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Abstract
We derive the steady state properties of a general directed ‘sandpile’ model in
one dimension. Using a central limit theorem for dependent random variables
we find the precise conditions for the model to belong to the universality class
of the totally asymmetric Oslo model, thereby identifying a large universality
class of directed sandpiles. We map the avalanche size to the area under
a Brownian curve with an absorbing boundary at the origin, motivating us to
solve this Brownian curve problem. Thus, we are able to determine the moment
generating function for the avalanche-size probability in this universality class,
explicitly calculating amplitudes of the leading order terms.

PACS numbers: 05.65.+b, 45.70.Ht, 89.75.Da

1. Introduction

Sandpile models have played an important role in developing our understanding of self-
organized criticality [1–5]. One important notion is that of universality, the idea that quantities
such as critical exponents and scaling functions are independent of microscopic details of the
model. This has been studied in the context of individual models, but few have determined
general conditions for models to belong to a particular universality class [2, 5–7]. In the
following, we present details of the solution of a general directed one-dimensional sandpile
model introduced in [8] which is a generalization of a model studied in [9, 10]. We use a
central limit theorem for dependent random variables [11] to determine the precise microscopic
conditions for scaling of the moments of the avalanche-size probability. We also argue that
there is an n-dependent crossover length ξn, such that for systems with size L � ξn branching
process behaviour is observed.

The avalanche-size statistics are calculated by mapping the model to the problem of
finding the area under a Brownian curve with an absorbing boundary at the origin, that is,
if x(t) is the trajectory of a Brownian curve such that if x(t ′) = 0 for some t ′ > 0 then
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x(t > t ′) ≡ 0. In the large L limit, the avalanche-size statistics are identical to those for the
area under the Brownian curve after a ‘time’ equal to L; A = ∫ L

0 x(t) dt . This motivated us
to calculate the moment generating function for this area, which is an interesting problem in
its own right as there have been some recent interest in physical applications of the statistics
of the area under Brownian curves [12–14]. This work also relates to that of [2], where it
was found that the avalanche statistics for a two-dimensional sandpile were related to the area
enclosed by two annihilating random walkers which start on the same lattice site.

2. Definition of the model

The model we study is on a one-dimensional lattice of length L where each lattice site,
i = 1, 2, . . . , L, may be in one of n states. The state of site i is denoted by zi , which may take
values 0, . . . , n − 1, and this is interpreted as the number of particles on site i.

At the beginning of each time step a particle is added to site 1: z1 → z1 + 1. This site
may topple a number of times, each toppling redistributing one particle from site 1 to site 2:
z1 → z1 − 1, z2 → z2 + 1. When site 2 receives a particle it may undergo topplings,
redistributing particles to site 3, which in turn may topple, and so on until either a site does
not topple, or site L topples where the redistributed particles leave the system and the time
step ends. The avalanche size, s, is the total number of topplings which occur during a single
time step. The toppling rules are therefore defined through choosing the probability that a site
with z particles will topple so many times upon receiving a particle.

The only restrictions on the topplings are as follows: (i) zi must remain in the range
[0, n − 1]. For instance, a site with zi = 2 may not topple more than three times when
receiving a particle. Moreover, a site with zi = n − 1 which receives a particle must topple
at least once. (ii) When site i topples it redistributes exactly one particle to site i + 1 only.
(iii) The toppling rule is homogeneous and obeys a Markov property in that the probability
that site i topples si times depends only on zi . In fact, the requirement on the homogeneity
can be relaxed and all the following is trivially extended to inhomogeneous toppling rules.
Each site will then have a different stationary state, but provided that the remaining constraints
are obeyed, the scaling of the avalanches will remain unaltered. (iv) There must be some
probabilistic element to the toppling rules. To be precise, there must exist at least one value
of z such that the number of topplings a site in this state undergoes is non-deterministic. This
last restriction discounts purely deterministic toppling rules which lead to trivial dynamics.

Self-organized criticality (SOC) is associated with a stationary state where the avalanche-
size probability, P(s;L), which is the probability of observing an avalanche of size s in a
system of size L, obeys simple finite-size scaling,

P(s;L) = as−τG(s/bL�) for s � 1, L � 1, (1)

where a and b are non-universal constants, τ and � are universal exponents and G is a universal
scaling function. It can be shown that if limL→∞

∫ ∞
1/bL� uk−τG(u) du exists and is non-zero

for k = 1, 2, . . . , then

〈sk〉L ≡
∞∑

s=1

skP (s;L) ∝ L�(k+1−τ). (2)

Hence, for L � 1, the scaling of the moments 〈sk〉L with L is universal and we can determine
the universality class of a model by calculating the exponents � and τ from the scaling of
these moments.

