T

diverges. Contrast this system with the metaphor of a slowly

driven sandpile, explaining briefly which sandpile quantity is the analogue of
the susceptibility, and the difference between criticality in equilibrium systems
and non-equilibrium systems displaying scale invariance.

In a model system displaying self-organised criticality, the avalanche size probability
obeys (for all avalanche sizes s)

P (s, L) = s−τf(s/LD),

where τ and D are critical exponents, L is the system size and the scaling function
f(x) is constant (different from zero) for x� 1 and decays rapidly for x� 1.

(iii) (a) Assume L = ∞. Given that P (s, L = ∞) can be normalised but that the
average response 〈s〉 =

∑∞
s=1 sP (s,∞) diverges, derive lower and upper

bounds for the critical exponent τ .

(b) Assuming L is finite, derive the scaling of the 4th moment 〈s4〉 =
∑∞

s=1 s
4P (s, L)

with system size L in terms of τ and D.

(c) Numerically, how would you determine the graph of the scaling function f
for the model system?

(iv) Why does it seem implausible that the scale invariance observed in equilibrium
systems at a phase transition is related to the scale invariance observed in
nature.
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STATISTICAL PHYSICS EXAM MAY 2004

The paper consists of three sections: A & B & C.
Section A contains two questions.
Section B contains two questions.
Section C contains two questions.
All questions carry equal marks.

Answer THREE questions, taking ONE question from section A, ONE question from
section B, and ONE question from section C.
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SECTION A

1. Consider one-dimensional site percolation on an infinite lattice.

(i) (a) What is the critical occupation probability pc? [1 marks]

(b) Determine the cluster number density n(s, p), that is, the number of s
clusters per lattice site at occupation probability p. [2 marks]

(c) Explain why
∞∑

s=1

sn(s, p) = p for p < 1.

Why is this identity not valid for p = 1? [2 marks]

(d) Derive the identity

∞∑

s=1

s2ps = p
1 + p

(1− p)3
for p < 1.

[1 marks]

(e) Calculate the average cluster size

χ(p) =

∑∞
s=1 s

2n(s, p)∑∞
s=1 sn(s, p)

.

Determine the amplitude Γ and the critical exponent γ such that

χ(p) = Γ(pc − p)−γ for p→ p−c .

[4 marks]

Consider one-dimensional site-bond percolation on an infinite lattice. Sites are oc-
cupied with probability p while bonds are occupied with probability q, see Figure 2.
A cluster of size s is defined as having s consecutive occupied sites with s − 1 in-
termediate occupied bonds. For example, the left-most cluster in Figure 2 has size
s = 3. The cluster terminates to the right because a bond is empty and to the left
because a site is empty.



s = 3

}

s = 2

Figure 2: Part of an infinite one-dimensional lattice where occupied sites and bonds are
black while empty sites and bonds are white. Two clusters are present with s = 3 and
s = 2, respectively.

(ii) (a) What is the critical point, (pc, qc), for site-bond percolation? [2 marks]

(b) Show that the cluster number density

n(s, p, q) = psqs−1 (1− pq)2 .

[4 marks]

(c) Calculate the average cluster size

χ(p, q) =

∑∞
s=1 s

2n(s, p, q)∑∞
s=1 sn(s, p, q)

.

Comment on the result. [4 marks]
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2. Consider percolation on a d-dimensional hypercubic lattice with critical occupation
probability pc. Let ξ denote the correlation length and let M∞(ξ, `) denote the mass
of the percolation cluster within a hypercubic box of linear size ` at occupation
probability p ≥ pc.

