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Abstract
Using a recently developed method to simulate percolation on large clusters of
distributed machines [1], we have numerically calculated crossing, spanning
and wrapping probabilities in two-dimensional site and bond percolation with
exceptional accuracy. Our results are fully consistent with predictions from
conformal field theory. We present many new results that await theoretical
explanation, particularly for wrapping clusters on a cylinder. We therefore
provide possibly the most up-to-date reference for theoreticians working on
crossing, spanning and wrapping probabilities in two-dimensional percolation.

PACS numbers: 64.60.Ak, 05.70.Jk

1. Introduction

In the last decade, percolation has enjoyed the attention of conformal field theorists who have
sought to calculate crossing probabilities for various aspect ratios and geometries. In rough
terms, calculations generally involve mapping percolation to a 1-state Potts model, constructing
a correlation function corresponding to the boundary conditions necessitated by the crossing
cluster of interest, and finding a differential equation thereof. In 1991, Langlands et al [2]
were the first to investigate ‘the universality of crossing probabilities in two-dimensional
percolation’. Shortly afterwards, Cardy [3] obtained an exact equation for the probability of
a crossing cluster on a rectangle for different aspect ratios, using conformal field theory.

In 1996, Watts extended Cardy’s results to obtain an exact equation for the probability
of a cluster crossing both horizontally and vertically [4]. In the same year, after numerical
work by Hu and Lin [5], Aizenman proved that the probability of more than one crossing
cluster is finite in the thermodynamic limit [6]. This does not contradict the rigorous result
that the number of infinite clusters is 0, 1 or ∞ with probability 1 [7, 8]. The asymptote for
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the probability of obtaining n distinct, simultaneously crossing clusters has been calculated by
Cardy [9], who also considers spanning on a cylinder.

We define all these probabilities systematically below. In this paper, we provide accurate
numerical data for the many analytical results now available, many of which are verified for
the first time. We also provide data, particularly for wrapping on the cylinder, for which there
is currently no theoretical explanation. After briefly discussing the results for some exotic
cluster configurations, we present and discuss results for crossing, spanning and wrapping
probabilities on rectangles and cylinders of various aspect ratios for site and bond percolation.
The results are of such accuracy that we are able to make firm statements regarding the validity
of various estimates, conjectures and formulae made in the past. The appendix collects together
some technical notes on identifying various cluster types when simulating percolation.

2. Observables

In this section we give the various observables that we measured for site and bond percolation.
We consider a square lattice in which sites are linked via bonds. To avoid confusion, we
stress that boundaries are made of sites only [2]. In site percolation, sites are occupied with
probability p(s) and all bonds are active. In bond percolation all sites are occupied, while
bonds are active with probability p(b). Two sites belong to the same cluster if they are both
occupied and if there is a path between them along active bonds and occupied sites. A cluster
is the set of sites belonging to it.

2.1. Open boundary conditions

Each cluster can be characterized by the borders it touches. If the borders of the lattice are
labelled N,E, S,W , as in figure 1, then each cluster is assigned a subset of these labels,
indicating the borders it touches. There are 15 different combinations of cluster labels in
which at least one border is touched. In the following, these combinations are called ‘types’,
S�. A cluster of type S� touches all borders in the set �. For example, the three clusters
shown in figure 1 are of types S{N,E}, S{S,W } and S{W }.

We distinguish between clusters touching only a set of borders and at least a set of borders.
A cluster of type S� is also of type U�′ if � ⊇ �′. For example, a cluster of type S{S,W } is also
of types U{S}, U{W } and U{S,W }. A ‘crossing cluster’, i.e. a cluster that connects two opposite
borders, is therefore either of type U{N,S} or U{E,W }.3

Normalized histograms PN(T, n, r) have been generated for all 15 S and U types, where
N is the size of the lattice (number of sites) and r is its aspect ratio (length over height). The
histogram estimates the probability that a random realization contains n clusters of type T. It
is worthwhile pointing out that even though S and U histograms are correlated, they cannot
be derived from each other, because the number of clusters of a particular U-type must be
determined on a per-realization basis.

The moments associated with each histogram are defined by

MN(T,m, r) =
∞∑

n=0

PN(T, n, r)nm. (1)

A hat on a quantity, for example M̂, indicates its expectation value, i.e. the value in the limit
of an infinitely large ensemble and system size.

