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Consider a discrete probability distribution P (s, p). For instance, if we were talking about
percolation it could be the probability that a site belongs to a cluster of size s, i.e.

P (s, p) = sn(s, p). (1)

Now imagine we wish to calculate the first moment of this distribution (the average clus-
ter size),

χ(p) ∝
∞∑

s=1

sP (s, p). (2)

Unfortunately, except for some special cases, we do not know the exact form of P (s, p).
However, often our aim is to calculate how χ(p) behaves (scales) as a function of a quan-
tity we call sξ , which is a function of p and diverges when p → pc. In this case we will
have the scaling ansatz,

n(s, p) ∼ s−τG (s/sξ) for s� 1, p→ pc (3)

and we might study χ(p) by approximating the sum in Eq. (2) by an integral and looking
at how it behaves as a function of sξ . The function G(s/sξ) is an example of a scaling
function and its main role is to cut off the distribution when s & sξ . This means that the
sum in Eq. (2) can be thought of as from s = 1 to sξ because all higher terms are killed by
G(s/sξ).

Approximating a sum as an integral is then quite simple, yet the level of approximation
it entails is not always obvious. Consider a sum of the form

Sum =

sξ∑

s=1

f(s) (4)

where sξ represents the upper limit of this sum, which is perhaps imposed by the kind of
scaling function discussed above. Now, we may interpret this as an approximation to an
integral using the trapezium rule,

I =

∫ sξ

1
ds f(s) ≈

sξ
δs∑

s=1

δsf(sδs) (5)
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and by setting δs = 1, we have
sξ
δs∑

s=1

δsf(sδs)

∣∣∣∣∣∣∣
δs=1

=

sξ∑

s=1

f(s). (6)

Hence, it follows that I ≈ Sum, where the quality of the approximation depends on the
behaviour of f(s). Note that if we were trying to approximate the integral by the sum then
we would expect using δs = 1 gives a rather poor approximation. However, if the main
contribution to the sum comes from the large s terms (where δs� s), the approximation
is only slight and our hope is that these approximations only alter multiplicative factors
and corrections to scaling, leaving the leading order scaling behaviour unchanged.

To illustrate the level of approximation this step has entailed, we calculate

Sum =

sξ∑

s=1

sα (7)

for some values of α and compare them to their integral equivalents,

I =

∫ sξ

1
ds sα. (8)

Exercise: Plot y =
∑x

s=1 s
α and y =

∫ x
1 s

α as a function of x for α = −1/2, α = −1 and
α = −2. For what values of α does y scale with x? For each of the three cases, how does
the result for the sum compare with the integral? Can you offer any kind of explanation?
(Hint: You should be able to do the integrals yourself, but the sums are best done on
a computer using a program such as Matlab. To determine if y scales, try plotting, e.g.
log(y) vs. log(x). Compare the behaviour of the sums with the integrals.)

When α = 1 we have Sum = 1/2 sξ(sξ + 1) and I = 1/2 s2
ξ − 1/2. Evidently, this

approximation gets better with increasing sξ since the relative error, ε ≡ |I−S|/S ∼ 1/sξ .
Similarly, when α = −1 we have limsξ→∞ S =

(
limsξ→∞ ln sξ

)
+ γ, where γ ≈ 0.577 is

Euler’s constant, and I = ln sξ . The approximation again improves as sξ →∞. However,
as α becomes more negative the approximation gets worse. For instance,

∑∞
s=1

1
s2

= π2

6 ≈ 1.64

∫∞
1 ds 1

s2 = 1



⇒ ε ≈ 0.39 (9)

is the best it will ever get for α = −2, and
∑∞

s=1
1
s4

= π4

90 ≈ 1.0823

∫∞
1 ds 1

s4 = 1
3



⇒ ε ≈ 0.69 (10)

is the best it will ever get for α = −4.

This trend may be easily understood by considering Fig. 1. It is clear that as the exponent
α becomes more negative the integral misses out more and more of the sum.
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Figure 1: Plot of 1/s2 showing the difference between the area calculated from the integral and
that calculated in the sum. The hashed area is counted by both, but the grey areas are missed by
the integral.
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