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2.4 Critical exponents inequality.

Given the thermodynamic relation

χ (CH − CM ) = T

(
∂〈M〉
∂T

)2

H

(2.4.1)

As CM ≥ 0 and χ ≥ 0 it follows that

χ CH ≥ T
(
∂〈M〉
∂T

)2

H

. (2.4.2)

Using the scaling of the different quantities close to the critical

point

χ ∝ |T − Tc|−γ for T → Tc,

CH ∝ |T − Tc|−α for T → Tc,

〈M〉 ∝ (Tc − T )β for T → T−c implying,

∂〈M〉
∂T

∝ −(Tc − T )β−1 for T → T−c

so by substituting into Equation (2.4.2) we find

(Tc − T )−γ (Tc − T )−α ≥ Tc
(
−(Tc − T )β−1

)2
for T → T−c

(Tc − T )−γ−α ≥ Tc (Tc − T )2β−2 for T → T−c

from which we can conclude that

−γ − α ≤ 2β − 2⇔
γ + α ≥ 2− 2β ⇔

α+ 2β + γ ≥ 2. (2.4.3)

Notice that the inequality actually hold as an equality for d = 1, 2, 3,

and 4 and the mean-field exponents for the Ising Model.
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2.5 The spin-spin correlation function and scaling relations.

(i) The spin-spin correlation function

g(ri, rj) = 〈 (si − 〈si〉) (sj − 〈sj〉) 〉
= 〈 sisj − 〈si〉sj − si〈sj〉+ 〈si〉〈sj〉 〉
= 〈sisj〉 − 〈si〉〈sj〉 − 〈si〉〈sj〉+ 〈si〉〈sj〉
= 〈sisj〉 − 〈si〉〈sj〉, (2.5.1)

where we use that the ensemble average operation 〈·〉 is a

linear operation and that the ensemble average of a constant

is the constant itself.

(ii) Assuming that the system is translationally invariant, we sub-

stitute m = 〈si〉 = 〈sj〉 and find

g(ri, rj) = 〈sisj〉 −m2

= 〈sjsi〉 −m2

= g(rj , ri) (2.5.2)

from which is follows that the correlation function is symmet-

ric and thus it is function of the relative distance between the

spins at positions ri and rj only, that is,

g(ri, rj) = g(|ri − rj |). (2.5.3)

(iii) (a) When |ri − rj | → ∞, the spins become uncorrelated, as-

suming that we are not at the critical point that is! Thus

g(ri, rj) = 〈sisj〉 − 〈si〉〈sj〉
→ 〈si〉〈sj〉 − 〈si〉〈sj〉 for |ri − rj | → ∞
= 0. (2.5.4)

(b) By definition the spin-spin correlation function of spin i

with itself

g(ri, ri) = 〈sisi〉 − 〈si〉〈si〉 = 〈s2
i 〉 − 〈si〉2. (2.5.5)

Because si = ±1⇔ s2
i = 1 we have 〈s2

i 〉 = 〈1〉 = 1. Also

〈si〉 = m, so

g(ri, ri) = 1−m2. (2.5.6)
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We assume the external magnetic field H = 0 so we can

replace m with m0(T ). If T ≥ Tc, the magnetisation

m0 = 0 so that

g(ri, ri) =

{
1 for T ≥ Tc
1−m2

0(T ) for T < Tc.
(2.5.7)

The zero-field magnetisation per spin m0(T ) → ±1 for

T → 0, implying

g(ri, ri)→ 0 for T → 0. (2.5.8)

This result emphasises that the correlation function mea-

sures the fluctuations of the spins away from the average

magnetisation as is clear from the original definition

g(ri, ri) = 〈 (si − 〈si〉)(sj − 〈sj〉) 〉. (2.5.9)

(c) In the limit J/kBT � 1 (high temperatures relative to the

coupling constant), the spins will be orientated randomly,

that is, there is no correlations between the spins, so we

expect g(ri, rj)→ 0.

