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1.3 Percolation in d = 1 on a lattice with periodic boundary conditions.

(i) When s ≤ L− 2, an s-cluster must be bounded by two empty

sites. For s = L−1, there is only one empty site in the system

while for s = L, all sites are occupied. Clearly we cannot have

s > L. Thus

n(s, p) =





ps(1− p)2 for s ≤ L− 2

pL−1(1− p) for s = L− 1

pL for s = L

0 for s > L.

(1.3.1)

(ii) A cluster with s = L is percolating and hence not to be char-

acterized as being finite. Therefore,
∑L−1
s=1 sn(s, p) represents

the probability that a site belongs to a finite cluster.

(iii) In a d = 1 system of size L, the probability of an arbitrarily

selected site to belong to the spanning (infinite) cluster

P∞(L, p) = pL. (1.3.2)

Alternatively, an occupied site either belongs to the spanning

cluster or to a finite cluster (s < L), that is,

P∞(L, p) = p−
L−1∑

s=1

sn(s, p)

= p− (L− 1)pL−1(1− p)−
L−2∑

s=1

sps(1− p)2

= p− (L− 1)pL−1(1− p)− (1− p)2

(
p
d

dp

)(L−2∑

s=1

ps

)

= p− (L− 1)pL−1(1− p)− (1− p)2

(
p
d

dp

)(
p− pL−1

1− p

)

= p− (L− 1)pL−1(1− p)− (1− p)2p
(1− p)(1− (L− 1)pL−2) + (p− pL−1)

(1− p)2

= p− (L− 1)pL−1 + (L− 1)pL − (p− p2)(1− (L− 1)pL−2)− p2 + pL

= pL. (1.3.3)
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(iv) (a) In d = 1 percolation,

ξ = − 1

ln p
⇔ ln p = −1

ξ
⇔ p = exp

(
−1

ξ

)
. (1.3.4)

Thus

P∞(L, ξ) = pL =

[
exp

(
−1

ξ

)]L
= exp

(
−L
ξ

)
. (1.3.5)

(b) Write the order parameter using the scaling form

P∞(ξ;L) = exp

(
−L
ξ

)
= ξ−β/νP(L/ξ), (1.3.6)

where

β/ν = 0 (1.3.7)

and a scaling function

P(x) = exp(−L
ξ

)

∝
{

constant for L� ξ

decaying rapidly for L� ξ.
(1.3.8)
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1.4 Cluster number density scaling functions in d=1 and the Bethe lattice.

(i) (a) Rewriting the cluster number density in d = 1 we find

n(s, p) = (1− p)2ps

= (pc − p)2 exp(−s/sξ) with sξ = − 1

ln p

= s−2[s(pc − p)]2 exp(−s/sξ)
≈ s−2 (s/sξ)

2
exp(−s/sξ) for p→ p−c

= s−2G1d(s/sξ) (1.4.1)

with

G1d(s/sξ) = (s/sξ)
2

exp(−s/sξ). (1.4.2)

and

sξ → (pc − p)−1 for p→ p−c . (1.4.3)

Thus we identify

τ = 2, (1.4.4a)

σ = 1, (1.4.4b)

a = 1, (1.4.4c)

b = 1. (1.4.4d)

(b) From the graph of the scaling function G1d, see Fig-

ure 1.4.1, we see that for small arguments s � sξ, the

function increases quadratically in the argument s/sξ
while it decays exponentially fast for s � sξ. Indeed,

such cluster sizes are exponentially rare as the character-

istic cluster size sξ is the typical size of the largest cluster.

(c) The scaling function G1d(x) = x2 exp(−x) and

G(1)
1d (x) = 2x exp(−x)− x2 exp(−x) = (2x− x2) exp(−x)

G(2)
1d (x) = (2− 2x− 2x+ x2) exp(−x) = (2− 4x+ x2) exp(−x)

Hence G1d(0) = G(1)
1d (0) = 0,G(2)

1d (0) = 2. Thus the Taylor
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Fig. 1.4.1 The scaling function G1d in d = 1 increases like (s/sξ)
2 for small arguments

and decays (exponentially) fast for large arguments.

expansion of G1d around zero,

G1d(s/sξ) = G1d(0) + G(1)
1d (0)s/sξ +

1

2
G(2)

1d (0) (s/sξ)
2

+ · · ·

= (s/sξ)
2

+ · · · (1.4.5)

which is consistent with Figure 1.4.1.

(ii) (a) On a Bethe lattice with z = 3 where pc = 1/2 we have

n(s, p) ∝ s−5/2 exp(−s/sξ) s� 1

sξ = − 1

ln(4p− 4p2)
→ 1

4
(p− pc)−2

for p→ pc.

Thus we identify the scaling function

GBethe(s/sξ) = exp(−s/sξ). (1.4.6)

with

τ = 5/2 (1.4.7a)

σ = 1/2 (1.4.7b)

b = 1/4. (1.4.7c)
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It would be possible to determine a by applying a normal-

isation constraint. For example when p < pc the cluster

number density must satisfy

∞∑

s=1

sn(s, p) = a

∞∑

s=1

s1−τGBethe(s/sξ) = p. (1.4.8)

This constraint will determine a.

