
December 11, 2005 9:52 WSPC/Book Trim Size for 9in x 6in ws-book9x6

54 Complexity and Criticality

3.2 Olami-Feder-Christensen model.

(i) Generally we have

∞∑

s=1

s−a =

{
convergent a > 1

divergent a ≤ 1
(3.2.1)

Since the avalanche-size probability is normalised:

∞∑

s=1

P (s) <∞⇒ τs > 1 (3.2.2)

and the average avalanche size diverges:

〈s〉 =

∞∑

s=1

sP (s) =

∞∑

s=1

s1−τs =∞⇒ τs ≤ 2. (3.2.3)

Alternatively, use the following argument

∞∑

s=1

P (s) ≈
∫ ∞

1

P (s)ds ∝ [s1−τs ]∞1 (3.2.4)

which is only convergent in the upper limit for τs > 1 and

〈s〉 =

∞∑

s=1

sP (s) ≈
∫ ∞

1

sP (s)ds ∝ [s2−τs ]∞1 (3.2.5)

which is only divergent in the upper limit for τs ≤ 2 (logarith-

mically so for τs = 2).

(ii) As the cutoff event size sξ diverges for α → αc,the limiting

function of P (s) will be a pure power law, that is,

P (s) =

{
s−τs for s ≥ 1

0 otherwise

(iii)

〈sk〉 =

∞∑

s=1

skP (s) ≈
∫ ∞

1

skP (s)ds =

∫ sξ

1

sk−τsds

∝ s1+k−τs
ξ ∝ (αc − α)

τs−k−1
σ

that is,

γk =
τs − k − 1

σ
.
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(iv) The dynamical rules of the model are motivated by the dy-

namics of earthquakes in which there are two separate time

scales. One is defined by the motion of the tectonic plates,

and the other is the duration of an earthquake. The former

time scale is much larger than the latter. We separate the

time scales by considering the earthquake as instantaneous,

that is, the system is not driven during an earthquake.

The algorithm for the system is as following:

• Define random initial strains in the system.

• Strain is accumulated uniformly across the system as the

rigid plates move.

• When the strain in a certain site is above the threshold

value Fth this site will relax according to the equation

Fnn → Fnn + αFij ,

Fij → 0, (3.2.6)

where Fnn denote the nearest-neighbour blocks of the re-

laxing block (i, j) and α = K/(4K +KL).

This may cause neighbouring sites to exceed the threshold

value, in which case these sites relax simultaneously, and

so on. The triggered earthquake will stop when there are

no sites left with a strain above the threshold value.

• Strain starts to accumulate once again.

As the relaxation dissipates Fij but an amount of 4αFij is

redistributed, we refer to 4α as the level of conservation.
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(v) (a) The model is considered to be critical if, for a given value

of α, the event size distribution P (s) is a power law with a

cutoff size that diverges with systems size L. This will also

imply that the average event size will diverge with system size.

If, on the other hand, the cutoff size does not increase with

system size, the model would be non-critical.

Clearly, for α = 0, the blocks do not interact at all, and all

the avalanches are of size 1, that is, the model is non-critical.

For α = 0.25, the model is conservative (conservation level =

1), and all the dissipation will take place at the boundary only.

Thus one would expect the average avalanche size to diverge

with system size, consistent with a power law distribution

P (s).

As the model is non-critical for α = 0 and critical for α = 0.25

there must be a crossover at some critical value αc from a

critical to a non-critical behaviour as α decreases from 0.25 to

0. Where the transition happens is still an unsettled question.

There are claims that αc = 0.25 and αc = 0.

3.3 Modified Bak-Tang-Wiesenfeld model on a tree-like lattice.

(i) (a) Each of the N sites can be in one of hc state, hi =

0, 1, . . . , hc − 1. Thus there are a total of hNc stable con-

figurations.

(b) Stable configurations are either transient or recurrent con-

figurations. Transient configurations are not encountered

once the set of recurrent configurations is reached. The

set of recurrent configurations is commonly known as the

attractor of the dynamics.

(c) Given a configuration in the set of recurrent states. Sim-

ply by adding hc−1−hi grains to each of the i sites we re-

cover the minimally stable configuration with hi = hc− 1

for all sites i.