3 In the following, we will apply the term ‘crossing’ only to systems with open boundaries, and reserve the terms
‘spanning’ and ‘wrapping’ for cylindrical boundary conditions.
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Figure 1. A realization of a lattice which is consistent with figure 8. As indicated, the clusters are
of types S{N,E}, S{S,W } and S{W }. The hatched square in the centre will be filled to give rise to the
border configuration shown in figure 9.

Figure 2. A realization of percolation on a cylinder that would contribute to PN(O+, 1, r) and
PN(I+, 1, r), but not to PN(O, 1, r) or PN(I, 1, r).

2.2. Cylinder

In addition to the type classification above, we have identified wrapping and spanning clusters
on a cylinder. Our convention for cylinders is illustrated in figure 2, which defines the aspect
ratio as circumference over height. A wrapping cluster is then a cluster which winds around
the cylinder, i.e. it provides a path of length 2π . A spanning cluster, meanwhile, connects the
bottom and top of the cylinder.

The resulting histograms are PN(I, n, r) for the number distribution of clusters that only
span (rather than wrap) the cylinder, and PN(O, n, r) for the number distribution of clusters
that only wrap (rather than span) the cylinder.

In addition, PN(I+, 1, r) counts the number of realizations with a single spanning cluster
that may also be wrapping. Similarly, PN(O+, 1, r) counts the number of realizations with
a single wrapping cluster that may also be spanning. For an example, see figure 2. The
distinction between I and I+ (O and O+) disappears for more than one spanning (wrapping)
cluster, because the existence of two or more simultaneously spanning (wrapping) clusters
prohibits wrapping (spanning) at the same time.



11216 G Pruessner and N R Moloney

3. Results

We have generated the histograms mentioned above for site (p(s) = 0.592 746 21 [10])
and bond percolation (p(b) = 1/2 [11]), each for three different system sizes, N = 300002,

30002, 3002. If not mentioned explicitly, the results presented are for N = 300002.
Henceforth, site percolation is indicated by a superscript (s), and bond percolation by (b). In
each of these simulations, 14 different aspect ratios were realized while keeping the
area constant [12]. These aspect ratios are: 30/30, 36/25, 45/20, 50/18, 60/15,

75/12, 90/10, 100/9, 150/6, 180/5, 225/4, 300/3, 450/2 and 900/1. Three different
boundary conditions were applied to each aspect ratio, corresponding to an open system,
a cylinder glued vertically and a cylinder glued horizontally. ‘Gluing’ is our technical term
here referring to the procedure for applying periodic boundaries. For the definition and
explanation of these technicalities, see [1] and the appendix. The random number generator
used is described in [13]. Between 106 and 2 × 106 independent samples were produced for
each system size and percolation type, using up to 61 undergraduate computers when idle.

The different aspect ratios are derived from the same set of patches (see the appendix),
by gluing them together to form rectangles in random permutations and orientations (for
details see [1]), and are therefore not statistically independent. However, their correlations
are assumed to be very small. When considering the outcome for several aspect ratios at
the same time, one could multiply the error bars by the square root of the number of aspect
ratios considered, as if each aspect ratio were based only on a subset of the original sample.
Because this procedure assumes maximum correlations between the patches, even though they
are randomly permuted, rotated and mirrored between different aspect ratios, this is a strong
overestimation of the correlations.

We group our results as follows:

• corner clusters of types S{N,E}, S{E,S}, S{S,W } and S{N,W };
• ‘three-legged’ clusters of types S{N,E,S}, S{E,S,W }, S{N,S,W } and S{N,E,W };
• types U{N,S} and U{E,W }, the subject of Cardy’s predictions [3, 9], as well as spanning and

wrapping clusters on a cylinder;
• type S{N,E,S,W }, in answer to Watts’ prediction.

Apart from some straightforward arguments, there are no theoretical predictions for corner
and three-legged clusters, which we will refer to as ‘exotic’ types.

3.1. Exotic types

3.1.1. Corner clusters. For completeness, we include the following results for corner
clusters, i.e. types S{N,E}, S{E,S}, S{N,W } and S{S,W }. In a rectangle, all corners are equivalent.
Naively one expects these clusters to be arranged like onion skins. Assuming scale invariance,
this suggests a logarithmic dependence of their average number MN(S, 1, r) on the lattice
size. This, however, is not the case, as can be seen in figure 3, which should show collapsing
lines if N enters only as a factor ln(N). It is clear that the graph must level off for r → ∞, but
this region is not yet reached, even for r = 900 and any N. The lines are remarkably straight,
but they seemingly cannot define a universal exponent.

