7. The order parameter on a Bethe lattice with coordination number z

(i) Pso(p) is the probability that an arbitrarily selected site belongs to the percolating infinite
cluster. Consider the ‘origin’ in the Bethe lattice.

P, (p) = probability ‘origin’ is occupied -
probability at least one of the z branches connects to infinity
= p[l1-Q%®) (7.1)

where Qoo(p) denotes the probability that a given branch does not connect to infinity.
Again, we will rely on the fact that all sites in a Bethe lattice are equivalent, so Qo (p) is
also the probability that a subbranch does not connect to infinity. Hence

Qoo(p) = neighbour to ‘origin’ is empty + neighbour to ‘origin’ is occupied
but none of the (z — 1) subbranches connect to infinity
= (1-p)+pQ% " (») (7.2)

(ii) For convenience, we drop the p-dependence of @ (p) and simply write Q. Let
Q' =1-[1-Qx)""'=01-2)"" withz=1-Qu.

We expand to second order in x around = = 0.

fl@)=(1—z)! = f(0)=1
fO) ==z =11 —2)*? = fM0) = —(z-1)
fP)=(=-1)(=-2)1-2)"" = fD0) = (- 1)(z - 2) (7.3)
implying
oo f(O)+f(1)(0)$+%f(0)(0)x2+...
_ 1—(2—1)x+%(z—1)(z—2)x2+...
= 1—(z—1)(1—@00)+%(z—1)(z—2)(1—Qoo)2—|—.... (7.4)

Using the Taylor expansion result in Equation (7.2) we find

Qe = 1—p+pQR:!

a

%

L= p+p—plz = D1~ Qo) +pz(z ~ Dz~ 291 - Que)?
= 1-p(z—1)+p(z - 1)Qo0 + a(l + Q% —2Qx) (7.5)

and rearranging
b —b
5 —— ——~
aQs, + {p(z—1)-1-2a}Qx+a+1—-p(z—1)=0«
aQ% + (b—-20)Qe+a—-b=0%s
2a — b+ +/(b—2a)%2 —4ala —b) 2a—b+ VD2

Qoo = 2a - 2a ' (7.6)




As b > 0 since p eventually is larger that ﬁ we find
o0 _ { 1 forp<p
o a=b for p > pe.

The solution Qo = 1 = P (p) = 0 belongs to the regime p < p.. The other solution is
nontrivial and belongs to the regime p > p., and

a—b_l_ 2p(z —1) =2

e )

(iii) The relevant solution has @+ < 1. Substituting into the Equation (7.1)

Pyo(p) = p(1—-Q%) z
= p[1—<1_%>:|
N
- p[1—<1—5>]
) p_p(l_g)z. (7.7)

Note that the ratio

= — 0 forp—>zT11:pc,

b pz—-1)-1
a p%(z—l)(z—Z)

SO g is a small quantity for p — p.. Let g(z) = (1 —z)?. Taylor expanding to first order we

find g(0) = 1,¢gM (2) = —2(1 — 2)*~1, ¢ (0) = —z 50 (1 — x)* =~ 1 — 22 for  — 0. Thus

Po(p) = p—p(1—-=)*

b
2p(z —1) —2
= pz
p(z —1)(z —2)
_ 2z 1
) z—1
2z
- P 2 (p _pc) (7 8)
with
_ 1
Pe= z—1
and 5
A — z Z§3
z—2
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(i) See Figure 5.1 above.

Figure 5.1: (a) The d = 1 cluster number density, n(s,p), as a function of cluster size, s. The five curves
correspond to p = 0.4,0.905,0.99,0.999,0.9999, respectively. (b) The transformed cluster number densities
(s,p) versus the cluster size s. (c¢) For each transformed cluster number density s"n(s,p), the argument is

rescaled from s to s/s¢ where the characteristic cluster size, se = —1/1In(p) ~ 1, 10,100, 1000, 10000, respectively.
5.

(ii) The cluster number density in d = 1 can be written on the form

where the function

Gua (s/s¢) = (s/5¢)” exp(—s/s¢).
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n(s,p) = s *Gia (s/s¢)



Thus the transformed cluster number density

s*n(s,p) = Giq (s/s¢) (5.3)

is only a function of the ratio s/s¢ and by plotting s?n(s,p) versus s/s¢, all the graphs
collapse onto one curve, the graph of the function Gi4. Note that

Gra (s/s¢) = (s/s¢)” exp(—s/s¢)

B (s/5¢)° for s/s¢ <1 (5.4)
B decays rapidly for s/s¢ > 1, '

so for small arguments s < s¢, the function G4 increases as the argument squared while it
decays exponentially fast for large arguments s > s¢, see Figure 5.1(c).
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