
The Ising model – Summary of L12

Aim: Study connections between macroscopic phenomena and the underlying

microscopic world for a ferromagnet.

How: Study the simplest possible model of a ferromagnet containing the es-

sential physics: the Ising model.

Objective: Gain qualitative understanding of the physics governing the phe-

nomena and reveal possible universal behaviour.

Collection of interacting spins si = ±1, i = 1, 2, . . . , N placed on a regular

lattice of N sites ri.

E{si} = spin-spin interactions + spin-external field interactions

= −J
∑

〈ij〉
sisj −H

N∑

i=1

si Ising model.

Order parameter: The average magnetisation per spin

m(T,H) =
∑

{si}
p{si}m{si} =

1

Z

∑

{si}
exp(−βE{si})m{si},

with m{si} = 1
N

∑N
i=1 si and the partition function

Z =
∑

{si}
exp(−βE{si}).

The magnetisation in zero external field m0(T ) = limH→0±m(T,H) for the

Ising model in d ≥ 2.
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Objective: Gain qualitative understanding of the phase transition in the Ising

model: N lattice spins si = ±1 with positive nearest-neighbour interaction J

placed in an external field H ,

E{si} = −J
∑

〈ij〉
sisj −H

N∑

i=1

si.

In equilibrium, the spin system will minimise the free energy

F = 〈E〉 − TS.

Assume zero external field H = 0. The order parameter is the average mag-

netisation per spin m0(T ) = limH→0±m(T,H).

• When J/(kBT ) ¿ 1, the free energy is minimised by maximising the

entropy. Spins are randomly orientated, m0(T ) = 0.

• When J/(kBT ) À 1, the free energy is minimised by minimising the

energy. Spins are aligning, m0(T ) 6= 0.
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H1 = 0

|H2| > 0

|H3| > |H2|

The correlation length ξ(T,H) sets the scale of typical largest fluctuations away

from the microstates with (a) randomly orientated spins when T > Tc (b) fully

aligned spins when T < Tc.

• Trivially self-similar states with ξ(T, 0) = 0 at T =∞ and T = 0.

• Non-trivially self-similar states with ξ(Tc, 0) =∞ at T = Tc.
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Ising model in d = 1: Interacting spins si = ±1 with pbc.

E{si} = −J
N∑

i=1

sisi+1 −H
N∑

i=1

si

Z =
∑

{si}
eβ[J

∑N
i=1 sisi+1+H

2

∑N
i=1(si+si+1)]

=
∑

{si}
Ts1s2Ts2s3Ts3s4Ts4s5 . . . TsN−1sNTsNs1

= λN+ + λN− Eigenvalues of T, i.e., |T− λI| = 0

F = −kbT lnZ → −NkbT lnλ+ for N →∞

m(T,H) = −
(
∂f

∂H

)

T

=
sinh(βH)√

sinh2(βH) + e−4Jβ

.
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Ising model in d = 1: Interacting spins si = ±1 with pbc.

E = −J
N∑

i=1

sisi+1 −H
N∑

i=1

si.

The spin-spin correlation function

g(ri, rj) = 〈 (si − 〈si〉) (sj − 〈sj〉) 〉
= 〈sisj〉 − 〈si〉〈sj〉

=

{
0 for T = 0

〈sisi+r〉 for T > 0

=

{
0 for T = 0

exp(−r/ξ) for T > 0.

witht the correlation length

ξ = − 1

ln[tanh(βJ)]
→
{

0 for T →∞
1
2 exp(2βJ) for T → 0.

The correlation function is related to the susceptibility per spin

∑

rj

g(ri, rj) = kBTχ =
〈M 2〉 − 〈M〉2

N
.

1-domain

2-domains

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑

The free energy F = 〈E〉 − TS = 〈E〉 − kBT ln Ω so

F2-domains − F1-domain = 4J − kBT lnN(N − 1).

A single domain of aligned spins is unstable against thermal fluctuations for

finite T for large enough N since F2-domains < F1-domain.

In the d = 1 Ising model, Tc = 0.
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Mean-field approach ignores correlations between spins.

E{si} = NJzm2/2− (Jzm + H)

N∑

i=1

si.

Model of N noninteracting spins in an effective field Jzm + H , where each

spin feels an average internal field Jzm from the z nearest neighbour spins in

addition to the external field H .

The partition function is readily calculated analytically

Z = exp(−βNJzm2/2) [2 cosh(βJzm + βH)]N .

The free energy per spin is a function of T and H ,

f = Jzm2/2− kBT ln [2 cosh(βJzm + βH)] .

The magnetisation per spin minimises the free energy and satisfies

m = tanh(βJzm + βH) (?).

Letting Tc = Jz/kB, Equation (?) in zero external field reads

m0(T ) = tanh(
Tc
T
m0(T )) (??).

For T ≥ Tc the solution mO(T ) = 0 is unique and stable. For T < Tc the

trivial solution becomes unstable but two new stable non-zero solutions appear

for the first time, therefore

m0(T ) =

{
0 for T ≥ Tc

±
√

3/Tc(Tc − T )β for T → T−c .

The susceptibility per spin

χ(T, 0) = (∂m/∂H)T |H=0 = Γ±|T − Tc|−γ
±

for T → T±c

with exponents γ± = 1 and amplitudes Γ+ = 1/kB,Γ− = 1/(2kB).

The magnetisation per spin at T = Tc

m(Tc, H) ∝ sign(H)|H|1/δ for |H| → 0

with ciritcal exponent δ = 3.
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Landau theory for the Ising model. Expanding the free energy per spin in

powers of the order parameter m:

f = f0 −Hm + a2(T − Tc)m2 + a4m
4 a2, a4 > 0.