In the Ising model, the corner magnetization has been calculated analytically by Davies
and Peschel [14] using a corner transfer matrix approach [15]. A similar approach seems to
be suitable for corner clusters in percolation.
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Figure 3. MN(S{N,E}, 1, r)/ ln(N) for N = 3002, 30002, 300002 and site and bond percolation.

3.1.2. Three-legged clusters. Three-legged clusters touch three borders in a T-like manner.
There are four different types of three-legged clusters, but the symmetry of a rectangle splits
them into two pairs, while a rotation of the system by π/2 transforms r into 1/r so that

P̂(S{N,E,S}, 1, r) = P̂(S{N,S,W }, 1, r) = P̂(S{N,E,W }, 1, r−1) = P̂(S{E,S,W }, 1, r−1).

The statistics of these clusters turns out to be universal. This is possibly not very
surprising, since they involve a crossing path (see below). However, what is surprising
is the asymptotic value of P(S{N,E,S}, 1, r) in the large r limit, when the vertical crossing
probability approaches 1. At r = 100 and N = 300002, these asymptotic values are 0.5004(4)

and 0.5002(3), for site and bond percolation respectively. At r = 900, the values are 0.4999(4)

and 0.5004(3). Analysing smaller system sizes reveals that this quantity is very sensitive to
finite-size effects: while even the smallest system size reaches a value very close to 0.5 at
r ≈ 6, for small N deviations towards higher probabilities occur at large r. Evidently, the
probability of a three-legged cluster tends to the occupation probability of sites on the lattice
for r → N , where the system effectively becomes a one-dimensional strip of length N and
height 1. The region where the probability remains close to 0.5 becomes larger as the system
size increases, and for N = 300002 we were unable to detect any significant deviation from
0.5 for r > 9. We therefore conjecture that

lim
r→∞ P̂(S{N,E,S}, 1, r) = 1

2 . (2)

This can be understood as the probability of intersecting a vertically crossing cluster when
vertically cutting a long, narrow percolating system. However, it remains unclear how to
derive this limit analytically.

3.2. Results related to conformal field theory

We now present numerical results that are related to theoretical predictions based on conformal
field theory. This includes measurements of many formerly unknown quantities, conjectures
and comparisons with exact results, which all give further support to the conformal invariance
of critical percolation.
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3.2.1. Crossing probability with open boundaries. Cardy’s seminal paper [3] contained a
comparison between his exact result for the crossing probability and the numerical results
obtained by Langlands et al [12]. These were based on systems with N = 2002 sites and
r = 1 · · · 7.35. Later studies by Shchur and Kosyakov [16, 17] investigated PN(U{N,S}, n, r)

at r = 1 for n > 1 with very small systems, N � 642. Shchur [18] later extended these results
to systems up to size N = 256 × 3200, apparently still encountering finite-size corrections.
Other studies, such as Sen [19, 20] and Hovi and Aharony [21], used similar system sizes,
while also considering other properties of spanning clusters.

Using the data presented in this paper, it is possible to compare Cardy’s prediction with
much greater accuracy, based on systems with N = 300002 sites and r = 1 · · · 900. However,
for very large (and very small) values of r, relevant clusters become either too rare to give
any reasonable estimate for the associated probabilities, or their number count becomes too
broadly distributed.

The crossing probability is the probability of finding at least one crossing cluster in a
particular direction. By symmetry

P̂(U{N,S}, n, r) = P̂(U{E,W }, n, r−1) (3)

which has been used in the data presented below. Consequently, results for r > 1 and r < 1
are not statistically independent, since they are based on the same realization (but supposedly
different clusters contribute). Using the short-hand notation

P(T,�n, r) ≡
∞∑

m=n

P(T,m, r) (4)

for arbitrary cluster type T, Cardy’s exact result reads

P̂(U{N,S},�1, r) = 3�
(

2
3

)
�

(
1
3

)2 η
1
3 2F1

(
1

3
,

2

3
; 4

3
; η

)
(5)

where

η =
(

1 − k

1 + k

)2

and r−1 = K(1 − k2)

2K(k2)
. (6)

K(u) is the complete elliptic integral of the first kind and 2F1 is the hypergeometric function.
Figure 4 shows the difference between the numerical result and the exact value from (5)

in units of standard deviations. From this plot it is clear that the systematic deviation for large
r observed in [3, 12] was only a finite-size problem.