To formulate the model, we use a Markov matrix representation, which is an extension
to the work in [10]. The configuration of a system is {z1, z2, . . . , zL} for which we shall use
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the shorthand notation {zi}. In order to construct a Markov matrix representation, we first
consider a representation for the configuration of a single site, that is, a system of size L = 1.
Such a system can be in one of n stable configurations, z = 0, 1, . . . , n − 1, and therefore
we require an n-dimensional vector space in order to define a probability measure over these
configurations. We therefore construct n-dimensional left and right basis vectors, {〈ez|} and
{|ez〉}, where 〈ez| and |ez〉 are vectors with the (z + 1)th element equal to 1 and all the rest
equal to 0, such that 〈ez|ez′ 〉 = δz,z′ . The configuration of a single site with z particles is then
represented by the basis vector |ez〉1 ≡ |ez〉, where the subscript 1 reminds us that it is the
configuration of one single site. The nL-dimensional vectors representing configurations {zi}
for systems with L sites, |e{zi }〉L, are constructed from these basis vectors

|e{zi }〉L = ∣∣ez1

〉
1 ⊗ ∣∣ez2

〉
1 ⊗ · · · ⊗ ∣∣ezL

〉
1, (3)

where ⊗ is the usual tensor product.
A state vector |Pt 〉L is the weighted sum of basis vectors,

|Pt 〉L =
∑
{zi }

wt
{zi }

∣∣e{zi }
〉
L
, (4)

where the weights wt
{zi } are the probabilities that the system is in the configuration {zi} at time

t, that is wt
{zi } = 〈

e{zi }
∣∣Pt

〉
. Note that the normalization condition requires∑

{zi }
wt

{zi } =
∑
{zi }

〈
e{zi }

∣∣Pt

〉
L

= 1. (5)

The system is evolved by applying operators to the state vector |Pt 〉L. We define a toppling
operator GL which adds a particle to site 1 of a system of size L and carries out all the topplings:

|Pt+1〉L = GL|Pt 〉L, (6)

making it clear that |Pt 〉L is a Markov chain. Using the |ez〉 representation the toppling
operator is an nL × nL matrix where 〈e{z′

i }|LGL|e{zi }〉L is the probability that adding a particle
to a system in the configuration |e{zi }〉L results in the configuration |e{z′

i }〉L after topplings. See
appendix A for an explicit representation of GL for a system with n = 2. The steady state,
|0〉L, is defined as the state which is invariant under application of the toppling operator GL.
It is therefore the right eigenvector of GL with eigenvalue 1,

GL|0〉L = |0〉L. (7)

The corresponding left eigenvector, 〈0|L, satisfies

〈0|LGL = 〈0|L. (8)

Due to conservation of probability, the sum of each column in GL equals 1. This leads to

(1, 1, . . . , 1)GL = (1, 1, . . . , 1), (9)

identifying the left eigenvector of the toppling operator 〈0|L = (1, 1, . . . , 1).
In order to calculate the moment generating function for the avalanche-size probability, it

is convenient to define the operator GL(x) such that

QL,m(x) = 〈0|L [GL(x)]m |0〉L (10)

is the avalanche-size moment generating function over m time steps and

〈sk〉L =
(

x
d

dx

)k

QL,1(x)

∣∣∣∣∣
x=1

≡ Q
(k)
L,1 (11)
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gives the kth moment of the avalanche-size probability in a system of size L. The toppling
operator is then

GL ≡ GL(1). (12)

To illustrate how to construct GL(x), consider the action of adding a particle to site i = 1.
First, we look at the number of particles on that site, z1, and determine the number of times
the site topples using the probabilities given by the toppling rule. Hence, we require n + 1
matrices of dimension n, denoted by Sk , which will act on the first site and remove k particles,
multiplying the final state by the probability that this toppling took place. We then need to
redistribute these particles to site i = 2, which we achieve by acting (GL−1)

k on the remaining
L − 1 sites. This works because adding to site 2 of a system of size L is equivalent to adding
to site 1 of a system of size L − 1 (note G0(x) ≡ 11). Finally, we multiply the remaining state
by a factor xk , which marks the state as having toppled k times, which gives moments of the
avalanche size upon differentiation. This leads us to write the general toppling operator

GL(x) =
n∑

k=0

xk[11 ⊗ GL−1(x)]kSk ⊗ 11⊗L−1, (13)

where 11 is an n × n identity matrix and A⊗N ≡ A ⊗ A ⊗ · · · ⊗ A, N times. The restrictions,
(i)–(iv), on the model give [Sk]ij � 0 for j = i + k − 1 and equal to zero otherwise, that is,

Sk =
∑

z

|ez+k−1〉1Sz,z+k−1〈ez|1, (14)

where the sum is over all z which satisfy both 0 � z � n − 1 and 0 � z + k − 1 � n − 1, and
Sz,z+k−1 is the probability that a site with z particles topples k times on receiving a particle.
Note that particle conservation requires

∑n−1
j=0 Sz,j = 1.

3. Stationary properties

In this section we find the steady state, |0〉L, which is the eigenvector of GL with eigenvalue
1. Consider the single site operator,

G1(x) =
n∑

k=0

xkSk. (15)

We begin by finding the eigenvectors and eigenvalues defined by

〈λi(x)|G1(x) = λi〈λi(x)| (16a)

G1(x)|λi(x)〉 = λi |λi(x)〉, (16b)

where i takes values from 0 to n−1. From the properties of Sk and the normalization condition
we find that

〈λ0(x)| =
(

1

xn−1
,

1

xn−2
, . . . ,

1

x
, 1

)
(17)

satisfies

〈λ0(x)|
n∑

k=0

xkSk = x〈λ0(x)|, (18)
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and so is the left eigenvector of G1(x) with eigenvalue λ0 = x. The corresponding right
eigenvector therefore satisfies

G1(x)|λ0(x)〉 =
n∑

k=0

xkSk|λ0(x)〉 = x|λ0(x)〉, (19)

which determines the precise form of the eigenvector. As the eigenvectors must be normalized,
〈λ0(x)|λ0(x)〉 = 1, we may write

|λ0(x)〉 =




p0x
n−1

p1x
n−2

...

