Rain Viewed as Relaxational Events
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By following an analogy to earthquakes, we demonstrate how, from the point of view of energy
flow through an open system, rain is analogous to many other relaxational processes in Nature. By
identifying rain events as the basic entities of the phenomenon, we show that the number density
of rain events per year is inversely proportional to the released water column raised to the power
1.4. This is the rain-equivalent of the Gutenberg-Richter law for earthquakes. The event durations
and the waiting times between events are also characterised by scaling regions, where no typical
time scale exists. The Hurst exponent of the rain intensity signal H = 0.76 > 0.5. It is valid in
the temporal range from minutes up to the full duration of the signal of half a year. All of our
findings are consistent with the concept of self-organised criticality, which refers to the tendency of
slowly driven non-equilibrium systems to evolve into a state of scale free behaviour. We note that
self-organised criticality may offer an alternative to the chaos theoretic perspective on the subject

of rain.
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This paper is an interpretation of the fractal struc-
tures observed in a one-minute resolution precipitation
time-series. Without prior knowledge of the extensive
literature on fractal and multifractal observations and
modelling in the atmospheric sciences, we started from
a complex-systems point of view. The paper follows the
chronology of the project, starting with the idea of an
analogy then gathers evidence to support it and finally
assesses the usefulness of the analogy.

Section I is an introduction to the concept of self-
organised criticality (SOC), which will be demonstrated
to be a useful frame work when thinking about atmo-
spheric processes on a general level. It is contrasted to
the only comparable approach of chaos theory.

To motivate and illustrate the use of SOC in rainfall
studies, we draw an analogy in sec. II between rain show-
ers and earthquakes, which will be elaborated throughout
the paper.

Section III is a brief description of the radar mea-
surement technique used by the Max Planck Institute
in Hamburg to collect the data we analysed. A vertically
pointing Doppler radar was used to collect data of very
high quality with one minute resolution for 6 months.

Following the earthquake analogy set out in sec. II, we
define the indispensable notion of an event in the context
of rainfall (Peters, Hertlein, Christensen, 2002; Peters,
Christensen 2002) and present the results obtained by
employing the concept of events. We measure the proba-
bility density of events as a function of size, and find the
power-law structure typical of SOC systems. We note
that the range of the power law extends far beyond the
sensitivity of conventional rain gauges. The waiting times
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between events are also power-law distributed. We ex-
plain how this is related to the fractal dimension of the
binary rain-dry signal. Finally, we measure the Hurst ex-
ponent of the rain signal and obtain a non-trivial value
of 0.76.

In Sec. V we conclude that SOC is a useful work-
ing paradigm. Without making any statement about the
dimensionality of the dynamical attractor, SOC can pro-
vide what may be called an overall taste of the atmo-
spheric system. SOC is in this sense a maximum igno-
rance approach; it is nonetheless possible to identify some
of the underlying physics.

I. SELF-ORGANISED CRITICALITY

Since the first discoveries of fractal structures in nature
(Richardson, 1926; Zipf, 1949) an understanding of their
origins has been sought. For a long time, it was hoped
that the basic description of any complex dynamical sys-
tem could be reduced to a small set of simple differential
equations. This hope was reinforced when it was realised
that such a small set could not only reproduce smooth
dynamics but also seemingly stochastic behaviour and
fractality (Lorenz, 1963). With this discovery, which con-
stitutes the birth of chaos theory, it became possible in
principle to describe systems displaying highly irregular
dynamics simply with a small number of first-order differ-
ential equations. Algorithms were designed to determine
this number, called the dimensionality of the dynamical
attractor, see e.g. Grassberger and Procaccia (1983). In
practice, however, the algorithms turned out to be ex-
tremely difficult to use. In particular, for precipitation
time series, it is not clear if the algorithms can be used re-
liably (Sivakumar, 2000). Thus, attempts to distinguish
between truely stochastic and deterministic chaotic be-
haviour remain largely inconclusive.

With the increase of computing power in the last two



decades, a new perspective arose. People started to
design lattice-based models defined by local interaction
rules based on some straight-forward physical proper-
ties of the system to be modelled (Bak, Tang, Wiesen-
feld, 1987; Christensen et al. 1996; Bak, Sneppen, 1993;
Olami, Feder, Christensen, 1992). The models were able
to reproduce the observed fractal structures and could
be programmed into computers and analysed there. The
simplicity now lay in the local interaction rules rather
than in the overall description of the system. Note that
local interaction rules will usually lead to locally con-
fined correlation. However, for fractality, correlation on
all scales is necessary, and herein lies the art of design-
ing an SOC model. Instead of models defined by a pri-
ori low-dimensional systems of differential equations or
maps, the dimensionality might or might not be reduced
a posteriori by analytical tools.