(i) Sketch the behaviour of the correlation length for p ≥ pc and discuss its geo-
metrical interpretation. [2
marks]

(ii) (a) Explain why
M∞(ξ, `) ∝ `D for `� ξ (2.1)

and comment on the value of the exponent D. [2 marks]

(b) Show that
M∞(ξ, `) ∝ ξD (`/ξ)d for `� ξ. (2.2)

[4 marks]

(c) Combine Equations (2.1) and (2.2) into a scaling form for M∞(ξ, `) and
discuss the behaviour of the crossover function. [4 marks]

(d) Give a couple of examples from nature where there is a crossover from
a fractal behaviour at small scales to a homogeneous behaviour at large
scales. [2 marks]

(iii) (a) How is M∞(`, ξ) related to the order parameter in percolation? [2 marks]

(b) Derive the hyper-scaling relation

D = d− β/ν,

where the critical exponents β and ν characterise the pick up of the order
parameter and the divergence of the correlation length at p = pc, respec-
tively. [4
marks]
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SECTION B

3. Consider the two-dimensional Ising model on a square lattice in an external field H.

(i) (a) Outline the Kadanoff block-spin real-space renormalisation transition ap-
plied to the Ising model. [3
marks]

(b) Let E{si} denote the energy of the Ising model with N spins at reduced
temperature t and reduced external field h and let E ′{sI}, N

′, t′ and h′ de-
note the corresponding variables in the renormalised lattice. Explain how
to define implicitly the renormalised energy, E ′{sI}, such that the partition
function remains invariant under the real-space renormalisation transfor-
mation, that is,

Z(N, t, h) = Z(N ′, t′, h′). (3.1)

[2 marks]

Figure 3 consists of panels taken from infinite lattices of the Ising model in zero
external field. In each of the three columns, the Kadanoff block-spin real-space
renormalisation procedure has been carried out on systems with different initial
temperatures T1, T2 and T3.

(ii) (a) Discuss the sequences of renormalised lattices in columns (1), (2), and (3) in
Figure 3 and the associated flow in the reduced nearest-neighbour coupling
constant K1 = J/kBT . [3 marks]

(b) Describe qualitatively the microstates associated with the fixed points of
the real-space renormalisation transformation. [3 marks]

(c) Relate the fixed points of the real-space renormalisation transformation to
the correlation length and the concept of scale invariance. [2 marks]

Assuming that

t′ = bytt and h′ = byhh for t→ 0±, h→ 0, b > 0,

where b sets the scale of the renormalisation transformation and yt, yh are positive
exponents, Equation (3.1) implies that the singular part of free energy per spin is a
generalised homogeneous function,

f(t, h) = b−2f(bytt, byhh) for t→ 0±, h→ 0, for all b > 0. (3.2)

(iii) (a) Explain how the exponent yt is related to the critical exponent ν char-
acterising the divergence of the correlation length at the critical point
(t, h) = (0, 0). [3 marks]

(b) By choosing an appropriate factor b, show that Equation (3.2) implies the
Widom scaling ansatz for the free energy

f(t, h) = |t|2−αF±(h/|t|∆) for t→ 0±, h→ 0

and identify the gap exponent ∆ and the scaling functions F±. [4 marks]
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Column 1: T1 Column 2: T2 Column 3: T3

Rb

Rb

Figure 3: Real-space renormalisation of the Ising model on a two-dimensional square lattice
in zero external field. In each of the three columns, the renormalisation transformation
Rb is carried out twice from top to bottom.
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4. Consider the Ising model in an external field H.

(i) (a) Write down the energy E{si} for the Ising model. Clearly identify all sym-
bols. [2
marks]

(b) Define the order parameter for the Ising model. [2 marks]

(c) By considering the relative importance of the energetic and entropic con-
tributions of the free energy

F = 〈E〉 − TS,

discuss qualitatively the behaviour of the order parameter as a function of
temperature T in zero external field. [4 marks]

(ii) (a) Define the susceptibility per spin, χ, and show that the susceptibility is
related to the variance of the total magnetisation

kBTχ =
1

N

(
〈M2〉 − 〈M〉2

)
.