In the limit J/kBT � 1 (low temperatures relative to

the coupling constant), the spins will be aligned, that is,

there is no fluctuations away from the average spin, so we

expect g(ri, rj)→ 0.

(iv) Because the susceptibility per spin diverges at the critical tem-

perature

χ(T, 0) ∝ |T − Tc|−γ for T → Tc (2.5.10)

the volume integral of the correlation function must also di-

verge at the critical temperature,

∫

V

g(r)ddr ∝
∫ ∞

a

g(r)rd−1 dr →∞ for T → Tc, (2.5.11)

where a is a lower cutoff = lattice constant. This implies that

g(r) cannot decay exponentially with distance r at the critical

point T = Tc since this would make the integral convergent

in the upper limit. However, the divergence is consistent with
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an algebraic decay. Assuming

g(r) ∝ r−(d−2+η) for T = Tc, all r = |r| (2.5.12)

then
∫

V

g(r)ddr ∝
∫ ∞

a

g(r)rd−1 dr

∝
∫ ∞

a

r−(d−2+η)rd−1 dr

=

∫ ∞

a

r1−η dr

=

{
[ 1
2−η r

2−η ]
∞
a

if η 6= 2

[ln(r)]
∞
a if η = 2

that is, the integral will only diverge if the critical exponent

η ≤ 2. The divergence is logarithmic if η = 2 and algebraically

if η < 2.

(v) (a) The correlation length diverges as ξ(T, 0) ∝ |Tc − T |−ν
for T → Tc. The critical exponent ν is independent on

whether Tc is approached from below or above, however,

the amplitude might differ, as in the graph below. For

T > Tc, the correlation length sets the upper linear dis-

tance over which spins are correlated. It is also identified

as the linear size of the typical (characteristic) largest

cluster of aligned spins and measures the typical largest

fluctuation away from states with randomly oriented spin.

For T < Tc, the correlation length measures the fluctua-

tions away from the fully ordered state, that is, the upper

linear size of the holes in the percolating cluster of aligned

spins. There will be holes on all scales up to the correla-

tion length.

(b) When T 6= Tc a finite correlation length ξ is introduced

and

g(|r|) ∝ r−(d−2+η)G±(r/ξ) for T → Tc, (2.5.13)

where

ξ ∝ |Tc − T |−ν for T → Tc. (2.5.14)
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Fig. 2.5.1 The correlation length ξ(T, 0) as a function of the temperature T in units of
the critical temperature Tc.

Consider the relation between the susceptibility per spin

and the correlation function

kBTχ ∝
∫

V

g(r)ddr. (2.5.15)

The left-hand side (LHS):

kBTχ ∝ |T − Tc|−γ for T → Tc. (2.5.16)

The right-hand side (RHS):
∫

V

g(r)ddr ∝
∫ ∞

0

r−(d−2+η)G±(r/ξ)rd−1 dr

=

∫ ∞

0

r1−ηG±(r/ξ) dr

=

∫ ∞

0

(r̃ξ)1−ηG±(r̃) dr̃ξ with r = r̃ξ

= ξ2−η
∫ ∞

0

r̃1−ηG±(r̃) dr̃

= |T − Tc|−ν(2−η)
∫ ∞

0

r̃1−ηG±(r̃) dr̃ for T → T±c .

(2.5.17)

The integral is just a number (which numerical value,
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however, depends on from which side Tc is approached

due to the two different scaling functions G±), so we can

conclude by comparing the LHS with the RHS that

γ = ν(2− η). (2.5.18)

(c) We assume T ≤ Tc and consider the situation in zero

external field H = 0 with m0 replacing m. We define

g̃(r) = g(r) +m2
0 = 〈sisj〉. (2.5.19)

For T < Tc, the correlation length ξ < ∞. As the corre-

lation length sets the upper limit of the linear scale over

which spins are correlated, the spins will be uncorrelated

in the limit r →∞ as r � ξ. Thus

g̃(r) = 〈sisj〉 → 〈si〉〈sj〉 = m2
0 ∝ (Tc−T )2β for T → T−c .