This later SOC perspective was inspired by an analogy
to closed systems under laboratory conditions. When
tuned to the critical point of a phase transition, frac-
tality can be observed and critical dynamical behaviour
emerges. The chronology of our understanding of phase
transitions indicates the path for the future: First there
were observations in Nature — of magnetism — then there
was a lattice-based toy model with local interaction rules
(Lenz, 1920), and finally there was reductionism through
analysis (Onsager, 1944).

One major difference between the recently invented
models and closed systems near the critical point is the
following: A closed system can only be brought to the
critical region by external tuning of e.g. the temperature.
The SOC models on the other hand are driven solely by
their own internal dynamics. The name "self-organised
criticality” is thus a reasonable choice. For a model to
be applicable to the real world, self-organisation is crucial
simply since there’s no one around to do any tuning.

In the last 15 years many natural systems have been
viewed in the SOC frame work, among them several dy-
namical systems, such as the earth’s crust (Bak, Tang,
1989), the dynamics of a growing granular pile (Frette et
al., 1996), and the stick-slip behaviour of objects pulled
over a frictional interface (Feder and Feder, 1991).

For all self-organised critical dynamical systems, we
observe

— a slow energy input

— intermediate energy storage

— a dynamical threshold

— sudden burst-like energy releases

The atmosphere shares all of these generic dynamical
properties, and we therefore felt confident to look for
statistical manifestations of this similarity.

II. RAINFALL AND EARTHQUAKES

To motivate and illustrate the SOC perspective with
respect to rainfall, we draw an analogy to one of the

prime examples of SOC systems: The collection of tec-
tonic plates drifting over the liquid mantle of the earth.

The picture of continental plates floating on a liquid
was first suggested in 1912 by the meteorologist Alfred
Wegener (1966). This fluid dynamical description of a
geomorphological process was opposed for a long time by
geologists but when experimentally confirmed in the late
1960s (Steward, 1990), it enabled — at least in principal —
an understanding of the mechanisms at work. The main
difference between meteorology and geomorphology may
well be a difference in viscosity; admittedly this difference
is a factor of some 22 orders of magnitude. It is not by
chance that it was a meteorologist who first developed
an understanding of the dynamical process responsible
for earthquakes. In many ways it is similar to meteoro-
logical phenomena. In both cases, we are dealing with a
system of global scale featuring spatio-temporal dynam-
ics, while measurements are generally local. This leads
to similar difficulties in identifying the overall processes
that are at work. The atmosphere is more easily accessi-
ble than the mantle of the earth, and its state affects us
on an everyday basis. Not surprisingly, an understand-
ing of its dynamics began to develop much earlier than a
similar understanding of the obstructed processes inside
our planet.

We do not consider any of the fluid dynamical details
of either of the processes. We will argue that from the
point of view of energy flow, the occurrence of rain show-
ers is similar to that of earthquakes, and is governed by
similar statistics. The following two paragraphs are a
— admittedly somewhat polemical — juxtaposition of the
energy flows in the two systems:

Radioactive material undergoing fission in the core of
the earth is constantly heating the lower part of the lig-
uid mantle. As the upper part of the mantle is relatively
cooler, convective currents arise. These currents drive
the solid tectonic plates, which grind and interlock at
their boundaries. Thus energy is intermediately stored in
the crust in the form of tension between adjacent plates.
When a friction threshold is reached in an unstable and
thus susceptible environment, the system suddenly re-
laxes and an earthquake is triggered. The energy released
in such events may devastate entire cities, or it may be
equivalent to a truck passing by. Events smaller than
this cannot be resolved from the background noise with
today’s standard seismographs.

Hydrogen undergoing fusion in the core of the sun ac-
counts for the electromagnetic energy being radiated into
space by the sun. Part of the energy is intercepted by
earth. As this energy heats the lower parts of the atmo-
sphere, it induces convective currents. 70% of the surface
of the earth are water. Here, much of the solar energy is
used in evaporation of water. Carried up by convection,
it is intermediately stored in the form of vapor or liquid
water in the atmosphere. When a saturation threshold
is reached in a susceptible environment, the system sud-
denly relaxes and a rain shower is triggered. The energy
released in such events may devastate entire cities, or it
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FIG. 1: The annual number of earthquakes in Southern Cal-
ifornia plotted versus the seismic moment. Data were col-
lected from 1984 until 2000. The straight line on the double-
logarithmic plot reveals the Gutenberg-Richter law. 293,405
earthquakes were observed.

may be equivalent to spilling a glass of water over the
surface of dining table. Events smaller than this cannot
be resolved, due to poor sensitivity, by today’s standard
rain gauges.