pn−1x
0


 , (20)

where pz is the probability that a site contains z particles in the stationary state and∑n−1
z=0 pz = 1. We cannot, however, determine pi any more precisely without details of

Sk and these will have to be calculated separately in each case.
If the matrix G1 is a regular Markov matrix, that is, there exists an integer N � 1 such

that
[
GN

1

]
ij

> 0 for all i, j , then we have found the unique stationary state of the single site
operator,

|0〉 = |λ0(1)〉 =




p0

p1

...

pn−1


 . (21)

In the following we shall always assume that G1 is regular. The discussion of the necessary
and sufficient conditions for a regular G1 is non-trivial and we shall not discuss it in detail.
We shall simply note that this requirement, along with restrictions (i)–(iv), still leaves an
abundance of choice for the toppling rules. For instance, it is easy to demonstrate that any
tridiagonal matrix with positive definite elements is regular. Hence, any toppling rule which
always allows a site to topple zero times, once or twice on receiving a particle (with the usual
exceptions for z = 0 and z = n − 1) will automatically lead to an acceptable toppling rule.

Now that we have found the stationary state of the single site operator G1, we shall proceed
to determine the stationary properties of the full operator GL by induction. We introduce the
notation |λi(x)〉L as the ith eigenvector of GL(x) such that

GL(x)|λi(x)〉L = λL,i(x)|λi〉L, (22)

where λL,i(x) is the ith eigenvalue of GL(x). We now make the ansatz that these eigenvectors
may be expressed as

|λi+j (x)〉L = |λj (xλL−1,i (x))〉1 ⊗ |λi(x)〉L−1. (23)

Operating on the left-hand side with GL(x) we find

GL(x)|λi+j (x)〉L =
n∑

k=0

(xλL−1,i )
kSk|λi+j (x)〉L (24)

= G1(xλL−1,i )|λj (xλL−1,i (x))〉1 ⊗ |λi(x)〉L−1 (25)

= xλj (xλL−1,i )|λi+j (x)〉L. (26)
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So, we find that |λi+j (x)〉L is indeed an eigenvector of GL(x) with eigenvalue λL,i+j =
λj (xλL−1,i ). Hence, by induction, and recalling that we have assumed GL is regular, the
unique steady state is

|0〉L = |0〉1 ⊗ |0〉L−1 = |0〉⊗L
1 . (27)

This is a product state, which means that it has no spatial correlations and indeed we find
that avalanches in small systems are uncorrelated, leading to branching process behaviour.
However, we will show that in larger systems temporal correlations develop which bring the
avalanche behaviour away from the branching process to that characterized by the area under
a Brownian curve.

4. Toppling probability distribution

In this section we define the toppling probability distribution and determine some of its
properties which will be used in the following section. The toppling probability distribution,
P(s;L,m), is defined as the probability that a system of size L in the stationary state undergoes
a total of s topplings on receiving m particles. In principle, it may be calculated from the
moment generating function

P(s;L,m) = 1

s!

ds

dxs
〈0|L[GL(x)]m|0〉L

∣∣∣∣
x=0

(28)

although this is rarely a simple task in practice. Recall that we only consider toppling rules
obeying the restrictions (i)–(iv) with a unique stationary state. First, we show that P(s;L,m)

has a mean value

Q
(1)
L,m =

∞∑
s=0

sP (s;L,m) = mL, (29)

which is what we would expect by considering conservation in the stationary state since every
particle that enters the system must leave through the open boundary. We write down the
equation for the first moment

Q
(1)
L,m = d

dx
〈0|L[GL(x)]m|0〉L

∣∣∣∣
x=1

= m

n∑
k=0

〈0|1kSk|0〉1
(
1 + Q

(1)
L−1,1

)
. (30)

Multiplying (19) on the left by 〈λ0(x)| and differentiating, we find

〈λ0(x)|
n∑

k=0

kxk−1Sk|λ0(x)〉 = 1 (31)

and so 〈0|1
∑n

k=0 kSk|0〉1 = 1 giving Q
(1)
L,m = m

(
1 + Q

(1)
L−1,1

)
, with Q

(1)
1,1 = 1, which has the

solution Q
(1)
L,m = mL.

Next, we show that the avalanche probability may be factorized. We define P(s, t;m,

1, L) as the joint probability that a system of size 1 + L, which has received m particles,
undergoes s topplings in the first site and t in the remaining L sites:

P(s, t;m, 1, L) = 1

s!

ds

dxs
1

1

t!

dt

dxt
L

〈0|L+1[GL+1(x1, xL)]m|0〉L+1

∣∣∣∣
x1=0xL=0

, (32)

where

GL+1(x1, xL) ≡
n∑

k=0

xk
1 Sk ⊗ [GL(xL)]k. (33)



One-dimensional directed sandpile models and the area under a Brownian curve 9113

By expanding the bracket in (32) and carrying out the differentiation with respect to x1, we
find

P(s, t;m, 1, L) = 〈0|1
∑
{ki }

δ

(∑
i

ki − s

)
m∏

i=0

Ski
|0〉1

1

t!

dt

dxt
L

∣∣∣∣
x=0

〈0|L (GL(xL))s |0〉L, (34)

where δ(x) is the Kronecker delta, δ(0) = 1 and δ(x) = 0 for x �= 0. Identifying the first scalar
product as simply the probability that a site receiving m particles topples s times, P(s;m, 1),
we have

P(s, t;m, 1, L) = P(s;m, 1)P (t; s, L). (35)

This is simply a statement about the fact that the directed nature means that sites i = 2, . . . , L

do not have any influence on site i = 1. Hence, if we consider si , which is the number of
times site i topples during a particular avalanche, this result tells us that in the stationary state
the sequence s1, s2, s3, . . . , sL for a single avalanche forms a Markov chain. This will become
important later on when we come to map the avalanche size s = ∑L

i=1 si to the area under a
random walker.