The magnetisation m is determined by minimising the free energy, so it must

-1 -0.5 0 0.5 1

T > Tc
T = Tc
T < Tc

satisfy the equation
(
∂f
∂m

)
T,H

= 0 implying

−H + 2a2(T − Tc)m + 4a4m
3 = 0.

The magnetisation in zero external field (β = 1/2)

m0(T ) =





0 for T ≥ Tc

±
√

a2
2a4

(Tc − T ) for T → T−c .

The susceptibility per spin in zero external field (γ± = 1)

χ(T, 0) =

(
∂m

∂H

)

T

∣∣∣∣
H=0

=

{
1
kB

(T − Tc)−1 for T → T+
c

1
2kB

(Tc − T )−1 for T → T−c .

The magnetisation at T = Tc in small external fields (δ = 3)

m(Tc, H) ∝ sign(H)|H|1/δ for T = Tc and |H| → 0.

The specific heat capacity in zero external field (α± = 0)

c(T, 0) =

(
∂ε

∂T

)

H

∣∣∣∣
H=0

=

{
0 for T → T+

c

3
2kB for T → T−c .
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Widom scaling ansatz for the magnetisation per spin

m(t, h) = |t|βM±(h/|t|∆) for t→ 0± and |h| → 0,

where β and ∆ (the so called gap exponent) are universal critical exponents

andM± universal scaling functions that must satisfy

m(t, h) = −m(t,−h) ⇔M±(x) = −M±(−x)

m(t, h) = ±|t|β for t→ 0− ⇔M−(0) = ±non-zero constant

m(t, h) = 0 for t > 0 ⇔M+(0) = 0

m(0, h) ∝ sign(h)|h|1/δ ⇔M±(x) ∝ sign(x)|x|1/δ for x→ ±∞,∆ = βδ

The susceptibility per spin

χ(t, h) = |t|β−∆M′
±(h/|t|∆)

so taking the limit h→ 0 we find

∆ = β + γ and M′
±(0) = non-zero constants

Widom scaling ansatz for the singular part of the free energy per spin

fs(t, h) = |t|2−αF±
(
h/|t|∆

)
for t→ 0± and |h| → 0.

and by taking derivatives with respect to the external field we find

m(t, h) ∝ |t|2−α−∆ F ′±
(
h/|t|∆

)
for t→ 0± and |h| → 0

χ(t, h) ∝ |t|2−α−2∆F ′′±
(
h/|t|∆

)
for t→ 0± and |h| → 0.

The Widom scaling ansatz for the free energy per spin and the correlation

function (see Exercise 2.5) implies scaling relations

βδ = β + γ Widom scaling law

α + 2β + γ = 2 Rushbrook scaling law

dν = 2− α Josephson scaling law

γ = ν(2− η) Fisher scaling law.

The exponents take the same value for t→ 0±. There are only two independent

critical exponents.
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Defining the dimensionless reduced temperature t = (T − Tc)/Tc and external

field h = H/kBT , the Widom scaling ansatz for the free energy per spin and

the correlation function when t→ 0±, |h| → 0 are

fs(t, h) = |t|2−αF±
(
h/|t|∆

)
(1)

g(r, t, h) = |r|−(d−2+η)G±
(
|r|/|t|−ν, h/|t|∆

)
. (2)

The origin of scaling is intimately related to the existence of only one relevant

length scale ξ which diverges at the critical point (Tc, 0). Spins are correlated

over scales up to ξ leading Kadanoff to introduce the idea of real-space trans-

formation.

• Divide the system into blocks I each with bd spins.

• Coarse-grain system by replacing all spins in block I with a block spin SI .

• Rescale all length scales by factor b.

The renormalisation implies N ′ = b−dN, t′ = bytt, h′ = byhh and

Z(N, t, h) =
∑

{sI}

∑

{si} consistent
with {sI}

exp(−βE{si}) =
∑

{sI}
exp(−βE ′{sI}) = Z(N ′, t′, h′)

The partition function is invariant but the free energy per spin satisfies

f (t, h) = b−df (t′, h′) = b−df (bytt, byhh) for all b < ξ

which by letting b = |t|−1/yt is equivalent with Equation (1).

Similarly, one can show the correlation function satisfies

g(|r|, t, h) = |b|−2β/νg(|r′|, t′, h′) = |b|−2β/νg(|r|/b, bytt, byhh) for all b < ξ

which by letting b = |t|−1/yt is equivalent with Equation (2).

Kadanoff block spin real-space renormalisation transformation gives heuristic

explanation for the Widom scaling ansatz for the free energy and the correlation

function.
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Renormalisation in d = 1. The reduced energy for the Ising model

βE{si} = − J

kBT

∑

〈ij〉
sisj −

H

kBT

N∑

i=1

si = −K1

∑

〈ij〉
sisj − h

N∑

i=1

si.

The partition function (in zero external field, h = 0) in d = 1:

Z(K1, N) =
∑

〈ij〉
exp

(
K1

N∑

i=1

sisi+1

)

=
∑

odd spins

∑

even spins

exp (K1[s1s2 + s2s3]) · · · exp (K1[sN−1sN + sNs1])

=
∑

odd spins

exp (K ′0 + K ′1s1s3) · · · exp (K ′0 + K ′1sN−1s1)

= exp(N ′K ′0)Z(K ′1, N
′),

where the renormalised coupling constants and number of spins

K ′0 = 2
√

cosh 2K1

K ′1 =
1

2
ln (cosh 2K1)

N ′ = N/2.
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In the renormalised lattice, nn spins couple with strength K ′1 < K1. For

0 < K1 <∞, the renormalisation induces a flow from the unstable fixed point

K?
1 = ∞ (spins fully aligned) towards the stable fixed point K?

1 = 0 (spins

noninteracting): No phase transition in d = 1 for (t, h) 6= (0, 0).