All of the characteristic features of SOC systems men-
tioned at the end of Sec. I are found in the atmosphere:

— it is slowly driven by solar radiation

— energy can be stored in the system

— there is a dynamical threshold related to saturation

—rain comes in cloud bursts rather than as continuous
drizzle

The dynamics leading to this behaviour are similarly
complex to those leading to earthquakes. For earth-
quakes, however, we know at least two empirical laws.
One is the Gutenberg-Richter law (Gutenberg, Richter,
1944), see Fig. 1, which relates the number of earth-
quakes N (F) in a given time interval to the released en-
ergy E.

N(E) < E°, (1)

where b ~ 1.

The other is the Omori law, which states that after
a main shock, the frequency of aftershocks is inversely
proportional to the time elapsed since the main shock.

N(T) o< T4, (2)

where a &~ 1 (Omori, 1895).
These two laws were derived from local measurements
but may be unified into one by taking into account the

spatio-temporal nature of the phenomenon (Bak et al.,
2002).

If we wish to think of rainfall as earthquake analogues,
we will have to define a rain event as the fundamental
entity of the process. In the following sections we will
show that acknowledging the event-like structure of rain
brings to light the similarities to earthquakes almost au-
tomatically.

III. MEASUREMENT

By using radars rather than common water gathering
devices, the limits on rain measurements due to evapora-
tion, sensitivity threshold, averaging times and accessi-
bility can be pushed considerably (Klugmann, Heinsohn,
Kirtzel, 1996).

The data we used refer to a height range of 50 m ver-
tical extension at 250 m above sea level and have been
collected from January to July 1999 with the Micro Rain
Radar MRR-2, developed by METEK (1998). The radar
is operated by the Max-Planck-Institute for Meteorol-
ogy, Hamburg, in Germany at the Baltic coast in Zingst
(54.43°N 12.67°E) under the Precipitation and Evapo-
ration Project (PEP) in BALTEX (2002). The retrieval
of the rain rate is based on a Doppler spectrum anal-
ysis described by Atlas (1973). At vertical incidence,
the fall velocity of a droplet can be identified with the
Doppler shift. The friction force acting on a falling drop
increases approximately proportional to its surface, but
the gravitational force increases proportionally to its vol-
ume. Therefore, in the atmosphere, larger drops fall
faster than smaller ones, and spectral bins can be at-
tributed to corresponding drop sizes. For a given drop
size, scattering cross sections can be calculated by Mie
theory (Mie, 1908). Droplets are approximated by el-
lipsoids with known axis ratio (Beard, Chuang, 1987).
The influence of the changing air density with height is
considered according to Beard (1985), and standard at-
mospheric conditions are assumed (Weast, 1978). Atten-
uation of radar waves by droplets is accounted for using
the observed droplet spectrum of the lowest range gate
to estimate attenuation for the following one. For higher
gates all observed and corrected spectra of lower layers
are taken into account. Thus, from the Doppler spectrum
alone one can infer the number of drops n; of any desired
volume V; as well as their fall velocities v;. The rain rate
can be calculated instantaneously as ¢(t) = >, n;Viv;.
In the time series we investigated, the continuous mea-
surement is averaged over one-minute intervals, leading
to one minute temporal resolution. When the signal due
to rain becomes indistinguishable from the background
noise at the receiver, the rain rate is defined as zero. Un-
der the pertinent conditions, the calculated rain rate was
typically gmin = 0.005 mm/h, when this happened. Note
that even compared to other radars, this is a very low
rain rate indeed. Of course, events at the radar’s sen-
sitivity threshold are far from being detectable by any



water-collecting pluviometer and similarly far away from
what we associate with the word “rain”. Nonetheless,
we will consider any minute with derived ¢(t) > gmin as
“rain”, and conversely, only if the radar fails to detect
any net downward motion of water through the air, we
will speak of “no rain”. We will come back to this point
in Sec. IV A. Especially for small rain rates the employed
method is extremely powerful.

The quantitative retrieval is restricted to rain. The re-
flection spectra of snow and hail look very different from
those of liquid water and can be identified. But in this
case the method fails to calculate correct water masses.
The latest version of the instrument recognises non-rain
precipitation by an internal algorithm. The rain inten-
sity data we used were calculated from measurements
performed while the development of the instrument was
still ongoing, and hence the raw data had to be checked
manually.

