The Ising model — Summary of L12

Aim: Study connections between macroscopic phenomena and the underlying
microscopic world for a ferromagnet.

How: Study the simplest possible model of a ferromagnet containing the es-
sential physics: the Ising model.

Objective: Gain qualitative understanding of the physics governing the phe-
nomena and reveal possible universal behaviour.

Collection of interacting spins s; = +1,¢7 = 1,2,..., N placed on a regular
lattice of N sites r;.

FEy¢,;y = spin-spin interactions + spin-external field interactions

N
= —JZ 5iSj — HZ s; Ising model.
(i) =1
Order parameter: The average magnetisation per spin

|
m(T,H) =) ploymis) = z > exp(=BE )My,
{si} {si}

with mygy = % le\il s; and the partition function
Z =7 oxp(=BEy).
{si}

The magnetisation in zero external field my(T) = limg_gr m(T, H) for the
I[sing model in d > 2.
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Objective: Gain qualitative understanding of the phase transition in the Ising
model: N lattice spins s; = 41 with positive nearest-neighbour interaction JJ
placed in an external field H,

N
E{Sz} = —JZSZ'SJ' — HZSZ
(i) =1

In equilibrium, the spin system will minimise the free energy
F=(FE)-TS.
Assume zero external field H = 0. The order parameter is the average mag-
netisation per spin mo(7T") = limy_o+ m(T, H).
e When J/(kpT) < 1, the free energy is minimised by maximising the

entropy. Spins are randomly orientated, mgy(T") = 0.

e When J/(kgT) > 1, the free energy is minimised by minimising the
energy. Spins are aligning, mg(T") # 0.
mo(T)
1

—1

The correlation length (T, H) sets the scale of typical largest fluctuations away
from the microstates with (a) randomly orientated spins when T' > T, (b) fully
aligned spins when T" < T..

e Trivially self-similar states with £(T,0) =0 at T'= oo and T = 0.
e Non-trivially self-similar states with £(7.,0) = oo at T' = T..
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[sing model in d = 1: Interacting spins s; = £1 with pbec.

N N
E{Sz} = _JZSZ'SZ'—H — HZSZ
1=1 1=1
7 Z BTy sisipi 4 iy (sitsiv)]
{si}
- Z T5182T8283T8384T8485 cee TSN—18NT5N81

{si}
=AY + MY Eigenvalues of T, ie., |T— M| =0

F=—-kThZ — —NkTIhA, for N — o0

8f) sinh(GH)
m(lT,H)=—(=—=] = :
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[sing model in d = 1: Interacting spins s; = £1 with pbec.

N N
E = _JZSiSi+1 — HZSZ
i=1 i=1
The spin-spin correlation function

g(ri,ri) = ((si — (1)) (5 — (55)) )
= (sis;) — (8i)(5;)

_ <(0 for T'=10

| (siSitr)  for T'>0
B (0 for T'=0
B <\exp(—r/§) for T' > 0.

witht the correlation length

¢ = 1 {O for T — oo

~ In[tanh(BJ)] - lexp(28J)  for T — 0.

The correlation function is related to the susceptibility per spin

2
(M?) — (M)
Zg(ri,rj) = kBTX: N .
Lj
HiNARNRRRNANANARNRNR 1-domain
‘THHHH‘THH‘T‘T!HHHHl!T“T“HHH 2-domains

The free energy F' = (E) — TS = (E) — kT In{2 so
FZ—domains - Fl—domain =4J — kBT In N(N - 1)

A single domain of aligned spins is unstable against thermal fluctuations for
finite T" for large enough N since F5 gomains < Fi-domain-
In the d = 1 Ising model, T, = 0.
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Mean-field approach ignores correlations between spins.

N
By = NJzem®/2 — (Jam + H) ) ;.
i=1
Model of N noninteracting spins in an effective field Jzm + H, where each

spin feels an average internal field Jzm from the z nearest neighbour spins in
addition to the external field H.

The partition function is readily calculated analytically
7 = exp(—BNJzm?/2) [2 cosh(BJzm + BH)]" .
The free energy per spin is a function of T and H,
f=Jzm*/2 — kgTIn[2cosh(BJzm + BH)).
The magnetisation per spin minimises the free energy and satisfies
m = tanh(BJzm + BH) ().

Letting T, = Jz/kp, Equation (x) in zero external field reads

mo(T) = tanh(%mo(T)) (x%).

For T" > T, the solution mo(T) = 0 is unique and stable. For T < T, the
trivial solution becomes unstable but two new stable non-zero solutions appear
for the first time, therefore

0 for "> 1T,
o(T) = p _

The susceptibility per spin
X(T,0) = (Om/0H) |,y =T<|T = T,|" for T — T

with exponents v* = 1 and amplitudes I'y = 1/kp, '~ = 1/(2kp).
The magnetisation per spin at 1" = T

m(T,, H) o sign(H)|H|Y? for |H| — 0

with ciritcal exponent 6 = 3.
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Landau theory for the Ising model. Expanding the free energy per spin in
powers of the order parameter m:

f=Jfo—Hm+ CLZ(T — Tc)m2 + @4m4 as, ay > 0.