The asymptotic number distribution of crossing clusters in percolation with open
boundaries has been derived analytically [9]

P̂(U{N,S}, n, r) → ĈX(n) exp
(− 2

3πn
(
n − 1

2

)/
r
)

for n > 1 (7)

in the limit of N → ∞ and r → 0. In general, the amplitude CX(n) is not known exactly, but
it is universal and can be derived from numerics by fitting (7) against the numerical data in an
appropriate region of r values for each n separately. The range of aspect ratios used in the fit
is determined by two competing interests: the fit should include as many points as possible,
but exclude aspect ratios where the asymptotic behaviour has not yet set in. This determines
the largest r in the fit. The smallest r is given by the value of r for which n simultaneously
crossing clusters are observed at least once. Fitting ranges are given in all tables below.

In contrast to spanning on the cylinder, Cardy’s asymptotic formula (7) does not distinguish
between a cluster crossing in exclusively one direction and a cluster crossing in possibly more
than one direction. For consistency in our notation, CX(n) refers to amplitudes of exclusively
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Figure 4. Deviation between analytic (5) and numerical results for the reduced crossing probability
PN(U{N,S}, �1, r), in units of standard deviations of the numerical results versus aspect ratio r,
for bond (circles) and site (triangles) percolation with N = 300002 sites.

vertically crossing clusters. However, at n = 1, (7) applies to vertically crossing clusters
irrespective of other clusters, to which we assign the amplitude Ĉ+

X(1). For n = 1 Cardy’s
prediction (7) therefore reads

P̂(U{N,S}, 1, r) → Ĉ+
X(1) exp

(−1
3π/r

)
. (8)

There is no prediction for exclusive crossing, P̂(U{N,S}, 1, r) − P̂(U{N,E,S,W }, 1, r); however,
it is consistent to fit the latter against

CX(1) exp(−α(1)/r). (9)

The fits throughout the paper depend to some degree on the choice of the fitting interval.
A priori, it is unknown where the asymptotic behaviour sets in (in the sense that the deviation
from the asymptote is smaller than the numerical error). It is not possible to determine
whether a deviation of the numerical results from the analytical value is due to statistical
fluctuations or due to a wrongly chosen fitting interval. The error bars given can only reflect
the former. However, the error indicated should include the exact result if it is fitted against
the corresponding function in the range given.

Figure 5 shows the numerical data for the probability of finding n = 1, 2, 3, 4 and n � 1
vertically crossing clusters in reduced form, i.e. ln(P/(1 − P)). The data are fitted to the
asymptotic formulae (7), (8) and (9). As discussed below, the latter coincides asymptotically
with (12), which is shown as a dotted line. For completeness, data for P(U{N,S},�1, r) are
shown together with the exact result (5).

It is clear that, asymptotically, the relative difference between the probability of more than
one and exactly one crossing cluster,

P̂(U{N,S},�1, r) − P̂(U{N,S}, 1, r)

P̂(U{N,S},�1, r) + P̂(U{N,S}, 1, r)
(10)
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Figure 5. Numerical data (N = 300002, bond percolation, open boundaries) for the reduced
probability ln(P/(1 − P)) of n = 1, 2, 3, 4 and n � 1 vertically spanning clusters versus aspect
ratio r. The data n � 1 refer to P(U{N,S},�1, r). The long dashed lines are fits according to (7)
((8) and (9) for n = 1) and table 1, while the full line gives the exact result (5). The dotted line
gives the exact result (12).

vanishes, and the crossing probability becomes dominated by the probability of a single
crossing cluster. Therefore, the amplitude Ĉ+

X(1) in (8) is known exactly, namely

Ĉ+
X(1) = 24/3 3�(2/3)

�(1/3)2
= 1.426 348 255 625 3 · · · (11)

using the expansion of (5) provided by Ziff [22, 23].
Equation (10) implies that the probability of exactly one crossing cluster exclusively in

one direction, P̂(U{N,S}, 1, r) − P̂(U{N,E,S,W }, 1, r), is the dominating term in the difference

P̂(U{N,S},�1, r) − P̂(U{N,E,S,W }, 1, r) = η

�(1/3)�(2/3)
3F2

(
1, 1,

4

3
; 2,

5

3
; η

)
(12)

with η as in (6). This relation is derived from (5) and (29), and for small r it can be expanded
as

16

�(1/3)�(2/3)
exp(−π/r)

(
1 − 8

5
exp(−π/r) +

4

3
exp(−2π/r) · · ·

)
(13)

which is based on equation (16) in [22] and the definition of the generalized hypergeometric
function. Therefore the two parameters appearing in (9) are known exactly:

ĈX(1) = 16

�(1/3)�(2/3)
= 4.410 631 163 374 336 39 · · · (14)

and

α(1) = π (15)

which corresponds to n = −1 or n = 3/2 in (7).
The numerics are in very good agreement with the exact results. The estimate for

C+
X(1) shown in table 1 agrees perfectly with (11), while CX(1) has a surprisingly large error.
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Table 1. Crossing with open boundaries. Amplitudes are defined as in (7)–(9), derived from
numerical simulations of bond (C

(b)
X ) and site (C

(s)
X ) percolation with N = 300002 sites. The r

range defines the fitting region (see section 3.2.1). The + marks C+
X , i.e. not an exclusively single

crossing cluster in one direction.

n r range bond C
(b)
X (n) r range site C

(s)
X (n)

1+ 9/100 · · · 25/36 1.423(2) 9/100 · · · 25/36 1.426(2)
1 9/100 · · · 20/45 4.811(629) 9/100 · · · 25/36 4.560(510)
2 20/45 · · · 36/25 3.530(12) 20/45 · · · 36/25 3.553(10)
3 30/30 · · · 45/20 9.608(37) 30/30 · · · 45/20 9.599(32)
4 45/20 · · · 60/15 27.641(161) 45/20 · · · 60/15 27.658(140)

Table 2. Spanning on a cylinder. Amplitudes are defined as in (18), where + marks the value of
C+

I (1) (see (19)).

n r range bond C
(b)
I (n) r range site C

(s)
I (n)

1+ 10/90 · · · 30/30 1.2217(4) 10/90 · · · 30/30 1.2222(4)
1 9/100 · · · 30/30 1.7198(11) 9/100 · · · 30/30 1.7225(10)
2 25/36 · · · 36/25 5.1829(256) 25/36 · · · 36/25 5.2105(218)
3 36/25 · · · 50/18 15.1212(764) 30/30 · · · 50/18 15.0227(649)
4 45/20 · · · 60/15 45.0059(3280) 45/20 · · · 60/15 44.5445(2780)

However, the result still covers the exact value (14). The error is due to a narrow fitting range,
forced by the late onset of asymptotic behaviour. A larger fitting range gives a much smaller
error and reduced goodness-of-fit [24]. For α(1) it is found numerically that α(b)(1) = 3.18(6)

and α(s)(1) = 3.15(5), in perfect agreement with (15).
The amplitudes listed in table 1 have also been used to plot the dashed lines in figure 5.

They fit an exponential fairly well (using the 1+ value in table 1):

C
(b)
X (n) ≈ 0.5422(10) exp(0.9619(14)n) (16)

C
(s)
X (n) ≈ 0.5434(9) exp(0.9617(12)n). (17)

3.2.2. Spanning probability on a cylinder. Cardy has also given asymptotes for spanning
events on a cylinder [9]. These clusters have been investigated numerically several times
[21, 16, 18]. However, this work uses system sizes three orders of magnitude larger than
in former studies. The probability of obtaining n distinct spanning clusters on a cylinder is
expected to behave in the limit of small r and large L like

P̂(I, n, r) → CI(n) exp
(−2

3π
(
n2 − 1

4

)/
r
)
. (18)

The existence of a wrapping cluster prevents more than one spanning cluster, see figure 2. For
n = 1 one can distinguish between exclusively spanning clusters and spanning clusters that
may also wrap. Allowing for wrapping clusters, Cardy predicts the asymptote

P̂(I+, 1, r) → C+
I (1) exp

(− 5
24π/r

)
. (19)

The numerical results are in full agreement with (18) and (19). The corresponding
amplitudes are shown in table 2. The fact that the amplitude in (19), C+

I (1), is slightly smaller
than the corresponding amplitude in (18), CI(n), does not contradict P̂(I, 1, r) < P̂(I+, 1, r),
since the exponentials differ by a factor exp(π(7/24)/r) in favour of spanning without
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Table 3. Wrapping on a cylinder. Results for the fits of P(O, n, r) to (23). The r range defines
the fitting region, where the right-hand value is for the largest aspect ratio in which n wrapping
clusters occurred at least once. The + marks the value of C+

O(1) that allows a spanning cluster.

n r range (bond) C
(b)
O (n) α

(b)
O (n) r range (site) C

(s)
O (n) α

(s)
O (n)