IV. DATA ANALYSIS

The months January and February contain several in-
stances of snow at our chosen measuring height of 250
m. By far the largest snow disturbance was observed
on March 6, from 3:49 am until 11:38 pm. The Doppler
spectra reveal that 250 m altitude was inside the melting
layer, and the water column resulting from interpreting
the event as rain would have been 279 mm, which is not
unusual to be the total rainfall of eight weeks. In June
and July, five very short periods of extremely high cal-
culated rain rates were found. The Doppler spectra in-
dicate two different types of drops with fall velocities at
~ 4 m/s and =% 9 m/s. Comparison with meteorologic
records shows that around these times, thunderstorms
with hail or extreme rainfall may have caused the radar
to malfunction. As in the case of snow disturbances,
data gathered during these periods were excluded from
the analyses in Sec. IV A and IV D. The results in Sec.
IV B, and IV C, however, refer to the entire data set since
the value of the rain intensity is irrelevant here. To make
sure that our results are not an artifact of the observed
anomalies, all analyses were also performed on the cer-
tainly clean months of April and May. No differences to
the previously obtained results were observed. Due to
the high resolution, not even the ranges of validity were
significantly affected.

A. Event Sizes

Previous work focused on rainfall during fixed time in-
tervals and on the statistical properties of such fluctuat-
ing rain intensities. Other studies addressed distributions
of wet and dry spells, see e.g. Schmitt, Vannitsem, and
Barbosa (1998). But we set out to look for similarities
between rain and earthquakes. It was therefore necessary
to define a different fundamental entity of rain than an

arbitrarily chosen time interval (Peters, Hertlein, Chris-
tensen, 2002; Peters, Christensen, 2002). The rain event
is this fundamental entity and is defined as a sequence
of non-zero rain rates, and its size M = ), q(t)At, with
At = 1 min, is the accumulated water column during the
event. The intervals of zero rain rate between events are
called drought periods.

The entire agricultural sector depends on a sufficient
amount of rain spread out over the months of the growth
season, the individual events are only of little interest.
In earthquake research the converse applies. No one de-
pends on the average seasonal flow of energy through the
earth’s crust and one is mainly interested in the events.
Due to this difference in anthropogenic interest, the two
perspectives have been used almost entirely separately in
the respective fields.

Owing to the precision and high temporal resolution
of the data, an investigation into the fine structure of
rain events was made possible, and the results are strik-
ingly clear. Figure 2 shows the number density of rain
events per year N(M) versus event size M on a double
logarithmic plot. Note the similarity to Fig. 1. In a scal-
ing regime M,in, < M < M4, extending over at least
three orders of magnitude, the distribution follows the
simple power law

N(M) x M~™ ™~ 1.4 (3)

This implies that a typical scale of events does not ex-
ist, and scale invariance prevails. In the scaling region, if
we compare the frequency of events of size M to that of
events of size kM we obtain the same fraction, indepen-
dent of M. From Eq. (3), it follows that:

N(M)/N(k * M) = kTM7 M e [Mmzn7 Mmaz]- (4)

This is the typical “critical” dynamical behaviour
found in SOC systems. But Fig. 2 contains even more
information. For events smaller than M,,;, ~ 5 % 1073
mm the power law breaks down. This is indicative of
a different physical process being responsible for events
in this realm. Within the scaling regime, events of all
sizes look alike when compared to others. Hence there
is no reason to assume different physical origins. As mo-
tivated in Sec. II the common origin can be thought
of as sudden relaxation, bursts of intermediately stored
energy leaving the atmosphere. Where the power law
breaks down, a different type of process sets in. Events
smaller than M,,;, might be due chiefly to the inner dy-
namics of the atmosphere. Virga, drizzle that evaporates
before reaching the ground, is difficult to interpret from
the event perspective. Drizzle can form within clouds
but immediately re-evaporate, which may be the expla-
nation for events smaller than M,,;,. Indicated with an
arrow in Fig. 2 is the typical sensitivity threshold 0.1 mm
of high precision tipping bucket rain gauges. The value
0.1 mm is widely used as the definition of zero precipita-
tion (GTOS, 2001). Given that our interpretation of the
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FIG. 2: The number density N(M) of rain events versus
the event size M (open circles) on a double logarithmic
scale. Events are collected in bins of exponentially increasing
widths. The horizontal position of a data point corresponds
to the geometric mean of the beginning and the end of a bin.
The vertical position is the number of events in that bin di-
vided by the width of the bin. To facilitate comparison with
future work, we rescaled the number of events to annual val-
ues. The experimental data are consistent with a power law
N(M) x M~™ 13 = 1.4 (solid line) over at least three or-
ders of magnitude, M € [Mmin, Mmas] with Mpin = 5x1073
mm and My,qe, = 35 mm. The arrow indicates the typical
sensitivity threshold of a conventional high precision tipping
bucket rain gauge. Not only can we see that the radar tech-
nique is roughly 10,000 times more precise but also that a
considerable fraction of rain events must be missed with con-
ventional methods.

breakdown of the power law is correct, and every rain
event with M > 5% 1073 mm is actual rain, it is evident
that measurements with today’s standard precision sim-
ply don’t see the small rain events, which are the most
frequent. In our case, the events with M,,;, < M < 0.1
mm constitute 68% of the events within the scaling re-
gion. While these smallest 68% of all proper rain events
do not account for a large amount of water, they are
invaluable in addressing questions regarding the funda-
mental structure of rain and the actual physical processes
involved. After a good decade of research, evidence for
low dimensionality and the possibility of realistic disag-
gregation is still not conclusive. We believe that there is
no substitute for high precision high resolution data, and
efforts should be directed in this direction.