The magnetisation m is determined by minimising the free energy, so it must

satisfy the equation (ﬁ> = () implyin
y q om TH plymg

—H +2ay(T — T,)m + 4aym® = 0.
The magnetisation in zero external field (G = 1/2)

for "> 1T,
B i\/“QT T) foT—T-.

The susceptibility per spin in zero external field (y* = 1)

o= (),

The magnetisation at T" = T in small external fields (§ = 3)

T -T)t for T T
o la(T—-T)"  for T —T;

m(T., H) o sign(H)|H|"° for T =T, and |H| — 0.

The specific heat capacity in zero external field (a™* = 0)

Oe 0 for T — T
c(T,0) = <—) = 3
oT HIH=0 ]{B for T" — Tc .
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Widom scaling ansatz for the magnetisation per spin
m(t, h) = |t|° My (h/[t|*) for t — 0F and |h| — 0,

where § and A (the so called gap exponent) are universal critical exponents
and M universal scaling functions that must satisfy

m(t,h) = —m(t,—h) & Mo(x) = —My(—x)

m(t,h) = £|t|” fort — 07 < M_(0) = £non-zero constant

m(t,h) =0 fort>0 = M (0)=0

m(0, h) o< sign(h)|h|/° & Mo(z) o sign(z)|z]Y° for & — +o0, A = (6

The susceptibility per spin
X(t ) = [t172 ML (R/[H)
so taking the limit A — 0 we find
A=p+v and M/ (0)=non-zero constants
Widom scaling ansatz for the singular part of the free energy per spin
fs(t, h) = |tP*Fe (h/|t|*)  for t — 0F and |h| — 0.
and by taking derivatives with respect to the external field we find

m(t,h) o< [t 272 FL (h/t]?) for t — 0F and |h| — 0
x(t, h) o [t|> 2722 F! (h/]t|A) for t — 0% and |h| — 0.

The Widom scaling ansatz for the free energy per spin and the correlation
function (see Exercise 2.5) implies scaling relations

Bo =0+~ Widom scaling law
a+28+v=2 Rushbrook scaling law
dv =2 — « Josephson scaling law

v=v(2—mn) Fisher scaling law.

The exponents take the same value for t — 0%. There are only two independent
critical exponents.
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Defining the dimensionless reduced temperature t = (T — T.) /T, and external
field h = H/kgT, the Widom scaling ansatz for the free energy per spin and
the correlation function when ¢t — 0%, |h| — 0 are

fo(t, h) = [t~ Fe (R/[E]%) (1)
g(r,t,h) = |e[ G (el /187, /1) (2)

The origin of scaling is intimately related to the existence of only one relevant
length scale & which diverges at the critical point (7T, 0). Spins are correlated
over scales up to & leading Kadanoff to introduce the idea of real-space trans-
formation.

e Divide the system into blocks I each with b? spins.
e Coarse-grain system by replacing all spins in block I with a block spin S7;.
e Rescale all length scales by factor b.
The renormalisation implies N’ = b~¢N, ¢ = b¥t, k' = b¥»h and
Z(N,t,h) = Z Z exp(—BE) = Zexp(—ﬁEf{SI}) =Z(N',t', 1)
{s1} {si} consistent {s1}
with {s;}
The partition function is invariant but the free energy per spin satisfies

ft,h) =b0f (¢ h) = b= f (b, b h) forall b < £

which by letting b = [t|~'/% is equivalent with Equation (1).
Similarly, one can show the correlation function satisfies

g([xl, 2, h) = 6] g(r'], ¢/, b') = [b] > g (|| /b, b"t, 0" h) for all b < €

which by letting b = [¢t|~'/% is equivalent with Equation (2).

Kadanoff block spin real-space renormalisation transformation gives heuristic
explanation for the Widom scaling ansatz for the free energy and the correlation
function.
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Renormalisation in d = 1. The reduced energy for the Ising model

J H N N
ﬂE{Sz} = —IGB—T %SZS]' — ]{B—T i:ZlSi = —Kl %SZS]' — h;SZ

The partition function (in zero external field, h = 0) in d = 1:

Z(Ki,N) =) exp (Kl > sism)

(i7) i=1
= > Y exp(Ki[si182 + s9s3)) - -exp (Ki[sy-1sy + snsi))

odd spins even spins

— Z exp (K + Kis183) - - - exp (K + K{sy_151)
odd spins

= exp(N'Kp) Z(K7, N'),

where the renormalised coupling constants and number of spins
K| = 2+/cosh 2K,
1
K| = iln (cosh 2K7)

N' = N/2.
(a) 2.0
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(b)
F- -
Ki=0 o]

In the renormalised lattice, nn spins couple with strength K| < Kj. For
0 < K37 < oo, the renormalisation induces a flow from the unstable fixed point
K} = oo (spins fully aligned) towards the stable fixed point K7 = 0 (spins
noninteracting): No phase transition in d = 1 for (¢, h) # (0, 0).