We now derive three important results for the single site toppling probability distribution,
P(s; 1,m), which we will use later to make the mapping of avalanches to the area under a
Brownian curve more rigorous. First, we show that the range of s for which P(s; 1,m) has
support has an upper bound equal to 2n− 1. Second, we show that P(s; 1,m) has a stationary
distribution for large m,

lim
m→∞ P(s; 1,m) =

∑
z

pzp(m−s)+z, (36)

where the sum is over all 0 � z � n − 1 satisfying 0 � m − s + z � n − 1. Note that this is a
function of m − s only. Finally, we consider the width of P(s; 1,m) around its mean value,

Q̃
(2)
1,m ≡

∞∑
s=0

(s − m)2P(s; 1,m) (37)

and show that Q̃
(2)
1,m > 0, for all m. These results lead to a further result that the width is finite

and non-zero for all m, and approaches a constant for m → ∞, which, again, will become
important later when we map the problem to a random walker.

The first of these results follows immediately from bulk conservation of particles.
Consider a site with z particles, which receives m particles. After s topplings have taken place
it will have z′ = z+m−s particles. Since both z and z′ must lie between 0 and n−1, P (s; 1,m)

may only have non-zero values for m − n + 1 � s � m + n − 1. Hence, P(s; 1,m) = 0 for
|s − m| > n − 1 since such topplings are always impossible and Q̃

(2)
1,m � (n − 1)2 < ∞ for

n < ∞. Hence, Q̃
(2)
1,m is finite because the sum in (37) has at most 2n − 1 non-zero terms.

Next, we consider the probability distribution, Pm(z′|z), which is the probability that a
site having z particles which receives m particles is left with z′ particles after s = z′ − z + m

topplings. In the stationary state, this is related to P(s; 1,m) by

P(s; 1,m) =
n−1∑
z=0

pzPm(m + z − s|z). (38)

Each time a site receives one of the m particles, it will topple a number of times and the number
of particles on the site, z, will change intermittently. The sequence of values z passes through
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forms a Markov chain. Hence, we may write down the Chapman–Kolmogorov equation for
Pm(z′|z),

Pm+1(z
′|z) =

n−1∑
z′′=0

P1(z
′|z′′)Pm(z′′|z). (39)

The probabilities P1(z
′|z′′) are related to the single site operator, G1 by P1(z

′|z′′) =
〈ez′ |1G1|ez′′ 〉1 and so we introduce the matrix Pm, such that Pm(z′|z′′) = 〈ez′ |1Pm|ez′′ 〉1 and
(39) becomes

〈ez′ |1Pm+1|ez〉1 =
n−1∑
z′′=0

〈ez′ |1G1|ez′′ 〉1〈ez′′ |1Pm|ez〉1 = 〈ez′ |1G1Pm|ez〉1. (40)

Thus Pm+1 = G1Pm and, since G1 is a regular Markov matrix, there will be a unique stationary
distribution P∞ satisfying

P∞ = G1P∞. (41)

The only non-trivial solution to (41) is

P∞ = (|0〉1, |0〉1, . . . , |0〉1), (42)

where we have noted that the stationary state, |0〉1, is unique and conservation of probability
requires

∑n−1
z′=0〈ez′ |1P∞|ez〉1 = 1. This leads us to

lim
m→∞ Pm(z′|z) = pz′ (43a)

lim
m→∞ P(s; 1,m) =

∑
z

pzp(m−s)+z, (43b)

where we have noted that 〈ez′ |0〉1 = pz′ and the sum is over 0 � z � n − 1 satisfying
0 � m − s + z � n − 1. Finally, (43b) leads to

lim
m→∞ Q̃

(2)
1,m =

n−1∑
s=−n+1

s2
∑

z

pzpz−s , (44)

where the sum is over all 0 � z � n − 1 such that 0 � z + s � n − 1. This limit exists, is
non-zero and is finite for n < ∞.

Finally, we show that Q̃
(2)
1,m > 0 for all m. Consider again the probability distribution

Pm = [G1]m and the equation for the width,

Q̃
(2)
1,m =

∞∑
s=0

(s − m)2
n−1∑
z=0

pzPm(m + z − s|z). (45)

For Q̃
(2)
1,m∗ = 0, for some m∗, we require

pz〈ez′ |1Pm∗ |ez〉1 = pzδz,z′ , (46)

which follows from normalization of Pm and the fact that (45) has no negative terms. This
implies that, for all 0 � z � n − 1 for which pz > 0,

[G1]Nm∗ |ez〉1 = |ez〉1, (47)

where N > 0 is an integer. However, since G1 is regular, there exists an integer N∗ such that
there is only one vector, |0〉1, satisfying

[G1]N |0〉1 = |0〉1 (48)

for any N > 0. If there is more than one value of z for which pz > 0 this contradicts (47),
and so Q̃

(2)
1,m is never zero. If, however, we have a single value, z∗, such that pz = δz,z∗ , then

|0〉1 = |ez∗ 〉 and (47) does not lead to a contradiction. However, in this case the dynamics are
trivial as the steady state has all sites with exactly z∗ particles and any particle added to the
system will pass through immediately with exactly L topplings.
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5. Mapping to area under random walker