With the radar measurement, all rain seems to be cap-
tured and we can choose a suitable limit (M,,;,) below
which events are ascribed to a different physical process.
In this respect hydrologists are in a far better position
than seismologists. Earthquakes below E ~ 2 on the

Richter scale disappear in the background noise, and
even part of the notorious unpredictability of earthquakes
might be related to our ignorance about the low-intensity
tail of the frequency distribution. For rain on the other
hand, it is physically and technologically possible to de-
tect all events at a given location.

To ascertain that we are capturing the entire physically
relevant range of the observables of the process of rain, it
is necessary to use observational techniques enabling us
to see beyond the physical limits of rain. Results from
investigations that do not fulfill this requirement cannot
be conclusive and must be treated with careful scepti-
cism. The present study suggests a reasonable maximum
sensitivity threshold of around 5+ 10~2 mm, which is one
twentieth of the commonly used threshold.

Assuming Eq. (3), we can easily calculate the number
N(M > M) of expected events exceeding a given mass
M 1-

i 1
M ™dM =

N(M > M
( > 1)OC M, TM—].

implying

Mz —Tvm+1
N(M > My) = N(M > M) (—) . (6)
M,

Since we know how many events there are with M >
My = Mpin, Eq. (6) can be used to estimate N(M >
M), where My > M,,;,. We observed 10 events in the
largest non-empty bin ranging from 17 mm to 35 mm,
but from extrapolating the power law as outlined above,
we would expect another 10 in the following bin ranging
from 35 mm to 70 mm. In total we would expect to see
38 events larger than the largest event that was actually
observed. We therefore conclude that the sudden upper
cutoff apparent in Fig. 2 is not due to the limited time
of observation but rather reflects a physical limit to the
process of rain at the given location. We define M,,,,, as
the largest event in the data set, a downpour of M4, =
35 mm of rain.

Note that the scaling regime spans 3 to 4 orders of
magnitude, which is less than the Gutenberg-Richter law
in Fig. 1. The fact that the scaling behaviour does not
extend beyond M,,,, explains why —in contrast to earth-
quakes in Claifornia — rainshowers at the baltic coast are
not seen as life-threatening hazards and have not been
viewed in terms of events. As soon as an event exceeds a
humanly managable amount of energy, it acquires a dif-
ferent psychological quality. The different ranges of the
scaling regimes may be due to different separations of
time scales. The SOC models mentioned in Sec. I (Bak,
Tang, Wiesenfeld, 1987; Christensen et al. 1996; Bak,
Sneppen, 1993; Olami, Feder, Christensen, 1992) imple-
ment an infinite separation between the driving and the
relaxation time scales. This is achieved by only driving
the system when all relaxation has ceased, loosely speak-
ing corresponding to switching off the sun until all rain
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FIG. 3: The open circles show the number density N(Tp)
of drought periods per year versus the drought duration 7p.
The solid line represents a power law approximation, with
exponent 7p = 1.4, to the observed distribution. The arrow
indicates one day, around which a deviation from pure power
law behaviour can be observed. This is due to the daily me-
teorological cycle.

on earth has stopped and then switching it back on. This
is not what usually happens in physical systems, instead
there is a substantial but finite separation between the
driving and relaxation time scales. Although typical time
scales do not exist within the scaling regimes, the finite
size of the earth’s crust and the atmosphere make the
scaling regimes themselves finite. The energy build-up
before an earthquake can last from seconds to millenia,
while individual relaxations take place within seconds.
The respective time scales we found in the rain data are
up to two weeks for the build-up and up to one day for
the relaxation.

B. Drought Duration

In the last section we presented the rain equivalent of
the Gutenberg-Richter law. Having thus found our ini-
tial idea confirmed, we will now focus our attention on
the interoccurence times. A power law in the frequency
distribution of these waiting times N (Tp) would be rem-
iniscent of the Omori law stated in Sec. I. Fig. 3 shows
also this suspicion confirmed:

N(Tp) < T,"®, Tp ~ 1.4. (7

No cut-offs were apparent. The power law is a good
approximation from the minimum (1 minute) all the way

to the maximum (two weeks) of observed drought dura-
tions. The only observed deviation at droughts of around
one day length is due to the daily meteorological cycle.