Adding one grain at the root of the tree-like struc-

ture in the minimally stable configuration will induce an

avalanches in which all the grains will leave the system at

the boundary and leave the system empty.

Since the empty configuration is a recurrent state, all sta-

ble configurations will be recurrent as they can be reached

from the empty configuration by adding grains in a pre-
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scribed way.

(ii) (a) A site with h = hc − 1 will topple if it receives one grain.

Such sites occur with probability Phc−1. Sites with h <

hc − 1 will not topple upon receiving one grain. Such

sites occur with probability 1 − Phc−1. Since a toppling

site adds one grain to its hc downwards neighbours the

probability of causing b new sites to topple is determined

by the binomial distribution

pb =

(
hc
b

)
P bhc−1 (1− Phc−1)hc−b b = 0, . . . , hc.

(b) The number of trials are hc, each with a probability Phc−1

of causing a new toppling. Therefore, the average number

of new topplings

〈b〉 =

hc∑

b=0

bpb = hcPhc−1.

(iii) Since the probability Ph must be normalised,

hc−1∑

h=0

Ph = hcPh = 1⇔ Ph =
1

hc
.

Therefore, clearly

〈b〉 = hcPhc−1 = 1.

This is the critical branching ratio for a branching process.

Thus the model self-organised into a critical state in which

there are avalanches of all sizes, limited by the system size

only.

(iv) (a) In a tree with hc = 2 in a stable configuration, each site

can be in one of two states, either hi = 0 or hi = 1. Define

for now sites with hi = 1 as occupied sites and sites with

hi = 0 as empty sites. Then the probability that a site

is occupied is Ph=1 = 1/hc = 1/2, the critical occupation

probability of percolation model on a Bethe lattice with

z = 3. However, the sandpile model organises itself to

this critical state.

(b) When adding a grain to an arbitrary site, it topples with

probability Phc−1. Define B to be the contribution to the
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average avalanche size from a given sub-branch. Then the

average avalanche size is

〈s〉 = Phc−1 (1 + hcB) , (3.3.1)

where the first term is the contribution from the toppling

site itself and the second term is the contribution from the

hc sub-branches. If the parent of a sub-branch has hi <

hc− 1 there is no contribution. If, however, the parent of

a sub-branch has hi = hc − 1, that parent contributes its

own toppling together with a contribution B from each of

its hc subbranches. The contribution from a subbranch

is identical to the contribution from a branch because all

sites are equivalent. Thus

B = 0× (1− Phc−1) + [1 + hcB]× Phc−1

from which

B =
Phc−1

1− hcPhc−1
.

Substituting this result into Equation (3.3.1) we find

〈s〉 = Phc−1

(
1 + hc

Phc−1

1− hcPhc−1

)
=

Phc−1

1− hcPhc−1

which diverges for Phc−1 → 1/hc.

3.4 Oslo model and moments.

(i) Starting from an empty system, a pile will gradually form

when adding grains. However, eventually, after a transient

period, the pile will cease to grow and, in average, the number

of grains added at the left boundary will leave the system at

the right boundary. Once the system has reached the attractor

of the dynamics, the avalanches initiated by adding grains at

the left boundary is only limited by the size of the system.

The system has, by itself, organised into a state in which the

average avalanche scales with system size, the signature of

criticality.

(ii) (a) Define the local slope zi = hi − hi+1, i = 1, . . . L with

hL+1 = 0. In the one-dimensional Oslo model, the critical

slopes, zci (t), dependent on position and time.
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1 2 Li

hi

The algorithm for the dynamics is defined as follows.

1. Place the pile in an arbitrary stable configuration with

zi ≤ zci for all i.

2. Add a grain at site i = 1, that is, z1 → z1 + 1.

3. If zi > zci , the site relaxes and

zi → zi − 2

zi±1 → zi±1 + 1

except when boundary sites topple, where, respec-

tively,

z1 → z1 − 2 zL → zL − 1

z2 → z2 + 1 for i = 1 zL−1 → zL−1 + 1 for i = L.

Chose a new critical slope zci at toppling site. A stable

configuration is reached when zi ≤ zci for all i.