We now come to the main result we need in order to determine the avalanche statistics for the
directed sandpile, which is that it may be mapped exactly onto a random walker on [0,∞)

with an absorbing boundary at the origin. After adding a particle at the beginning of a time
step, site i = 1 will topple s1 � 0 times with probability P(s1; 1, 1). These s1 particles are
redistributed to site i = 2, which will topple s2 � 0 times with probability P(s2; 1, s1). The
probability of site 2 toppling s2 times, independent of s1, which we denote φ2(s2), is

φ2(s2) =
∞∑

s1=1

P(s2; 1, s1), (49)

which follows from (35). Defining φi(x) as the probability that site i topples x times
independent of previous topplings, we have

φi+1(x) =
∞∑

y=1

φi(y)P (x; 1, y) for i = 1, . . . , L − 1. (50)

This is a random walker on the interval [0,∞) with the probability of hopping from y to x
equal to P(x; 1, y). There is an absorbing boundary at x = 0 since any non-toppling site stops
the avalanche. If we denote the trajectory by x(i), i = 0, . . . , L, then the avalanche size is

s =
L∑

i=1

x(i) (51)

with x(0) = 1, which is the area under the trajectory x(i).
Note that the random walker described by (50) has jumps which are correlated since the

probability of hopping from y to x depends explicitly on y and x, and not simply the difference
x −y. This means we must be careful if we wish to use the results for the uncorrelated random
walker, or its continuum limit. However, in [11], the author remarks that for martingales
with a fixed maximum jump size exhibiting stationarity and ergodicity, there is a quantity,
s2
i = E

∑i
n=1 σ 2

n , such that

lim
i→∞

P [x(i)/si � x] = (2π)−1
∫ x

−∞
e− 1

2 y2
dy, (52)

where σ 2
n is the variance of the nth step in the process.

To apply this result, we extend the random walker described by P(x; 1, y) to the full
space, (−∞,∞) for we may add in the effect of the boundaries later by use of mirror charges
[15]. As we have assumed the existence of a unique stationary state and have proven that
Q

(1)
1,m = m and 0 < Q̃

(2)
1,m � (n − 1)2, all that is left to prove is ergodicity. This is equivalent

to showing that the set of recurrent states of the random walker are irreducible, that is, the
probability of reaching any recurrent state i from any other recurrent state j is non-zero. Two
states, i and j , which have this property are said to intercommunicate, denoted by i ↔ j .
We consider the fact that G1 is assumed to be regular, in which case there exists an N such
that 〈ez|[G1]m|ez′ 〉 > 0 for all z, z′ ∈ [0, n − 1] and m � N . Hence, all states i, j � N

intercommunicate since P(m ± 1; 1,m) > 0 for all m � N . We also note that 0 ↔ N and
1 ↔ N which follow respectively because the avalanche should always be able to finish in an
infinite system, and arbitrarily large avalanches can be initiated from a single added particle.
When we consider states k < N , we note that there can only be a finite number of these which
do not intercommunicate with state 1. Since there is a unique stationary state which includes
all states i � N , these non-intercommunicating states must be transient and ergodicity follows.
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Hence, we have now proven that for a toppling rule obeying the restrictions (i)–(iv) with a
unique stationary state (i.e. G1 is regular), the distribution of the random walker on (−∞,∞)

will approach the normal distribution given by (52). This means that, for long times, such a
random walker with dependent jump sizes will have the statistics of ordinary diffusion with
diffusion constant 2D = sn. Hence, by adding mirror charges to remove paths that cross
x = 0, we are able to calculate the large L statistics of avalanches directly from the area under
the Brownian curve, which is our justification for calculating moments in the continuum limit
in the following section. Of course, we could have simply gone ahead and carried out the
calculations in the continuum without the above analysis and demonstrated that they correctly
modelled the numerics. However, had we done so we would not have had a precise idea of
how trustworthy these calculations were and where we expect them to break down.

6. Moments of the area under the Brownian curve

Having proven the correspondence between avalanches and a random walk of independent
identically distributed step sizes, we proceed to calculate the moment generating function for
the area under the Brownian curve. The authors are aware of only one study which investigates
the finite-size effects due to stopping the curve after some time, which corresponds to the finite
size of the sandpile [10] and since our analysis goes further than that in [10], we present it
here in some detail. The following calculation will be carried out using notation and language
suitable for the random walker description of the problem. Hence, the Brownian curve will
be described by a trajectory x(t) where x is interpreted as ‘space’ and t is ‘time’ with the
diffusion constant D having units Length2 Time−1. We do this because the path integral
approach we are about to employ is more intuitive in this language1. The connection to the
sandpile is made by noting that the number of topplings of site i is equal to x(t = i) and
the system size, L, is equal to the time at which we stop the curve x(t). We begin with the
generating function

〈e−λA〉 =
∫ ∞

0
e−λAP (A; x, L) dA, (53)

where P(A; x, L) is the probability that a random walker starting at x has the area under its
trajectory equal to A after time L. If we denote the trajectory of the walker x(t), then the
curves contributing to P(A; x, L) are all those which satisfy∫ L

0
x(t) dt = A. (54)

Note that we have an absorbing boundary at x = 0, such that if x(t ′) = 0 for any t then
x(t > t ′) ≡ 0. Hence, there are two contributions to P(A; x, L): that due to trajectories
which do not cross the absorbing boundary, x(L) > 0 and those which cross the absorbing
boundary at some time t � L, see figure 1.