[3 marks]

(b) Let ri denote the position of spin si. Define the site-site correlation function
g(ri, rj) and hence show that

kBTχ =
N∑

j=1

g(ri, rj). (4.1)

[3 marks]

Let t and h denote the reduced temperature and external field, respectively. You
may assume the following scaling form of the spin-spin correlation function in
the vicinity of the critical point

g(r, t, h) ∝ r−(d−2+η)G±(r/ξ, h/|t|∆) for t→ 0±, h→ 0, (4.2)

where r = |ri − rj| is the distance between the spins, d is the dimension, η ≥ 0
is a critical exponent, ∆ is the gap exponent, ξ is the correlation length and G+

and G− are the scaling functions in the two regimes t > 0 and t < 0, respectively.

(iii) (a) Replacing the sum on the right-hand side of Equation (4.1) with an inte-
gral, explain why the scaling form of the site-site correlation function in
Equation (4.2) implies the divergence of the susceptibility per spin in zero
external field when t→ 0. [2 marks]

(b) Derive a scaling relation between η and the critical exponents γ and ν
describing, respectively, the divergence of the susceptibility per spin and
the correlation length at (t, h) = (0, 0). [4 marks]
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SECTION C

5. Consider a Bak-Tang-Wiesenfeld type sandpile model defined on a tree-like structure
with N sites, i = 1, . . . , N , each having hc downward neighbours, see Figure 4. Each
site i is assigned an integer hi. Grains are added at random sites hi → hi + 1.
When hi ≥ hc, the site i topples and one grain is added to each of the hc downward
neighbours. 



}

boundary sites

bulk sites

Figure 4: A tree-like structure with hc = 2. The bottom most sites are boundary sites.
The remaining sites are bulk sites.

The algorithm for the dynamics is defined as:

1. Place the pile in an arbitrary stable configuration with hi < hc for all sites i.

2. Add a grain at a random site i, that is, hi → hi + 1.

3. If hi ≥ hc, the site relaxes and

hi → hi − hc
hj → hj + 1 for the hc downward neighbours

except when boundary sites topple, where,

hi → hi − hc.

A stable configuration is reached when hi < hc for all sites i.

4. Proceed to step 2. and reiterate.

(i) (a) How many stable configurations are there in total? [2 marks]

(b) Discuss briefly the concept of transient and recurrent configurations in
sandpile models in general. [2 marks]

(c) Explain why both the minimally stable configuration with hi = hc − 1
for all sites i and the empty configuration with hi = 0 for all sites i are
recurrent states. Hence argue why all stable configurations are recurrent
configurations on this tree-like structure. [2 marks]
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(ii) (a) Let Ph denote the probability that a site contains h grains. The probability
that the addition of a single grain to a stable configuration at a random
site in the bulk will cause b of its hc downward neighbours to topple is

pb =

(
hc
b

)
P bhc−1 (1− Phc−1)hc−b b = 0, . . . , hc.

Justify this result. [2 marks]

(b) Argue why the average number of new topplings is

〈b〉 = hcPhc−1.

[2 marks]

(iii) You may assume that in a typical stable configuration

Ph = Ph−1 for h = 1, . . . , hc − 1.

Hence show that the average number of new topplings

〈b〉 = 1

and comment on the result. [3 marks]

(iv) (a) Consider a tree with hc = 2, see Figure 4. Discuss how this model is related
to percolation on a Bethe lattice with coordination number z = 3. [4
marks]

(b) Using an argument similar to that for deriving the average cluster size in
percolation on a Bethe lattice, show that the average avalanche size in an
infinite tree with hc = 2 is

〈s〉 =
Phc−1

1− hcPhc−1
.

[3 marks]
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6. Consider a one-dimensional granular pile on a finite horizontal base of length L
confined between two glass plates. There is a vertical wall at the left boundary.
Grains can leave the system at the right boundary.