4. Proceed to step 2. and reiterate.

(b) The pile will eventually reach a statistically stationary

state where, on average, the number of grains added will

leave the system at the open boundary. Configurations

are either transient configuration or recurrent configu-

rations. Recurrent configurations will appear again and

again if we wait long enough.
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(iii) The kth moment

〈sk〉 =

∞∑

s=1

skP (s, L)

=

∞∑

s=1

sk−τsG(s/LD)

≈
∫ ∞

1

sk−τsG(s/LD)ds

=

∫ ∞

1/LD
(uLD)k−τsG(u)LDdu with u = s/LD

= LD(k+1−τs)
∫ ∞

1/LD
uk−τsG(u)du

For L � 1, the lower limit of the integral approaches zero,

and the integral becomes just a numerical factor. Therefore,

〈sk〉 ≈ LD(k+1−τs)
∫ ∞

0

uk−τsG(u)du for L� 1

∝ LD(k+1−τs).

(iv) (a) Plotting log〈s〉 versus logL, we see that the data fall on

a line with slope approximately 2.
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Therefore

〈s〉 ∝ L2 ∝ LD(2−τs) for L� 1, (3.4.1)

implying the scaling relation

D(2− τs) = 2. (3.4.2)
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(b) Plotting for example log〈s2〉 versus logL, the data fall on

a line with slope approximately 4.2.
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Thus

D(2− τs) = 2 (3.4.3a)

D(3− τs) = 4.2 (3.4.3b)

from which, by subtraction

D ≈ 2.2 (3.4.4)

and using the scaling relation in Equation (3.4.2)

τs = 2− 2/D ≈ 1.1. (3.4.5)

3.5 Moment ratios and universality.

(i) Given that the avalanche-size probability

P (s;L) = as−τsG
(
s/bLD

)
for s� 1, L� 1

then be rearranging we find

1

a
sτsP (s;L) = G

(
s/bLD

)
for s� 1, L� 1.

For a given system a and b are constant. The L.H.S. is a func-

tion of two variables s and L while the R.H.S. is a function of

one variable only, s/bLD. Hence by plotting the transformed

avalanche-size probabilities 1
as
τsP (s;L) versus the rescaled

avalanche size, s/bLD, the data should, for s � 1 collapse

onto the graph for the scaling function G.
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Fig. 3.5.1 (a) The avalanche-size probabilities, P (s;L), versus avalanche size, s. The
four curves correspond to lattices of increasing size marked with lines of increasing dash
length. (b) The transformed avalanche-size probabilities, 1

a
sτsP (s;L), versus avalanche

size, s. (b) Plotting the transformed avalanche-size probability, 1
a
sτsP (s;L), versus the

rescaled avalanche size, s/bLD , produces a data collapse onto a universal scaling function
G when using the appropriate exponents D and τs.
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(ii) (a) Assuming the scaling form of the avalanche-size proba-

bility is valid for all s and converting the sum into an

integral we find

〈sk〉 =

∞∑

s=1

skP (s;L)

=

∞∑

s=1

ask−τsG
(
s/bLD

)

≈
∫ ∞

1

ask−τsG
(
s/bLD

)
ds

=

∫ ∞

1/bLD
a(ubLD)k−τsG (u) bLDdu with u = s/bLD

= a(bLD)1+k−τs
∫ ∞

1/bLD
uk−τsG (u) du

= LD(1+k−τs)ab1+k−τs
∫ ∞

0

uk−τsG (u) du,

since the lower limit of the integral tends to zero as L→
∞. Hence we identify the universal exponent and the

non-universal amplitude

γk = D(1 + k − τs) universal

Γk = ab1+k−τs
∫ ∞

0

uk−τsG (u) du non-universal.

(b) The moment ratio

gk =
〈sk〉〈s〉k−2

〈s2〉k−1
=

ΓkL
D(1+k−τs)(Γ1L

D(2−τs))k−2

(Γ2LD(3−τs))k−1
=

ΓkΓk−2
1

Γk−1
2

which is clearly independent of the non-universal con-

stants a and b.

(iii) (a) In the derivation above, we assumed the scaling form of

the avalanche-size probability. However, that is only valid

for L� 1. Hence only for L→∞ will the moment ratio

gk be independent on system size.

(b) Model A and B might be in the same universality class.

However, Model C must belong to another universality

class. Otherwise the asymptotic value of g3 cannot be

different.