We shall treat these separately, writing

〈e−λA〉 =
∫ ∞

0
dA

∫ ∞

0
dy e−λA	(A, y, L; x) +

∫ ∞

0
dA

∫ L

0
dt e−λA
(A, t; x) ≡ I1 + I2,

(55)

1 We should stress that in this picture we consider the Brownian curve x(t) as existing on the entire interval [0, ∞)

and we measure the area up to the point L, A = ∫ L

0 x(t) dt . Hence, what is a boundary in the sandpile picture (the
open boundary at site i = L) is not considered a boundary in the Brownian curve picture.
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L t

x(0)

x(t)

Figure 1. The area under the Brownian curve with an absorbing boundary. The statistics consist
of contributions due to curves x(t) which are non-zero at t = L (solid line), as well as those which
cross the boundary at some time t < L (dashed line).

where 	(A, y, L; x) is the probability that a trajectory beginning at x(0) = x passes through
x(L) = y with area A, and 
(A, t; x) is the probability that a trajectory beginning at x(0) = x

first touches the absorbing boundary at time t, with area A.
Using standard path integral methods, we may write down

	(A, y, T ; x) = lim
g→∞

∫
x(0)=x

x(L)=y

Dx(t)δ

(∫ L

0
x(t) dt − A

)
exp

(
−

∫ T

0
[Dẋ2 + gδ(x)] dt

)
,

(56)

where ẋ = dx(t)/dt . Taking the integral over A we find that the first term on the right-hand
side of (55) is

I1 = lim
g→∞

∫ ∞

0
dy

∫
x(0)=x

x(L)=y

Dx(t) exp

(
−

∫ L

0
[Dẋ2 + λx + gδ(x)] dt

)
. (57)

Following the lines of [12], we note that this is simply the path integral for a Brownian particle
with a linear potential for x ∈ (0,∞) and an infinite potential at x = 0. Hence, we write this
term as

I1 = lim
g→∞

∫ ∞

0
〈y| e−ĤL|x〉 dy, (58)

where Ĥ = −D ∂2

∂x2 + λx + gδ(x). The resulting equation of motion, ∂
∂t

|φ〉 = −Ĥ |φ〉, is
easily solved using Airy functions which can be used to form an orthonormal basis on
[0,∞) [16],

I1 =
∞∑

j=1

Ai
((

λ
D

)1/3
x + xj

) ∫ ∞
xj

Ai(z) dz

Ai′(xj )2
exj λ

2/3D1/3L, (59)

where xj are the zeros of the Airy function, x1 = −2.338 . . . , x2 = −4.087 . . . etc.
In a similar way, for the second term on the right-hand side of (55), we have


(A, t; x) = D
∂

∂y
	(A, y; x, t)

∣∣∣∣
y=0

, (60)

since this is the current of diffusing particles with area under the curve equal to A, leaving the
system at time t. Hence

I2 =
∫ L

0

∂

∂y
〈y| e−Ĥ t |x〉

∣∣∣∣
y=0

dt =
∫ L

0
λ2/3D1/3

∞∑
j=1

Ai
((

λ
D

)1/3
x + xj

)
Ai′(xj )

exj λ
2/3D1/3t dt. (61)
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In order to proceed, we use the fact that the leading order L dependence for each moment
comes from terms linear in x. In [10] it was shown that if the moment generating function is
written as

〈An〉 = (−1)n
∂n

∂λn
〈e−λA〉

∣∣∣∣
λ=0

≡ n!ψn(x, L), (62)

then φn(x, L) may be determined recursively

ψn(x, L) =
∫ ∞

0
dx ′

∫ L

0
dt x ′ψn−1(x

′, t)G(x, L − t; x ′), (63)

where G(x, t; x ′) is the propagator for the diffusion equation with appropriate boundaries,

G(x, t; x ′) = e− (x−x′)
4Dt

2

− e− (x+x′)
4Dt

2

√
4πDt

. (64)

If we define the ‘current’

jn(L) = ∂

∂x
ψn(x, L)

∣∣∣∣
x=0

, (65)

then if jn(L) is non-zero, ψn(x, L) is proportional to x to lowest order. In this case

jn(L) =
∫ ∞

0
dx ′

∫ L

0
dt

x ′2
√

4π

ψn−1(x
′, t)

[D(L − t)]3/2
e− x′2

4D(L−t) (66)

and so jn(L) > 0 for n > 0 since the integrand is always positive definite. Hence, all moments
are proportional to x to lowest order. The fact that the terms linear in x will also be the highest
order in L follows from dimensional analysis. If we write down the expansion of a moment in
powers of x, then each term must have the same dimension. By considering the dimensions
of the available quantities, such an expansion must take the form

〈An〉 = xCnD
(n−1)/2L(3n−1)/2 +

∞∑
k=2

xkCn,kD
(n−1−2k)/2L(3n−1−2k)/2, (67)

where Cn,k are simply more coefficients with no x,D or L dependence. Hence, the term of
lowest order in x will have the highest order L dependence.