C. Fractal Dimension

A fractal is a structure displaying scale invariance of
the type mentioned in Sec. IV A. Zooming into a frac-
tal with a factor of b and then re-scaling the coordinate
system with a factor of %/, where dy is called the frac-
tal dimension, leaves the structure unchanged. Fractals
often occur naturally, in which case the unchanged prop-
erty is usually a statistical one. The rain data are from
one fixed location but they span a long period of time.
We define a binary signal — either rain or drought — and
determine its fractal dimension in time, using the box
counting method: Different lengths ! of time intervals
(boxes) are used to cover the rainy sections on the time
axis. The number of boxes n(l) needed to cover the rain
is proportional to =%,

The results are displayed in Fig. 4. In the double-
logarithmic plot we find an S-shaped curve. The dashed
lines indicate the trivial slope, dy = 1, while the solid
lines in the central scaling regime have non-trivial dy ~
0.55 and d; ~ 0.42.

The only way to obtain a non-trivial fractal dimension
is to have no typical drought duration at all. Mathe-
matically, this scale-freedom is represented by the power-
law distribution of drought durations. The number of
boxes needed to cover the rain signal will be the true
rain duration plus the time spanned by droughts that
are shorter than the box size (these will be overlooked),
all divided by the box size. Hence, apart from a con-
stant, representing 8% of the total time, the time T,
spanned by the boxes to cover the rain will increase with
lasT. = [y N(Ip) Tp dTp o [y Tp"** Tp dTp, which
is implied by Fig. 3. Evaluating the integral we have
T, o 1°-°8. The number of boxes needed is T,./l = =042,
In this sense a fractal relation like the one shown in Fig.
4 could be a consequence of a power-law distribution of
drought durations like in Fig. 3. The values we measure
suggest that there is more to the rain - no rain signal than
only the power law of interoccurrence times. Deducing
the fractal dimension from the drought distribution only,
we would expect a value of 0.42. But we observe 0.55,
and the difference appears to be significant.

The scaling regime extends from a lower limit around
10 minutes to an upper breakdown near 3 to 4 days.
While one might expect the fractal regime to span further
for longer time series, the analysis of a 30 year time-
series from Uccle (Schmitt, Vannitsem, Barbosa, 1998)
suggests that the observed breakdown is not an artifact of
the shortness of our data-set. The authors find the same
value dfg = 0.55 (where S indicates the first author of the
study) and place the cut-off at 3.5 days, which coincides
with our values. Apparently, the correlation that gave
rise to the fractal relation does not hold for longer than
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FIG. 4: The number of time intervals (boxes) needed to cover
the rain versus the box size. The fractal dimension dy is mi-
nus the slope of this graph in a double logarithmic plot. Using
the radar sensitivity as our threshold value to distinguish be-
tween rain and drought (circles), we obtain df ~ 0.55 in a
scaling regime spanning 2 orders of magnitude. Introducing
a higher threshold of 2.1 mm/h, corresponding to 420 times
the sensitivity threshold of the radar, we observe a lowering
of the fractal dimension to d% ~ 0.42 (triangles). For values
of I to the left of the central scaling regime, it assumes the
value ds = 0.88 without an artificial threshold and d = 0.81
with 2.1 mm/h threshold. To the right of the central scal-
ing regime the fractal dimension approaches the trivial value
df = 1.

3.5 days. Investigation of time series from Denmark with
1-day resolution, collected from 1876 until 2000 (Laursen
et al., 2001) does not suggest that the power law for
droughts holds for drought durations exceeding the upper
cut-off in the fractal dimension.

The explanation for the upper cutoff of the fractal
regime may be that the typical duration of a frontal
system moving in from the Atlantic is of the order of
3 days. Measured rain parameters will not belong to the
same frontal system if the measurements are temporally
separated by significantly more than three days. The
lower breakdown around 10 min could not be observed
in the Uccle time series since there the temporal reso-
lution was only 10 minutes. Other studies (Lavergnat,
Golé, 1998; Olsson, Niemczynowicz, Berndtsson, 1993)
show that there is no general agreement regarding the
cause of the 10-minute breakdown and the value of the
fractal dimension. Some of the controversy regarding the
fractal dimension can, however, be resolved.