(2.5.20)

At T = Tc where the correlation length in infinite, the

magnetisation is zero in zero external field, i.e., m0(Tc) =

0. Thus

g̃(r) = g(r) ∝ r−(d−2+η) at T = Tc. (2.5.21)

One would thus expect, ala finite-size scaling in percola-

tion theory that

g̃(r) ∝
{
r−(d−2+η) for r � ξ

ξ−(d−2+η) for r � ξ.
(2.5.22)

This is the reason for considering the function g̃(r) and

not g(r) as the latter will approach zero for r � ξ. Thus

for T < Tc where the correlation length is finite, we expect

g̃(r) ∝ ξ−(d−2+η) ∝ |T −Tc|ν(d−2+η) for r � ξ (2.5.23)

implying the scaling relation

2β = ν(d− 2 + η)⇔ d− 2 + η = 2β/ν. (2.5.24)
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2.6 Diluted Ising model.

(i) A spin is situated on each lattice site. However, the spin only

interact with with the nearest neighbours with probability p.

Identifying a nonzero coupling constant Jij = J > 0 as an

occupied bond and Jij = 0 as an empty bond, we have an

exact mapping onto a bond percolation theory problem.

(ii) (a) In order to minimise the energy, all spins within a per-

colation cluster will have all spins pointing in the same

direction. However, spins belonging to different percola-

tion clusters are not correlated.

(b) Within a cluster, si = sj so sisj = s2
i = 1 implying

〈sisj〉 = 1 if the spins belong to the same cluster. If the

spins i and j belong to different clusters, they are not

correlated at all, that is, given, e.g., that si = 1 then

sj = 1 with probability 0.5 and sj = −1 with probability

0.5 leaving 〈sisj〉 = 0. Hence

〈sisj〉 =

{
1 i, j in the same percolation cluster

0 otherwise.
(2.6.1)

(c) For p < pc all clusters are finite. Since the clusters are not

correlated, the average magnetisation is zero. For p > pc,

we can argue, that all the finite clusters do not contribute

to the magnetisation which then becomes equal to P∞(p),

the density of the infinite cluster. The orientation of the

infinite cluster is random (in zero external field). Since

P∞(p) = 0 for p < pc

m0(p) = ±P∞(p) (2.6.2)

(iii) (a) P∞(p) is the probability for a spin to belong to the infinite

cluster. As tanh(sH/kBT )→ 0 for H → 0, the last term

will vanish and

m0(p) = lim
H→0

m(p,H) = ±P∞(p)

consistent with the result of (ii)(c).

(b) The susceptibility in zero external field

χ =

(
∂m

∂H

)

H=0

.
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Assuming H � kBT we use the

expansion tanh(sH/kBT ) ≈ sH/kBT + O
(
(sH/kBT )3

)
.

Since P∞(p) does not depend on the external field, we

find,

χ =

(
∂m

∂H

)

H=0

=

∞∑

s=1

s2n(s, p)

kBT
∝ χ(p) ∝ |p− pc|−γ

as the divergence of the second moment of the cluster size

density n(s, p) is characterized by the exponent γ when

p→ pc.

(iv) When p < pc, the magnetisation in zero external field m0(p) =

0. Within a cluster 〈sisj〉 = 1. In a cluster of size s there are

a total of s2 different pairs, so 1
kBT

∑
i

∑
j〈sisj〉 = 1

kBT
s2. We

can calculate the average susceptibility by summing over all

possible cluster sizes weighted by the cluster size distribution,

that is,

χ =

∞∑

s=1

(
1

kBT

∑

i

∑

j

〈sisj〉)n(s, p) =
1

kBT

∞∑

s=1

s2n(s, p).