Taylor expanding I1 and I2 to first order about x = 0,

I1 ≈ x

(
λ

D

)1/3 ∞∑
j=1

∫ ∞
xj

dz Ai(z)

Ai′(xj )
exj λ

2/3D1/3L ≡ J1 (68a)

I2 ≈ xλ

∫ L

0

∞∑
j=0

exj λ
2/3D1/3t dt ≡ J2. (68b)

Note, however, that this approximation is not valid for the zeroth moment, 〈A0〉 = 1, since it
is not proportional to x. J1 and J2 are now in similar forms to equations appearing in [12].
They calculate the quantity

P̃ (λ, L) = √
π2−1/6(λL3/2)1/3

∞∑
j=1

∫ ∞
xj

Ai(z) dz

Ai′(xj )
exj λ

2/32−1/3L =
∞∑

n=0

(−λ)n

n!
anL

3n/2, (69)

where an have been calculated in [17]. We simply quote the first few values,

a0 = 1, a1 = 3

4

√
π

2
, a2 = 59

60
, a3 = 465

512

√
π

2
, a4 = 5345

3696
. (70)
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Apart from a few multiplicative prefactors, (69) differs from (68a) only by the fact that the
former uses D = 1/2. We therefore have to reinsert the diffusion constant, D, which they
assumed equal to 1/2, but this is easily done by considering the dimensions of the results. We
note that J1 is a dimensionless function, and so

J1 =
(

1
2

D

)γ

x

(
λ

D

)1/3 21/6

√
π

(λL3/2)−1/3P̃ (λ, L), (71)

where γ is chosen such that J1 is dimensionless. It is then easy to show that γ = 1/6 − n/2
and

J1 = x

∞∑
0

(−λ)n

n!
cnD

(n−1)/2L(3n−1)/2, (72)

where

cn = 2n/2an√
π

. (73)

We may carry out an identical procedure for J2. The equivalent quantity in [12] is

P̃ (λ, L) =
√

2π(λL3/2)

∞∑
j=0

exj λ
2/32−1/3L =

∞∑
n=0

(−λ)n

n!
bnL

3n/2, (74)

where, again, bn have been calculated in [17], the first few values being

b0 = 1, b1 = 1

2

√
π

2
, b2 = 5

12
, b3 = 15

64

√
π

2
, b4 = 221

1008
. (75)

Following the same steps as above we find

J2 = x

∞∑
n=0

(−λ)n

n!
2n/2 bn

2
√

π
D(n−1)/2

∫ L

0
t3(n−1)/2 dt = x

∞∑
n=0

(−λ)n

n!
dnD

(n−1)/2L(3n−1)/2,

(76)

where

dn = 2n/2 bn

(3n − 1)
√

π
. (77)

Hence we have

〈e−λA〉 = 1 + x

∞∑
n=1

Cn

(−λ)n

n!
D(n−1)/2L(3n−1)/2 + O(x2), (78)

where Cn = cn + dn and the first few values are

C1 = 1, C2 = 32

15
√

π
, C3 = 15

8
, C4 = 4064

693
√

π
. (79)

The first two values are in perfect agreement with those derived in [10], and the authors are
unaware of any previous calculations of Cn for n > 2. Thus we may immediately identify the
exponents τ = 4/3 and � = 3/2, and the amplitudes allow us to compute universal amplitude
ratios, which we will use later to compare the numerics against theory.
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6.1. Crossover from branching process

The convergence of φi(x) to the normal distribution occurs only as i → ∞, and hence the
results above are only valid for L → ∞. In using the Brownian curve instead of the exact
curve described by P(s; 1,m) we have taken a hydrodynamic limit and therefore thrown away
any information about the statistics of the process for small L. It is natural, therefore, to ask
how we expect the results to differ in this regime. We propose the existence of an n-dependent
crossover length, ξn, such that the above scaling analysis is valid for L � ξn. We argue that
for smaller systems, 1 � L � ξn, we expect to see scaling corresponding to the branching
process.

Consider adding a particle to the first site. If the probability that the site has z particles,
pz, has support for all z ∈ [0, n − 1], then for n � 1 it is likely that 0 � z � n − 1. In this
regime we may assume that the number of times the site topples due to this added particle,
which we denote by s1, is largely independent of z. Site 2 therefore receives s1 particles, each
of which may cause it to topple s

j

2 times, i = 1 . . . s1, with the total number of topplings of
site 2, s2 = ∑

j s
j

2 . While z remains far from 0 and n − 1, s
j

2 will be largely uncorrelated
and by continuing this argument to more sites, we see that while si remain small each site
will topple nearly independently. However, as we continue through the system to higher i the
si will begin to see large fluctuations and the avalanches will become correlated, assuming
the scaling of the previous section. Hence, we argue that for systems with 1 � L � ξn, the
avalanches will resemble those of the uncorrelated branching process with exponents τ = 3/2
and � = 2 [18]. For larger systems, L � ξn, temporal correlations emerge in the avalanches
and τ = 4/3,� = 3/2.

The fact that the above argument relies on realizations where pz has support for a large
range of z indicates that the crossover length ξn depends on the details of the toppling rules and
as such cannot be thought to have any ‘universal’ qualities. Indeed, we have not specified how
the toppling rules in a realization should be altered as n is increased, and so it is impossible to
say anything a priori about the behaviour of ξn.

7. Numerics

We now support our claims with numerics by demonstrating that the correct scaling (with
crossovers—see previous section) occurs for a particular realization of this directed sandpile
model. In order to study the scaling we choose a realization such that it is clear how to
generalize to higher n. The only remaining difficulty is to find the correct variance to put
into the equations when we come to compare with numerics. In all that follows, we use
2D = Q̃

(2)
1,∞ as we find that it fits the data very well.

