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Answers to exercises

1.1 Moments and moment ratio of the cluster number density in d = 1.

(i) In d = 1, the cluster number density n(s, p) = (1 − p)2ps.

Thus the kth moment Mk of the cluster size density

Mk =

∞∑

s=1

skn(s, p)

=

∞∑

s=1

sk(1− p)2ps

= (1− p)2
∞∑

s=1

skps

= (1− p)2
∞∑

s=1

sk exp[s ln(p)]

= (1− p)2
∞∑

s=1

sk exp(−s/sξ), with sξ = − 1

ln(p)

≈ (1− p)2

∫ ∞

1

sk exp(−s/sξ) ds, u = s/sξ; du = ds/sξ

= (1− p)2

∫ ∞

1/sξ

(usξ)
k exp(−u) sξdu

= (1− p)2sξ
k+1

∫ ∞

1/sξ

uk exp(−u) du

= (1− p)2

( −1

ln(p)

)k+1 ∫ ∞

− ln(p)

uk exp(−u) du. (1.1.1)

Letting p→ p−c , the lower limit of the integral tends to zero (as

pc = 1), and the integral becomes the integral representation

of the Gamma function. Using the Taylor expansion ln(p) =

ln[1− (1− p)] ≈ −(1− p) for p→ p−c we find

Mk = (1− p)2 1

(1− p)k+1
k!

= k!(pc − p)1−k (1.1.2)

so we identity Γk = k! and γk = k − 1.
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2 Complexity and Criticality

Alternative derivation with the use of “a trick”:

Mk =

∞∑

s=1

skn(s, p)

= (1− p)2
∞∑

s=1

(
p
d

dp

)k
ps the “trick”

= (1− p)2

(
p
d

dp

)k ∞∑

s=1

ps

= (1− p)2

(
p
d

dp

)k
p

1− p
?
= k!(1− p)1−k for k ≥ 2, (1.1.3)

followed by proof by induction.

First the case k = 2.

Mk=2 = (1− p)2

(
p
d

dp

)2
p

1− p

= (1− p)2

(
p
d

dp

)
p

(1− p) · 1 + p

(1− p)2

= (1− p)2

(
p
d

dp

)
p

(1− p)2

= (1− p)2p
(1− p)2 · 1 + p · 2(1− p)

(1− p)4

= p
(1− p) + 2p

1− p

=
p+ p2

1− p
→ 2

1− p
= 2!(pc − p)−1 for p→ pc = 1. (1.1.4)

Now, assume that

Mk = (1− p)2

(
p
d

dp

)k
p

1− p = k!(1− p)1−k for k ≥ 2.

(1.1.5)
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Then

Mk+1 = (1− p)2

(
p
d

dp

)k+1
p

1− p

= (1− p)2

(
p
d

dp

)(
p
d

dp

)k
p

1− p

= (1− p)2

(
p
d

dp

)
k!(1− p)−1−k using the assumption Equation (1.1.5)

= (1− p)2pk!(−1− k)(1− p)−2−k · (−1)

= p(k + 1)!(1− p)−k

→ (k + 1)!(1− p)1−(k+1) for p→ pc = 1, (1.1.6)

so the assumption Equation (1.1.5) is true for k + 1, which

completes our proof.

(ii) Note that M1 =
∑∞

s=1 sn(s, p) = p for p < 1 so Γ1 = p and

γ1 = 0. Hence,the moment ratio

gk =
MkM

k−2
1

Mk−1
2

=
Γk(1− p)1−kΓk−2

1

[
(1− p)0

]1−k

Γk−1
2 [(1− p)−1]k−1

=
ΓkΓk−2

1

Γk−1
2

(1.1.7)

Since Γ1 → 1 for p→ p−c we find

gk →
Γk

Γk−1
2

for p→ p−c

=
k!

2!k−1
(1.1.8)

which is a constant for a given k.

1.2 Site percolation and site-bond percolation in d = 1.

(i) (a) A percolating (infinite) cluster is present at pc. In one

dimension, a percolating cluster can have no empty sites.

Therefore pc = 1.

(b) A cluster of size s has s consecutive sites occupied, each

with probability p, and two empty sites, one at either end,
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each with probability (1− p), so

n(s, p) = ps(1− p)2.

(c) Since n(s, p) is the number of s clusters per lattice site,

sn(s, p) is the probability that an arbitrary site belongs

to an s cluster. Summing over all possible sizes of clus-

ters, we obtain the probability that an arbitrary site is

occupied, that is,

∞∑

s=1

sn(s, p) = p for p < 1.

This identity is not valid at p = 1 where the percolating

cluster is occupying all the lattice leaving n(s, p) = 0 for

p = 1.

(d) We find that

∞∑

s=1

s2ps =
∞∑

s=1

(
p
d

dp

)(
p
d

dp

)
ps

=

(
p
d

dp

)(
p
d

dp

) ∞∑

s=1

ps

=

(
p
d

dp

)(
p
d

dp

)
p

1− p for p < 1

=

(
p
d

dp

)
p

(1− p) + p

(1− p)2
for p < 1

=

(
p
d

dp

)
p

(1− p)2
for p < 1

= p
(1− p)2 + p2(1− p)

(1− p)4
for p < 1

= p
1 + p

(1− p)3
for p < 1.
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(e) Using the above results we find

χ(p) =

∑∞
s=1 s

2ps(1− p)2

∑∞
s=1 sn(s, p)

=
(1− p)2p 1+p

(1−p)3

p

=
1 + p

1− p .

(f) Therefore

χ(p)→ 1 + pc
1− p =

2

pc − p
= for p→ p−c ,

so we identify the amplitude Γ = 2 and the critical expo-

nent γ = 1.

(ii) (a) A percolating (infinite) cluster is present at (pc, qc).

Therefore, no sites nor bonds can be empty, implying

(pc, qc) = (1, 1).

(b) An s cluster has s consecutive site occupied, each with

probability p, and s−1 consecutive bonds occupied, each

with probability q. Since pq is the probability to have

a site-bond occupied, (1 − pq)2 is the probability that a

cluster does not continue at either end. Therefore

n(s, p, q) = psqs−1 (1− pq)2
.

(c) First,

∞∑

s=1

sn(s, p, q) =

∞∑

s=1

spsqs−1 (1− pq)2

=
1

q

∞∑

s=1

s(pq)s (1− pq)2

=
1

q
pq

= p
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and similarly

∞∑

s=1

s2n(s, p, q) =
∞∑

s=1

s2psqs−1 (1− pq)2

=
1

q
(1− pq)2

∞∑

s=1

s2(pq)s

=
1

q
(1− pq)2

pq
1 + pq

(1− pq)3

= p
1 + pq

1− pq
so that

χ(p, q) =
1 + pq

1− pq .

This result is identical to that of site percolation if we

identify the occupation probability with pq, that is, a site-

bond is the equivalent of a site.