(i) Using the metaphor of a one-dimensional granular pile driven by adding grains
at the left boundary, explain briefly the concept of self-organised criticality. [4
marks]

(ii) (a) Define explicitly the dynamical algorithm for the one-dimensional Oslo rice
pile model driven at the left boundary. [3 marks]

(b) For the Oslo rice pile model, explain the concept of recurrent configurations.
[2 marks]

The one-dimensional Oslo model of linear size L displays self-organised criticality
and the probability density of the avalanche size s satisfies

P (s, L) ∝ s−τG(s/LD) for s� 1, L� 1, (6.1)

where D is the avalanche dimension and τ the avalanche size exponent. The scaling
function G(x) is a non-zero constant for x� 1 and decays rapidly for x� 1.

(iii) Assuming that Equation (5.1) is valid for all s, derive the scaling of the kth
moment,

〈sk〉 =

∞∑

s=1

skP (s, L),

with system size L� 1 in terms of the exponents D and τ . [4 marks]

Numerical measurement of the kth moment in a variant of the Oslo model yields

Moment L = 100 L = 400 L = 1600

〈s〉 3.38 × 103 5.35 × 104 8.54 × 105

〈s2〉 3.65 × 107 1.21 × 1010 4.16 × 1012

〈s4〉 8.76 × 1015 1.35 × 1021 2.28 × 1026

〈s6〉 3.61 × 1024 2.73 × 1032 2.31 × 1040

(iv) (a) Show that the numerical measurements of the first moment in this variant
of the Oslo model are consistent with

〈s〉 ∝ L2 for L� 1,

and hence derive a scaling relation between D and τ . [4 marks]

(b) Using the numerical measurements of your choice, determine the critical
exponents D and τ . [3 marks]
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STATISTICAL PHYSICS EXAM MAY 2005

The paper consists of three sections: A & B & C.
Section A contains two questions.
Section B contains two questions.
Section C contains two questions.
All questions carry equal marks.

Answer THREE questions, taking ONE question from section A, ONE question from
section B, and ONE question from section C.

51



SECTION A
1. (i) Consider one-dimensional site percolation on an infinite lattice.

(a) What is the critical occupation probability pc? Explain your answer.

(b) Define the correlation length, ξ(p), at occupation probability p and show
that

ξ(p) = − 1

ln p
.

(c) Hence show that
ξ(p)→ (pc − p)−ν for p→ p−c ,

and identify the critical exponent ν.

(d) Let Π∞(p, L = ∞) denote the probability of having a percolating cluster
at occupation probability p in an infinite lattice. Describe the behaviour of
the function Π∞(p, L =∞) as a function of p. Illustrate your explanation
with a sketch of the graph.

(ii) Consider one-dimensional site percolation on a finite lattice.

(a) Let Π∞(p;L) denote the probability of having a percolating cluster in a
lattice of size L. What is the function Π∞(p;L)? Explain your answer and
sketch the graph of the function.

(b) If ξ is the correlation length at occupation probability p, show that

Π∞(ξ;L) = exp (−L/ξ) .

(c) Hence show that

Π∞(p;L) = F1d [(pc − p)L] for p→ p−c ,

and identify the scaling function F1d. How does F1d(x) behave for x � 1
and x� 1?

(iii) In higher dimensions there exists a scaling function G such that

Π∞(ξ;L) = G (L/ξ) for p→ pc.

(a) Hence show that

Π∞(p;L) = F
[
|pc − p|L1/ν

]
for p→ pc,

and relate the scaling function F to G.

(b) What is the limiting function dΠ∞/dp when L→∞?
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2. In bond percolation, each bond between neighbouring lattice sites is occupied with
probability p and empty with probability (1 − p). The bond percolation threshold
for a square lattice pc = 0.5. In a real-space renormalisation procedure on the
square lattice with unit lattice spacing, the lattice is replaced by a new renormalised
lattice, with super-bonds of length b = 2 occupied with probability Rb(p), following
the procedure shown in the figure below.

Rb(p)

Rb(p)

p p

p

p

A B A B
(a) (b) (c) (d)

Figure 5: (a) Original lattice with unit lattice spacing where each bond is occupied with
probability p. (b) Lattice where every second column in the original lattice is moved one
lattice unit to the left. (c) Lattice where, in addition, every second row in the original
lattice is moved one lattice unit upwards. In this lattice, there are two bonds between
each site. (d) Renormalised lattice with lattice spacing b = 2 where each super-bond is
occupied with probability Rb(p).