1+ 25/36 · · · 100/9 1.0654(12) −1.0755(10) 25/36 · · · 100/9 1.0634(10) −1.0739(9)
1 25/36 · · · 60/15 1.7734(82) −3.0536(52) 25/36 · · · 60/15 1.7712(70) −3.0522(44)
2 15/60 · · · 36/25 1.8134(55) −6.9320(92) 15/60 · · · 45/20 1.7995(46) −6.9118(78)
3 12/75 · · · 25/36 3.6128(216) −17.8021(326) 12/75 · · · 30/30 3.6600(186) −17.8764(278)
4 10/90 · · · 20/45 6.6734(609) −32.6919(752) 10/90 · · · 20/45 6.6533(520) −32.7071(645)

restrictions on wrapping. It would require r > 2.67 to suppress this factor enough to equalize
both probabilities. However, at such large values of r, equations (18) and (19) are no longer
valid.

The amplitudes fit an exponential extremely well (where for n = 1 wrapping was not
allowed, i.e. the result 1+ in table 2 was ignored):

C
(b)
I (n) ≈ 0.5788(11) exp(1.0892(17)n) (20)

C
(s)
I (n) ≈ 0.5816(10) exp(1.0860(14)n). (21)

The resulting plot of the reduced probabilities looks very similar to that in figure 5, so we
omit it here.

3.2.3. Wrapping on a cylinder. Aizenman’s original statement [6] regarding the number of
crossing clusters can also be applied to the number of wrapping clusters on a cylinder. In the
limit of large r

ln(P̂(O, n, r)) ∈ O(rn2) (22)

according to a hand-waving scaling argument by Cardy [9]. There is no better estimate known,
so by fitting each set of histograms to

P̂(O, n, r) = CO(n) exp(αO(n)r) (23)

one can determine the n dependence of αO(n) and the amplitude CO(n). Table 3 shows the
corresponding results. It turns out that αO(n) very well fits a second order polynomial with
coefficients

α
(b)
O (n) ≈ −3.150(11)n2 + 5.51(4)n − 5.41(3) (24)

α
(s)
O (n) ≈ −3.176(10)n2 + 5.61(4)n − 5.48(3). (25)

The amplitude CO(n) again fits an exponential, but only if the very first value, CO(1), is
neglected. In this case we find

C
(b)
O (n) ≈ 0.483(5) exp(0.662(4)n) (26)

C
(s)
O (n) ≈ 0.473(4) exp(0.670(3)n). (27)

We stress again that the ambiguity in the choice of the fitting ranges introduces an error which
is not reflected in the numerical error given. We find it, therefore, justified to conjecture that

αO(n) = −πn2 + 7
4π(n − 1) (28)

which is somewhat surprising, since we naively expected similar arguments [9] to those for
(18) should apply, giving rise to a leading term − 2

3πn2. The numerical results are shown
together with the proposed analytical behaviour according to (23) using the data in table 3 in
figure 6.
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Figure 6. Numerical data (N = 300002, bond percolation) for the reduced probability
ln(P/(1 − P)) of n = 1, 2, 3, 4 and n � 1 wrapping clusters on a cylinder versus aspect ratio r.
The data n � 1 refer to P(O, �1, r) and look qualitatively similar to those shown in figure 5. The
long dashed lines are fits according to (23) and table 3.

3.2.4. Spanning simultaneously in both directions. Watts [4] has exactly calculated the
probability of a cluster that crosses both directions simultaneously in a system with open
boundaries, P̂(U{N,E,S,W }, 1, r), given by

P̂(U{N,E,S,W }, 1, r)

= 3�
(

2
3

)
�

(
1
3

)2 η
1
3 2F1

(
1

3
,

2

3
; 4

3
; η

)
− η

�
(

1
3

)
�

(
2
3

) 3F2

(
1, 1,

4

3
; 2,

5

3
; η

)
(29)

with η as defined in (6) and 3F2 being the generalized hypergeometric function. The
first term on the right-hand side of (29) is identical to P̂(U{N,S},�1, r). According to the
expansion provided by Ziff [22] and consistent with (8), for small r this term is proportional to
exp

(−1
3π/r

)
, while, according to (13), the second term decays even faster, namely exp(−π/r).

This is, of course, what one expects, because the probability of spanning in both directions is,
away from r = 1, dominated by the probability of spanning in the longer direction.

Figure 7 shows the difference between our numerical results and Watts’ prediction. As in
figure 4, the plot suggests that the deviations observed in [4] are only finite-size corrections.

