
November 29, 2005 13:7 WSPC/Book Trim Size for 9in x 6in ws-book9x6

Exercises: Ising Model 45

2.7 Second-order phase transition in a mass-spring system: Landau

theory.

(i) The total energy of the mass-spring system

U(θ) = elastic potential energy + gravitational potential energy

=
1

2
k(aθ)2 +mg(a cos θ − a)

=
1

2
ka2θ2 +mga(cos θ − 1)
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(ii) (a) We expand the cosine to fourth order to find

U(θ) =
1

2
ka2θ2 +mga(1− θ2

2!
+
θ4

4!
− · · · − 1)

=
a

2
(ka−mg)θ2 +

mga

24
θ4 +O(θ6)

where the coefficient of the fourth-order term is positive

while the coefficient of the second-order term is zero for

ka = mg and changes sign from positive when ka > mg

to negative when ka < mg.

(b) As the total energy U(θ) is an even function in θ (reflect-

ing the symmetry of the problem), all the odd terms in

the Taylor expansion around θ = 0 are zero.

(c) When ka > mg, the unique minimum is at θ0 = 0. When

ka = mg, the unique minimum is at θ0 = 0. When ka <

mg, there are two minima at ±θ0 6= 0.
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Fig. 2.7.1 (a) The energy, U(θ), versus the angle θ. The solid circles show the position
of the minima of the energy of the corresponding graph. For ka > mg, the minimal
energy implies θ = 0. For ka = mg, the trivial solution θ = 0 is marginally stable
However, for ka < mg, the minimal energy implies θ = ±θ0 6= 0. (b) The angle of
equilibrium, θ0 as a function of the ratio ka/mg.

(d) The system is in equilibrium when dU/dθ = 0. Hence

dU

dθ
= a(ka−mg)θ +

mga

6
θ3

= mgaθ

(
ka

mg
− 1 +

1

6
θ2

)

= 0 (2.7.1)
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with solutions

θ0 =

{
0 for ka

mg ≥ 1

±
√

6(1− ka/mg) for ka
mg < 1

=

{
0 for mc

m ≥ 1

±
√

6[(m−mc)/m] for mc
m < 1,

where mc = ka/g.

(e) See previous Figure.

(f) Landau suggested a simplistic general theory of second-

order phase transitions based on expanding the free en-

ergy in powers of the order parameter. In the absence of

a magnetic-like field, symmetry dictates that only even

powers of the order parameter appear in the expansion.

For example, in the Ising model

f − f0 = a2(T − Tc)m2 + a4m
4 with a2, a4 > 0,

where an expansion up to fourth order is sufficient to give

a qualitative description of second-order phase transitions

occurring at temperature Tc. The term f0 is an unimpor-

tant constant, while a4 > 0 in order for the free energy

to be physically realistic, i.e. not minimised by extreme

values of the order parameter.

As written, the left-hand side is given by a quartic polyno-

mial which always has one trivial solution, m = 0, and two

non-trivial solutions, m = ±m0(T ), so long as T < Tc.

As T passes through Tc from above, the trivial solution

becomes unstable and two stable non-trivial solutions ap-

pear. Below Tc, therefore, the order parameter of the

system is non-zero.

(g) The order parameter of the mass-spring system is the

equilibrium angle θ0 which is zero for m ≤ mc and non-

zero for m > mc. The critical value of the variable mass

mc = ka/g.

2.8 Scaling ansatz of free energy and scaling relations.

Consider the Ising model on a d-dimensional lattice in an external

field H .
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(i) (a) The total energy for a system of N spins si = ±1 with

constant nearest-neighbour interactions J > 0 placed in

a uniform external field H is

E{si} = −J
∑

〈ij〉
sisj −H

N∑

i=1

si,

where the notation 〈ij〉 restricts the sum to run over all

distinct nearest-neighbour pairs.

(b) Let M{si} =
∑N

i=1 si denote the total magnetisation and

〈M〉 the average total magnetisation. The order param-

eter for the Ising model is defined as the magnetisation

per spin

m(T,H) = lim
N→∞

〈M〉
N

.

Consider the free energy F = 〈E〉 − TS. The ratio of

the average total energy, 〈E〉, to the temperature times

entropy, TS, defines a dimensionless scale J/kBT . A com-

petition exists between the tendency to randomise the ori-

entation of spins for J � kBT , and a tendency to align

spins for J � kBT . In the former case, the free energy

is minimised by maximising the entropic term: the mag-

netisation is zero because the spins point up and down

randomly. In the latter case, the free energy is minimised

by minimising the total energy: the magnetisation is non-

zero because the spins tend to align. Since the entropy

in the free energy is multiplied by temperature, for suffi-

ciently low temperatures, the minimisation of the free en-

ergy is dominated by the minimisation of the total energy.

Therefore, at least qualitatively, there is a possibility of

a phase transition from a phase with zero magnetisation

at relatively high temperatures, to a phase with non-zero

magnetisation at relatively low temperatures.

We assume that the singular part of free energy per spin is a gen-

eralised homogeneous function,

f(t, h) = b−df(bytt, byhh) for t→ 0±, h→ 0, b > 0. (2.8.1)



November 29, 2005 13:7 WSPC/Book Trim Size for 9in x 6in ws-book9x6

Exercises: Ising Model 49

(ii) (a) The critical exponent α associated with the specific heat

in zero external field is defined by

c(t, 0) ∝ |t|−α for t→ 0.

The specific heat is related to the free energy per spin:

c(t, h) ∝
(
∂2f

∂t2

)
∝ b2yt−df ′′(bytt, byhh)

Choosing b = |t|−1/yt and setting h = 0 we find

c(t, 0) ∝ |t|−
2yt−d
yt f ′′(±1, 0) for t→ 0±,

and we identify

α =
2yt − d
yt

(b) The critical exponent β associated with the order param-

eter (magnetisation per spin) in zero external field is de-

fined by

m(t, 0) ∝ |t|β for t→ 0−.

The magnetisation per spin is related to the free energy

per spin:

m(t, h) ∝ −
(
∂f

∂h

)
∝ byh−df ′(bytt, byhh).

Choosing b = |t|−1/yt and setting h = 0 we find

m(t, 0) ∝ |t|
d−yh
yt f ′(±1, 0) for t→ 0±,

and we identify

β =
d− yh
yt

(c) The critical exponent γ associated with the susceptibility

in zero external field is defined by

χ(t, 0) ∝ |t|−γ for t→ 0.
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The susceptibility is related to the free energy per spin:

χ(t, h) ∝ −
(
∂2f

∂h2

)
∝ b2yh−df ′′(bytt, byhh).

Choosing b = |t|−1/yt and setting h = 0 we find

χ(t, 0) ∝ |t|−
2yh−d
yt for t→ 0

and we identify

γ =
2yh − d
yt

.

(d) The critical exponent δ associated with the order param-

eter in the critical temperature is defined by

m(0, h) ∝ sign(h)|h|1/δ for h→ 0.

The magnetisation per spin is related to the free energy

per spin:

m(t, h) ∝ −
(
∂f

∂h

)
∝ byh−df ′(bytt, byhh).

Choosing b = |h|−1/yh and setting t = 0 we find

m(0, h) ∝ |h|
d−yh
yh for h→ 0

and we identify

δ =
yh

d− yh

(e) We find

α+ 2β + γ =
2yt − d+ 2d− 2yh + 2yh − d

yt

= 2
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and

β(δ − 1) =
d− yh
yt

(
yh

d− yh
− 1

)

=
d− yh
yt

(
2yh − d
d− yh

)

=
2yh − d
yt

= γ.