(i) Assuming that the super-bond between A and B in the renormalised lattice is
occupied if there exists a connected path from A to B along the four bonds in
lattice (c), show that

Rb(p) = p4 − 4p3 + 4p2. (2.1)

(ii) (a) Solve graphically the fixed point equation for the renormalisation group
transformation in Equation (2.1).

(b) Describe the flow in p-space and the renormalisation of the correlation
length when applying the renormalisation group transformation repeatedly.

(c) Identify clearly the correlation lengths associated with the fixed points p?

of the renormalisation group transformation and hence explain why fixed
points are associated with scale invariance.

(iii) (a) Derive a form for the critical exponent ν in terms of the renormalisation
group transformation.

(b) Hence, identify the critical occupation probability pc and determine the
correlation length exponent ν predicted by the renormalisation group trans-
formation in Equation (2.1).
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SECTION B

3. Consider the Ising model on a d-dimensional lattice in an external field H.

(i) (a) Write down the energy E{si} for the Ising model. Clearly identify all sym-
bols.

(b) Identify the order parameter for the Ising model and discuss qualitatively
its behaviour as a function of temperature T in zero external field.

(ii) Let t = (T − Tc)/Tc and h = H/kBT denote the reduced temperature and
external field, respectively. Assume that the singular part of free energy per
spin is a generalised homogeneous function,

f(t, h) = b−df(bytt, byhh) for t→ 0±, h→ 0, b > 0, (3.1)

where d is the dimension and yt, yh are positive exponents.

(a) Define the critical exponent α associated with the specific heat in zero
external field and show that Equation (3.1) implies

α =
2yt − d
yt

.

(b) Define the critical exponent β associated with the order parameter in zero
external field and show that Equation (3.1) implies

β =
d− yh
yt

.

(c) Define the critical exponent γ associated with the susceptibility in zero
external field and show that Equation (3.1) implies

γ =
2yh − d
yt

.

(d) Define the critical exponent δ associated with the order parameter at the
critical temperature and show that Equation (3.1) implies

δ =
yh

d− yh
.

(e) Hence confirm the two scaling relations

α+ 2β + γ = 2,

γ = β(δ − 1).
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4. A rigid massless rod of length a can rotate around a fixed point O in the vertical
plane only. The orientation of the rod is given by its angle θ to be measured positive
clockwise from the vertical. At the top of the rod is placed a variable mass m
which is linked to a circular harmonic spring of radius a and spring constant k.
When the rod is vertical, the length of the spring equals its natural length, πa/2.

θ

a

k

m

O

P

(i) Show that the total energy of the mass-spring system is

U(θ) =
1

2
ka2θ2 +mga(cos θ − 1), (4.1)

where the zeroth-level of the gravitational potential energy is defined as the
horizontal dashed line passing through the point P, the position of the mass
when the rod is vertical.

(ii) (a) Expand the function U(θ) in Equation (4.1) around θ = 0 up to fourth
order, to show that

U(θ) =
a

2
(ka−mg)θ2 +

mga

24
θ4. (4.2)

(b) Explain why only terms of even order appear in the expansion in Equation
(4.2).

(c) Sketch the function U(θ) in Equation (4.2) for ka > mg, ka = mg, and
ka < mg.

(d) Using Equation (4.2), find an explicit expression for the angle of equilibrium
θ0(m) when ka > mg and ka < mg.

(e) Sketch the solution of the angle of equilibrium θ0(m) as a function of the
ratio ka/mg. Relate the graph to the sketches from (c).

(f) Briefly outline the Landau theory of second-order phase transitions in gen-
eral.

(g) What is the order parameter of the mass-spring system? What is the
critical value, mc, of the variable mass m? Explain your answers.
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SECTION C

5. Consider a slowly driven ‘sandpile like’ system of size L which eventually reaches
a set of recurrent configurations. Let a sequence of consecutive toppling sites be
identified with an avalanche.