3.3. Finite-size corrections

Since the system sizes investigated are large compared to former studies [12, 16, 18], one might
be inclined to completely ignore finite-size corrections. In order to estimate their strength,
table 4 lists numerical results of various quantities for different system sizes and compares
them with estimates for the values of these quantities in the thermodynamic limit found in
the literature or their exact results. For large systems, our numerical results agree very well.
For smaller systems, there may be some mild corrections. From the three-legged cluster data
(section 3.1.2), we expect that finite-size corrections may become visible if one side of the
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Figure 7. Deviation between the analytic result (29) and the numerical results for the reduced
crossing probability PN(U{N,E,S,W }, 1, r), in units of standard deviations of the numerical results
versus aspect ratio r, for bond (circles) and site (triangles) percolation with N = 300002 sites.

Table 4. Comparison of our numerical values and estimates found in the literature, for different
system sizes. ‘Estimates’ are values for those quantities cited in the literature in the thermodynamic
limit.

Quantity Site Bond Exact value/estimate

PN=30002 (U{N,S},�1, 1) 0.4995(4) 0.5012(4)
1/2 exact [2]

PN=300002 (U{N,S},�1, 1) 0.4998(3) 0.4999(4)

PN=30002 (U{N,S},�2, 1) 6.58(6) × 10−3 6.69(7) × 10−3
6.58(3) × 10−3 [16]

PN=300002 (U{N,S},�2, 1) 6.71(6) × 10−3 6.66(6) × 10−3

PN=30002 (U{N,E,S,W }, 1, 1) 0.3221(4) 0.3230(4)
0.322120455 · · · exact [4]

PN=300002 (U{N,E,S,W }, 1, 1) 0.3219(3) 0.3226(4)

PN=30002 (I,�1, 1) 0.6360(4) 0.6368(4)
0.63665(8) [21]

PN=300002 (I,�1, 1) 0.6361(3) 0.6364(4)

rectangle has length �300, which is not the case for any aspect ratio we have simulated in a
system with N = 300002 sites.

The results also indicate that the estimate of p(s)
c by Newman and Ziff [10] is valid within

numerical error. This is corroborated by figures 4 and 7, where site percolation does not seem
to show stronger deviations than bond, for which p(b)

c is known exactly.

4. Conclusion and discussion

Our numerical results represent probably the most comprehensive and most up-to-date study
of crossing, spanning and wrapping probabilities. We have presented results for ‘exotic’
cluster types, for which an analytical description is still lacking. With regard to the predictions
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of conformal field theory, our numerical data afford a comparison between numerical and
analytical results, and we give further support to conformal invariance in percolation and other
critical phenomena [25]. We believe that deviations from the predicted behaviour observed in
the literature are most likely due to finite-size effects.

We have also calculated the amplitudes listed in tables 1, 2 and 3, which might be of help
to theorists. For three-legged clusters, we have conjectured the asymptote (2), for wrapping
probabilities of the form (28).
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Appendix

Here we list a few technicalities on how to identify cluster types, etc. The identification
methods are applicable in any simulation of percolation where the boundary can be represented
in the Hoshen–Kopelman (HK) [26] form.

A.1. Simulation method

Our method performs asynchronously parallelized percolation on distributed machines [1].
In principle, the method relaxes all the standard constraints in numerical simulations of
percolation, such as CPU power, memory and network capacity. It is especially suitable for
calculating cluster size distributions and finite-size corrections, crossing probabilities, and,
by applying the corresponding boundary conditions, distributions of wrapping and spanning
clusters on different topologies, e.g. cylinder, torus or the Möbius strip.

The method is based on a master/slave parallelization, where slaves send ‘patches’
(specially prepared borders representing the lattice) to a master node, which ‘glues’ these
patches together. After a path compression, which is essentially of the form of ‘Nakanishi
label recycling’ [27, 28] where bulk sites are considered inactive, the result is a single border
as shown in figure 8. The term ‘gluing’ will be used to indicate that a configuration is updated
to account for a link introduced between two sites or two boundaries. The HK algorithm [26]
provides the data representation, which is the key of this method. Extremely large system
sizes can be simulated.

An example of a border representation is shown in figure 8 (in the following all examples
are based on site percolation). Each site on the border is indexed in a clockwise manner
starting with 1 in the upper left corner. Each site also contains a label. If the label is 0 the site
is not occupied. If it is positive it is interpreted as a ‘pointer’ to the index of another site in the
same cluster. If it is negative, it is called a ‘root’, and the magnitude of the negative number
indicates the size of the cluster the site belongs to. The HK algorithm ensures that all sites of
a cluster form a single tree, with a root that carries a negative label. In this way it is possible
to identify the cluster each site belongs to by its corresponding root. All information about a
cluster is stored at the root site.