Olsson et al. find dfo ~ 0.37 and place the position

of the lower breakdown at 45 minutes. They note that
45 minutes is the average duration of a single event and

N(T.) [(eventslyear)/min]
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FIG. 5: The number of observed rain events vs. their du-

ration approximates to a power law, suggesting that there is
no “typical” event duration. The most frequent event du-
ration we observed was 1 minute. The distribution of event
durations is not peaked anywhere, thus no characteristic time
scale can be identified. In particular, the average duration
of 24 min is in no significant sense different from any other
duration between 1 and 700 min.

identify the average duration with the typical duration.
Given the power-law distribution of event duraions shown
in fig. 5 we dare to question the validity of this identifi-
cation. 45 minutes is certainly not the most frequent rain
event duration. The authors also note that the value of
the fractal dimension changes with the sensitivity of the
instrument. Introducing a threshold, mimicking a less
sensitive rain gauge, has the effect of lowering their value
of dgo ~ 0.37. The tipping bucket rain gauge employed
by them has a sensitivity threshold of 0.035 mm. Given
1 minute temporal resolution, this corresponds to an in-
tensity of 2.1 mm/h. For comparison, we introduced a
threshold corresponding to the sensitivity of their instru-
ment and found the value of the fractal dimension low-
ered to d’f = 0.42, which may be considered consistent
with Olsson et al.’s result. As we lower the threshold, i.e.
effectively improve the sensitivity of our instrument, the
fractal dimension changes continuously until it reaches
our value of dy = 0.55 at a threshold around 0.2 mm/h,
corresponding to a smallest detectable event of 0.003 mm.
This one tenth of Olsson’s gauge’s sensitivity threshold
and is near the value of the breakdown of the power law
event size distribution. Improving the sensitivity further
doesn’t change the fractal dimension any more.

The time series used by Schmitt et ol. has a tempo-
ral resolution 10 times less precise than that of Olsson
et al. The benefit of this low resolution is, given the
simple idea of collecting water in a container, that 10



times lower intensities can be identified with the correct
time interval. There is a trade-off between temporal res-
olution and sensitivity, and it seems that Olsson et al.
bargained for too much temporal resolution, losing the
necessary sensitivity. Schmitt et al., on the other hand,
seem to have hit exactly the maximum acceptable sensi-
tivity threshold, using the tipping bucket technique at —
but not beyond — its physical limits.

Lavergnat and Golé used an instrument measuring the
arrival times of individual rain drops with a temporal
resolution of 1 ms. They do not observe a breakdown of
the scaling regime anywhere near 10 minutes. Instead,
the scaling behaviour change as soon as the box size be-
comes smaller than the shortest interoccurrence time be-
tween two raindrops (& 100 ms). The value obtained for
the fractal dimension df;, =~ 0.82. Very similar values
are found by Olsson et al. (dfo =~ 0.82) and ourselves
(df ~ 0.88, d} ~ 0.81) in the temporal range, boxsize
! < 10 min, below the lower breakdown of the central
scaling regime. The temporal resolution of Lavergnat
and Golé’s instrument of 1 ms leads to the process being
viewed as a point process of rain drop arrival times. The
fact that they do not see a central scaling regime may be
related to this point-process perspective.

We interpret these result as another sign of having
captured the whole range of sizes of rain events. The
discrepancies between results obtained by Olsson et al.,
Schmitt et al. and ourselves can be resolved consider-
ing the physical constraints of the different measurement
techniques. Lavergnat and Golé’s findings need further
clarification. Measurements with a sensitivity threshold
greater than 0.003 mm will yield results reflecting the
instrument’s sensitivity rather than properties of the dy-
namical system producing the rainfall. Similar multifrac-
tal behaviour has been observed in earthquake models
(Olami, Christensen, 1992).

We are unsure as to how to interpret the lower break-
down. Clearly there must be a lower breakdown some-
where, and we expect it to occur where the particular
kind of correlation that gave rise to the fractality on
hourly to daily time scales ceases. The lower breakdown
indicates that 10 min to 45 min is a time scale which
is special, and it must be related to a physical process.
The microphysical processes of coagulation that trigger
a cloud to release its water content take place on this
time scale. Starting with typical small cloud droplets
with radius r ~ 10~3 mm, the process of stochastic col-
lection during which small droplets merge to form rain
drops of appreciable fall velocity takes roughly 10 — 30
min under typical warm cloud conditions (Houze, 1993).
It is possible that coagulation starts at a certain level
inside a cloud and then pauses at that level before a sin-
gle drop has left the cloud. If it then starts again, it is
possible that on the ground we observe two layers of rain
separated by a vertical distance corresponding to up to
= 10 min fall time. While this seems like two different
events, from the cloud’s perspective it is really only one,
since the process of releasing water did not stop at any

moment everywhere within the cloud. Effects of motion
of the cloud relative to the ground are not included in
these considerations. It is unlikely that the 10 minute
time scale is a result of the employed measurement tech-
nique as suggested by Lavergnat and Golé (1998). The
radar measurement is entirely differrent from the tipping
bucket used by Olsson et al. (1993) and Schmitt et al.,
yet the same cut-off is observed.