(i) Which quantity is a measure of the susceptibility of the system?

(ii) Explain how a finite avalanche might be visualised by a finite rooted tree.

branch
node

root

(iii) (a) Define the average branching ratio, 〈b〉, for an ensemble of finite avalanches
and and show that

〈b〉 = 1− 1

〈s〉
where 〈s〉 is the average size of an avalanche.

(b) If the ‘sandpile like’ system displays self-organised criticality, what is the
limiting value of 〈b〉 when L→∞?

(iv) (a) Define explicitly the one-dimensional Bak-Tang-Wiesenfeld sandpile model
in a lattice of size L driven by adding grains at random positions i ∈ [1, L].

(b) Discuss briefly the concept of transient and recurrent configurations and
describe the set of recurrent configurations in the one-dimensional Bak-
Tang-Wiesenfeld sandpile model.

(c) What is the average branching ratio, 〈b〉, for the one-dimensional Bak-
Tang-Wiesenfeld sandpile model in a lattice of size L? Does the limiting
value of 〈b〉 when L→∞ agree with your answer to question (iii)(b)?
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6. Consider a system of size L which displays self-organised criticality. Let s denote
the avalanche size with a corresponding avalanche-size probability

P (s;L) = as−τG
(
s/bLD

)
for s� 1, L� 1 (6.1)

where τ and D are universal critical exponents and a and b are non-universal con-
stants. The scaling function G(x) is a non-zero constant for x� 1 and decays rapidly
for x� 1.

(i) Assume that the avalanche-size probabilities are measured in systems of sizes
L4 � L3 � L2 � L1 � 1. Explain how to make a data collapse of the graphs
for the avalanche-size probabilities. Illustrate your explanation with a sketch,
clearly labelling your axes.

(ii) In the following you may assume that Equation (6.1) is valid for all avalanche
sizes.

(a) Keeping track of the non-universal constants, calculate the scaling with
system size L of the kth moment of the avalanche-size probability

〈sk〉 =

∞∑

s=1

skP (s;L) ≡ ΓkL
γk for L� 1,

and identify the critical exponent γk and the amplitude Γk. Comment
whether they are universal.

(b) Show that the moment ratio

gk =
〈sk〉〈s〉k−2

〈s2〉k−1

is a universal quantity.
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Figure 6: The numerical measurements of moment ratio g3 as a function of system size L
for three models A, B, and C.

(iii) Consider three models A, B, and C displaying self-organised criticality in which
g3 has been measured numerically as a function of system size.

(a) Taking the numerical measurements of g3 for Model C as an example, argue
qualitatively, why you would expect g3 to be constant only for L→∞.

(b) Considering that g3 is independent of non-universal constants, what can
you conclude from the data about the three models with respect to univer-
sality classes?
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STATISTICAL PHYSICS EXAM MAY 2006

The paper consists of three sections: A & B & C.
Section A contains two questions.
Section B contains two questions.
Section C contains two questions.
All questions carry equal marks.

Answer THREE questions, taking ONE question from section A, ONE question from
section B, and ONE question from section C.
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SECTION A

1. (i) Consider percolation on an infinite lattice with critical occupation probability
pc.

(a) Sketch the average cluster size, χ(p), versus occupation probability, p, and
comment on the graph. [2 marks]

(b) Define the critical exponent γ associated with χ(p). [2 marks]

(c) Hence show that
χ(p) ∝ ξγ/ν for p→ pc,

where ξ(p) is the correlation length and ν its associated critical exponent.
[2 marks]

(ii) Consider percolation on finite lattices.