It is technically simple to identify the types of all clusters touching the border: the
algorithm scans along a border like that shown in figure 8 and assigns a flag to the root of each
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Figure 8. An example of a labelled border. A negative entry indicates a cluster size, a positive
entry is a pointer to another site and a zero entry indicates that the site is not occupied. The
configuration shown is a border representation of a full lattice as in figure 1. The dashed pointer
applies for periodic boundary conditions along the vertical borders, joining the two highlighted
sites.

(occupied) site it visits, according to the location of the site visited. The flags gathered at each
root then identify the borders that the represented clusters touch. The PN(T, n, r) are based
on the statistics of these flags.

A.2. Identifying spanning and wrapping

Starting from a configuration with open boundaries (for example figure 8), spanning clusters
on a cylinder can be detected easily, by ‘gluing’ the appropriate borders: first the roots are
identified for each pair of sites, which become nearest neighbours due to the new boundary
conditions. Preferably, the root of the smaller cluster is then redirected to the other, i.e. its
label is overwritten by the index of the other root, which, in turn, inherits all properties of the
overwritten root, such as cluster size or border flags. The new pointer resulting from a vertical
gluing is shown as a dashed line in figure 8; clusters of type U{N,S} then span on the cylinder.

It is significantly more complicated to detect wrapping clusters, because these clusters
cannot be defined by properties of individual sites alone.

The simplest solution, which is applicable to any kind of topology, such as a cylinder,
torus or Möbius strip, is to assign to each site an additional set of numbers, which indicates its
distance to the site it is pointing to. This distance can be measured in units of lattice spacings
or, even simpler, in multiples of π : each type of border is mapped to a set of integers like

N → (0, 1) S → (0,−1) E → (1, 0) W → (−1, 0) (A.1)

and for each site an additional flag indicates its location. The distance between two sites
is then the difference between the tuples associated with their location flag. For example,
the distance between W and S is (1,−1). In the open system, each site is assigned a tuple
indicating the distance to the site it is pointing to. The periodic boundary conditions are then
applied by gluing along the vertical borders. Two clusters merge in the way described above,
with the additional assignment of a distance vector to the redirected root site. This distance
vector indicates the distance from the redirected root site to the new root site, given by the
difference between the distances of the glued sites and their roots. In this way, for any site in
a cluster the distance to the root is given by the sum over all distance vectors along the tree to
the root.

If the gluing procedure now comes across two sites on either border, which belong to the
same cluster4, the path length to the root is calculated for each of them. If their difference is
4 This in itself does not indicate that a cluster is wrapping, as a previous encounter of the two clusters may have
merged them.
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Figure 9. The HK representation of the border of the configuration shown in figure 1 with the
hatched square ‘activated’ to allow for a wrapping cluster. The tuples indicate the distance of a
site to the site it is pointing to. These numbers are only given for the two paths which are relevant
for the emergence of a wrapping cluster when the system is ‘glued’ along the W and E borders.
The dashed line in the top right-hand corner indicates the special treatment of a corner, while the
dashed arrows indicate auxiliary pointers. The highlighted sites give rise to a wrapping cluster.

non-zero, a wrapping cluster has been found, the number indicating the winding number as a
multiple of π . In the example in figure 9, the left-hand path has length (1,−1)+(0, 2) = (1, 1),
the right-hand path has length (−1, 1), differing by the expected length (0, 2). It is a topological
fact that higher winding numbers cannot appear on a cylinder.

Corners require special attention, because they belong to two different borders at the same
time. In the example shown in figure 9, all paths shown on the right-hand side have length
(0, 0), apart from the corner site, which is thought of as carrying an ‘internal pointer’ to itself,
connecting the E border to the N border. The internal pointer can be understood as follows: if a
site points to a corner, it has a connection to two borders at once. However, the distance vector
of the pointing site can only indicate the distance to one border. A convention is required to
lift this degeneracy, for example that all pointers pointing towards and away from a corner
site do so with respect to the N or S boundary, never with respect to the E or W boundary.
However, it might happen that another corner is glued to the corner site, or a neighbouring
site is connected to it as a W or E site. In this case, auxiliary pointers are introduced: one
pointer from the connected site to the corner site’s W or E part and another pointer internally
connecting the corner site’s W or E part to the N or S part. In figure 9 these auxiliary pointers
and the sub-partitioning of a corner site are shown with dashed lines.
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