(b) From the graph of the scaling function GBethe, see Fig-

ure 1.4.2, we see that for small arguments s � sξ, the

function is approximately constant while it decays expo-

nentially fast for s � sξ . Indeed, such cluster sizes are

exponentially rare as the characteristic cluster size sξ is

the typical size of the largest cluster.
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Fig. 1.4.2 The scaling function GBethe for the Bethe lattice is approximately constant
for small arguments and decays exponentially fast for large arguments.

(c) Clearly

GBethe(x) = 1− x+ · · · ≈ 1, (1.4.9)

consistent with Figure 1.4.2.
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1.5 Moments of the cluster number density.

(i) We approximate the sum by an integral:

Mk(p) =

∞∑

s=1

skn(s, p)

=

∞∑

s=1

ask−τG(s/sξ)

≈
∫ ∞

1

ask−τG(s/sξ) ds

=

∫ ∞

1/sξ

a (sξu)
k−τ G(u)sξ du with u = s/sξ

= sk+1−τ
ξ a

∫ ∞

1/sξ

uk−τG(u) du

= |p− pc|−(k+1−τ)/σabk+1−τ
∫ ∞

0

uk−τG(u) du for p→ pc

= Γk |p− pc|−γk (1.5.1)

where

γk =
k + 1− τ

σ
(1.5.2a)

Γk = abk+1−τ
∫ ∞

0

uk−τG(u) du. (1.5.2b)

The critical amplitude Γk is just a number independent of p.

Note that we recover the scaling relation

γ =
3− τ
σ

(1.5.3)

by letting k = 2.

(ii) The moment ratio

gk =
MkM

k−2
1

Mk−1
2

=
ΓkΓk−2

1

Γk−1
2

(1.5.4)

=

∫∞
0
uk−τG(u) du

[∫∞
0
u1−τG(u) du

]k−2

[∫∞
0
u2−τG(u) du

]k−1
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(iii) In d = 1 percolation, τ = 2, σ = 1, a = 1, b = 1 and the scaling

function G1d(u) = u2 exp(−u) so

Γk =

∫ ∞

0

uk exp(−u) du

= k!

1.6 Universality of the ratio of amplitudes for the average cluster size.

By definition

χ(p) =

∑∞
s=1 s

2n(s, p)∑∞
s=1 sn(s, p)

(1.6.1)

where the denominator
∑∞
s=1 sn(s, p) = pc at p = pc. Since we are

ultimately interested in the limit p→ pc, we simply substitute the

denominator with pc.

We thus find

pcχ(p) =
∞∑

s=1

s2n(s, p)

=

∞∑

s=1

as2−τG±(s/sξ)

≈
∫ ∞

1

as2−τG±(s/sξ) ds (1.6.2)

Substituting u = s/sξ, that is s = sξu and ds = sξdu. With the

new lower integration limit 1/sξ we have

pcχ(p) =

∫ ∞

1/sξ

a (sξu)
2−τ G±(u)sξ du

= s3−τ
ξ a

∫ ∞

1/sξ

u2−τG±(u) du

= |p− pc|−(3−τ)/σab3−τ
∫ ∞

0

u2−τG±(u) du for p→ pc

where we, in the last step, have substituted sξ = b|p− pc|−1/σ for

p→ pc and changed the lower limit to zero as sξ diverges at p = pc.

(i) Assume p < pc. Then, in the limit p→ p−c ,

χ(p) = (pc − p)−(3−τ)/σ ab
3−τ

pc

∫ ∞

0

u2−τG−(u) du (1.6.3)
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with

γ− =
3− τ
σ

(1.6.4a)

Γ− =
ab3−τ

pc

∫ ∞

0

u2−τG−(u) du. (1.6.4b)

(ii) Assume p > pc. Then, in the limit p→ p+
c ,

χ(p) = (p− pc)−(3−τ)/σ ab
3−τ

pc

∫ ∞

0

u2−τG+(u) du (1.6.5)

with

γ+ =
3− τ
σ

(1.6.6a)

Γ+ =
ab3−τ

pc

∫ ∞

0

u2−τG+(u) du. (1.6.6b)

(iii) (a) By inspection γ− = γ+ = (3− τ)/σ.

(b) The ratio of critical amplitudes

Γ+

Γ−
=

∫∞
0
u2−τG−(u) du∫∞

0 u2−τG+(u) du
(1.6.7)

is independent of the proportionality constants a and b

and pc and only depends on the universal critical exponent

τ and the universal scaling functions G±. Thus the ration

Γ+/Γ− is itself universal.

(c) The ratio of the critical amplitudes Γ+/Γ− is related to

the distance between the numerical results for the average

cluster size for p < pc and p > pc respectively. Numerical

simulations confirm that Γ+/Γ− is universal and one finds

Γ+/Γ− ≈ 200 using the numerical results displayed.