(a) Assume p = pc. Sketch the logarithm of the average cluster size, log χ(pc;L),
versus the logarithm of the lattice size, logL. Explain the form of the graph
in your sketch. [4 marks]

(b) Assume p ≈ pc with p 6= pc. Sketch the logarithm of the average cluster
size, logχ(p;L), versus the logarithm of the lattice size, logL. Explain the
form of the graph in your sketch. [4 marks]

(c) You may assume the scaling ansatz

n(s, pc) = s−τG
(
s/LD

)
for p→ pc, L� 1 (1.1)

for the cluster number density at p = pc is valid for all cluster sizes s.
Calculate the average cluster size using the scaling ansatz Equation (1.1)
and derive the scaling of the average cluster size with lattice size L. [4
marks]

(d) Hence derive the scaling relation

γ/ν = D(3− τ).

[2 marks]
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2. Consider site percolation on the square lattice in two dimensions and let p denote
the occupation probability.

(i) Sketch all the microstates associated with a 2× 2 block and list the associated
probability of each microstate. [2 marks]

(ii) Outline the real-space renormalisation group procedure applied to site percola-
tion in two dimensions when coarse-graining over scale b = 2. [4
marks]

(iii) (a) Using blocks of size b × b and adopting the rule of having a diagonally
spanning cluster to define the renormalisation group transformation Rb(p),
show that

Rb(p) = 4p3 − 3p4, (2.1)

when b = 2. [2 marks]

(b) Solve graphically or otherwise the fixed point equation for the renormali-
sation group transformation in Equation (2.1). [2
marks]

(c) Describe the flow in p-space and the renormalisation of the correlation
length when applying the renormalisation group transformation repeatedly
and identify clearly the correlation lengths associated with the fixed points
p?. [4 marks]

(iv) (a) Derive a form for the critical exponent ν in terms of the renormalisation
group transformation Rb(p). [4 marks]

(b) Hence, identify the critical occupation probability pc and determine the
correlation length exponent ν predicted by the renormalisation group trans-
formation in Equation (2.1). [2
marks]
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SECTION B

3. Consider the Ising model in an external field H and let m = m(T,H) denote the
average magnetisation per spin at temperature T . The starting point for the Landau
theory of the Ising model is the free energy per spin on the form

f(T,H;m) = f0 −Hm+ a2(T − Tc)m2 + a4m
4, (3.1)

where f0 is the entropic part of the free energy, Tc the critical temperature and a2, a4

positive constants.

(i) (a) Explain why the free energy per spin f(T,H;m) can be expanded in the
average magnetisation per spin in the vicinity of a critical point (T,H) =
(Tc, 0). [2 marks]

(b) Argue why the expansion for f(T,H;m) only contains even powers of m
in zero external field. [2 marks]

(ii) (a) Sketch the free energy per spin in zero external field as a function of mag-
netisation per spin m0(T ) = m(T, 0) for temperatures T > Tc, T = Tc and
T < Tc. [4 marks]

(b) Sketch the magnetisation per spin in zero external field, m0(T ), as a func-
tion of temperature, T , as predicted by the Landau theory of the Ising
model. Explain the sketch is related to your graphs in (a). [4 marks]

(iii) (a) Define the order parameter for the Ising model and its associated critical
exponent β. [2 marks]

(b) Derive the value of the critical exponent β predicted by the Landau theory
of the Ising model. [4 marks]

(iv) Explain whether the critical exponents predicted by the Landau theory of the
Ising model are universal or non-universal. [2 marks]
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4. Consider an Ising model in dimension d > 1.

(i) (a) Write down the energy E{si} for the Ising model with N spins in an external
field H. Clearly identify all symbols. [4 marks]

(b) Discuss the simplifications entering into the Ising model. [2 marks]

(ii) The partition function is given by Z =
∑
{si} exp

(
−βE{si}

)
where β = 1/(kBT )

is the inverse temperature.

(a) Express the free energy per spin f(T,H) in terms of the partition function.
[2 marks]

(b) Define the average magnetisation per spin m(T,H) for the Ising model and
show that

m(T,H) = −
(
∂f

∂H

)

T

.