D. Hurst Exponent

In an attempt to determine the necessary size of a wa-
ter reservoir that would never empty nor overflow, Hurst
(1965) considered an incoming signal q(t), corresponding
to the rain intensity in our case, that causes the level of
a reservoir to rise or fall. Using our data, the deviation
from the average water level in an imaginary reservoir
would be

t

X(t,7) = (a(t) = (a)r) At (8)

u=0

where A t = 1 min and
q T q .

The quantity —(q(t)); in Eq. (8) can be thought of
as an average outflux from the reservoir and insures that
for any period 7 the water level starts and ends at zero.
Overall trends during the interval 7 are thus eliminated.
Figure 6 shows X (t,7) as derived from the rain data.

The range of water levels the reservoir has to allow for
is then given by

R(r) = 1?%XTX(t’ T) — 1I§I£TX(t’ 7). (10)

Hurst determined the dimensionless ratio R(7)/S(7) as a
function of 7, where S(7) is the standard deviation of the
influx ¢(t) in the period 7. It can be shown that if g(t)
is any random signal with finite variance (Feller, 1951),
this ratio increases as

R(7)/S(7) x 7 (11)

where H = 1/2 is called the Hurst exponent. Hurst’s
analysis on data from the Roda gauge at the Nile, how-
ever, yielded a different exponent of H =~ 0.77. This
unexpected result is commonly interpreted as a sign of
persistence in the signal, or even as correlation. The ex-
ponent obtained from performing the same analysis on
our data is H ~ 0.76 (see Fig. 7). Hence, the fluctuating
rain rate alone produces an anomalous Hurst exponent,
and the result obtained by Hurst is valid not only for the
range of 1 year < 7 < 1080 years that he considered but
in fact also holds for 7 = a few minutes to 7 = 1/2 year.
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FIG. 6: Water level X(¢,7) in mm in an imaginary reservoir
for 7=266,611 min as derived from the Zingst data. During
drought periods, a constant, slow decrease in the water level
is observed, whilst during rain events the water level increases
rapidly. The necessary size of a sufficiently large reservoir is
given by the range indicated by a dashed line.

Interestingly, the Hurst exponent deviates from this re-
lation for 7 < 10 min, which is of the same order as the
observed short-time trivial regime of the fractal dimen-
sion.

To understand more precisely what is actually mea-
sured by the Hurst exponent, we applied the same
method to a signal generated by swapping events and
droughts at random. We kept the sizes and durations
of rain events and droughts as determined from the real
data and pasted them one after the other in random or-
der. The Hurst exponent was 1not altered by this proce-
dure. In this sense it is not a measure of correlation since
it is not affected by the order in which events occur. In
exactly what sense it measures persistence is part of our
ongoing research.

V. CONCLUSION

New insight into the working of rain can be gained by
defining rain events, which can be regarded as energy
relaxations similar to earthquakes. Taking this perspec-
tive, scale-free power-law behaviour is found to govern
the statistics of rain over a wide range of time- and event
size scales. Where clear deviations from the observed
power laws and fractal dimensions are found, the lim-
its and peculiarities of the underlying dynamical system
become apparent, and physical insight is gained. Our
findings suggest that rain is an excellent example of a
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FIG. 7: The dimensionless ratio R(7)/S(r) versus 7 (open
circles) shown on a double logarithmic scale. The slope of
the fitted straight line (solid) reveals the anomalous Hurst
exponent: R(7)/S(7) o< 7¥ with H =~ 0.76. The data deviate
from the power law fit below 7 = 10 min in the lower limit,
but no upper limit of the relation is observed.

self-organised critical process. Rain is a ubiquitous phe-
nomenon, and data collection is relatively easy. It is
therefore well suited for work on SOC, and we believe
that atmospheric research will benefit from research on
self-organised criticality and vice versa. As a general
perspective on the subject, SOC offers an alternative
to chaos theory while supporting the view that the at-
mospheric system enters a dynamical attractor which is
characterised by scale freedom. Although traditionally
starting with high dimensionality, it makes no explicit
statement about the dimensionality of the attractor. For
our purposes, the remote sensing technique employed by
the MRR-2 has proved extremely powerful. It is our im-
pression that a precondition for gaining a deeper under-
standing of the atmosphere as a complex dynamical sys-
tem is the gathering of comprehensive data sets with high
precision instruments such as the MRR-2. The radar
achieves outstanding precision in the low-intensity limit
and is capable of even higher temporal resolution than
1 min, limited only by the finite vertical extension of
the scattering volume. Comparison with data from other
measuring sites, especially from warmer regions without
snow and regions with more periodic climate would be
useful in order to answer questions regarding the univer-
sality of the observed features. Analysis of data from a
network of high-precision radars with emphasis on the
spatio-temporal nature of the processes would be partic-
ularly instructive.
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