[3 marks]

(iii) Make a sketch of the average magnetisation per spin in zero external field,
m0(T ) = limH→0±m(T,H) as a function of temperature, T . Explain your
answer. [4 marks]

(iv) Figure 7 below displays the free energy per spin, f(T,H), as a function of
external field for, H, for three temperatures T > Tc, T = Tc and T < Tc.

(a) How can you determine the average magnetisation per spin graphically? [2
marks]

(b) Consider the average magnetisation per spin in the limit H → 0±. Explain
whether your sketch in subquestion (iii) is qualitatively consistent with the
average magnetisation per spin limH→0±m(T,H) determined from Figure
7. [3 marks]

-1 -0.5 0 0.5 1
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H

f
(T
,H

)

T = 0.8 Tc

T = Tc

T = 1.2 Tc

Figure 7: The free energy per spin, f(T,H), versus the external field, H, for temperatures
T = 1.2 Tc (lower graph) T = Tc (middle graph) and T = 0.8 Tc (upper graph).
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SECTION C

5. Consider a system of size L � 1 which displays self-organised criticality. Let s
denote the avalanche size with a corresponding avalanche-size probability

P (s;L) =

{
as−τ for 1 ≤ s ≤ LD
0 otherwise,

(5.1)

where τ is the avalanche-size exponent and D the avalanche dimension.

(i) (a) Derive an inequality for τ such that the average avalanche size 〈s〉 diverges
with system size. [2 marks]

(b) The critical exponent γ is defined by

〈s〉 ∝ Lγ for L→∞.

Determine a scaling relation between γ, τ and D. [2 marks]

(ii) In the following, assume that τ > 1 for the avalanche-size probability given in
Equation (5.1).

(a) Show that for L� 1, the parameter a ≈ (τ − 1). [3 marks]

(b) Using the Heaviside step function

Θ(x) =

{
1 for x ≥ 0

0 otherwise,
(5.2)

show that the avalanche-size probability in Equation (5.1) satisfies the scal-
ing form

P (s;L) = as−τG
(
s/LD

)
for L� 1 (5.3)

and identify the scaling function G. [5 marks]

(iii) In the following, assume that τ < 1 for the avalanche-size probability given in
Equation (5.1).

(a) Show that for L� 1, the parameter a ≈ (1− τ)/LD(1−τ). [3 marks]

(b) Using the Heaviside step function in Equation (5.2) show that the avalanche-
size probability in Equation (5.1) satisfies the scaling form

P (s;L) = ãs−1G̃
(
s/LD

)
for L� 1 (5.4)

and identify the scaling function G̃ and ã. [5 marks]
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6. (i) Without going into details, explain briefly the hallmarks of self-organised crit-
icality. [4
marks]

Consider a system of size L � 1 which displays self-organised criticality. Let s
denote the avalanche size with a corresponding avalanche-size probability

P (s;L) = as−τG
(
s/bLD

)
for s� 1, L� 1 (6.1)

where τ and D are critical exponents and a, b are constants. Figure 8 displays the
measured avalanche-size probabilities for three systems of size L1, L2, L3 � 1.
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Figure 8: Numerical results for the avalanche-size probability, P (s;L), versus the avalanche
size, s, in three systems of size L1, L2 and L3.

(ii) (a) Discuss the significance of the ansatz in Equation (6.1). [4 marks]

(b) Identify whether a, b, τ,D and G(x) in Equation (6.1) are universal or non-
universal and briefly discuss the concept of universality. [3
marks]

(c) Discuss the concept of cut-off avalanche sizes with reference to Equation
(6.1). Using the data in Figure 8, identify roughly the numerical value of
the cut-off avalanche size in each of the three systems. [2 marks]

(d) Rank the system sizes in increasing order. Explain your answer. [2 marks]

(e) How would you determine the exponents τ andD if given the data in Figure
8. Accompany your answer with sketches if necessary. [3 marks]

(f) In some publications, the exponent τ is measured as the slope of the graph
of P (s;L) as displayed in Figure 8. Discuss why this might not always be
correct e.g. by giving a counter-example. [2 marks]
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