We compare the scaling predicted above with numerics from a realization with the
following toppling rules: a site i, 1 < zi < n − 1, which receives a particle will topple
one, two or three times with probability 1/8 or will not topple with probability 5/8. A site
with zi = 0 will topple once with probability 3/8, a site with zi = 1 will topple once with
probability 2/8 and twice with probability 1/8 and a site with zi = n − 1 will topple once
with probability 6/8, and two or three times each with probability 1/8. A site with zi = n − 1
has to topple at least once in accordance with restriction (i).

We expect 〈s2〉 to scale with the system size

〈s2〉L ∼
{
L3 1 � L � ξn,

L5/2 L � ξn

(80)

where ξn is a correlation length with some (as yet unknown) n dependence. These results have
been confirmed and are shown in figure 2.
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Figure 2. Numerical results for n = 4, 8, 16, 64. The errors for both graphs were calculated
using Efron’s Jackknife [19]. (a) The rescaled second moment 〈s2〉L versus system size. For
large systems this is a constant for all values of n. (b) The moment ratio g3(L). For large L this
approaches the constant value g3 ≈ 1.29 for all values of n.
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Figure 3. Numerical results for n = 4, 8, 16, 64. The errors for both graphs were calculated using
Efron’s Jackknife [19] and are approximately the same size as the symbols. The moment ratios
g3(L) (a) and g4(L) (b). For large L these approach the constant values g3 ≈ 1.29 and g4 ≈ 1.9
respectively for all values of n. The dashed lines indicate the exact values g3 = 1.2942 . . . and
g4 = 1.8975 . . . , in excellent agreement with the numerics.
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We also analyse the moment ratios defined by

gk(L) = 〈sk〉L〈s〉k−2
L

〈s2〉k−1
L

. (81)

It is a straightforward calculation to show that, for an avalanche probability given by (1), gk(L)

approach universal values for L → ∞. These values are simply ratios of the amplitudes Cn

calculated in section 6,

gk ≡ lim
L→∞

gk(L) = Ck

Ck−1
2

. (82)

This agrees with the numerics, as illustrated in figure 3 for g3(L) which appears to converge
to a universal value of g3(∞) ≈ 1.29, in excellent agreement with the theoretical prediction
g3 = 153π/213 = 1.294 . . . as well as numerics for a different realization published elsewhere
[8]. This supports our claim that the L → ∞ limits of the gk(L) are indeed universal. Note
also that ξn has a notably different n dependence in this model than in the one presented in [8].
In this case, ξn saturates to a constant value for large n, meaning that for large n the crossover
occurs at the same value of L. This is because the support of pz is finite for n → ∞.

8. Conclusion

We have found the stationary state avalanche-size distribution for a general n-state directed
sandpile model. The avalanches can be mapped onto a random walk of dependent random
variables and, using an applicable central limit theorem, we have shown that under a broad set
of conditions the moments scale with τ = 4/3 and � = 3/2. We also note that this value of
τ agrees precisely with that obtained in [13], which calculates the probability distribution in
the infinite system size limit. We have also calculated the moment generating function for the
area under a random walker with an absorbing boundary, and found a relation for the moment
amplitudes in terms of those already known for other Brownian processes.
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Appendix A. Explicit example: n = 2

In this section we calculate the steady state properties of an n = 2 model, which is a
generalization of the model studied in [10], and compare predictions to numerical simulation.
For n = 2, the most general model we can write down, which obeys the rules (i)–(iv), is

S0 =
(

0 0
α 0

)
, (A.1)

S1 =
(

1 − α 0
0 1 − β

)
, (A.2)

S2 =
(

0 β

0 0

)
, (A.3)

where 0 � α � 1 is the probability that a site with z = 0 does not topple on receiving a
particle and 0 � β � 1 is the probability that a site with z = 1 topples twice on receiving a
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Figure A1. Numerical results for Q̃
(2)
1,∞ for α = 1 as a function of β with data (squares) compared

against the values predicted by (A.10) (solid line). The data were obtained by measuring Q̃
(2)
1,m for

large m and estimating the asymptotic value. Comparison is made across the whole range of β and
the inset shows data in the vicinity β → 1. Note that the agreement is excellent right up to β = 1.
Typical error bars for the numerical data are the size of the squares.

particle. Hence, the single site toppling matrix is

G1(x) =
(

x − αx βx2

α x − βx

)
. (A.4)

We now proceed to calculate the steady state properties of this model, following the prescription
given in 3. G1(x) has eigenvalues λ = x, µ = x(1 − α − β) and eigenvectors

|eλ(x)〉 = 1

α + β

(
βx

α

)
, (A.5)

〈eλ(x)| =
(

1

x
, 1

)
, (A.6)

|eµ(x)〉 =
(−x

1

)
, (A.7)

〈eµ(x)| = 1

α + β

(−α

x
, β

)
. (A.8)

Hence, the eigenvector for the stationary state is

|0〉L = |eλ(0)〉⊗L =
(

1

α + β

(
β

α

))⊗L

(A.9)

valid for |µ| �= 1.
From these results it follows immediately:

Q̃
(2)
1,∞ = p0p1 + p1p0 = 2

αβ

α + β
(A.10)

and hence, from (78) and using 2D = Q̃
(2)
1,∞,

〈s2〉L ∼ 32

15(α + β)

√
αβ

π
L5/2, (A.11)

in perfect agreement with numerics, see figures A1 and A2. However, it should be noted that
for α and β both approaching 1 the random walker it describes will spend more and more time
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Figure A2. Numerical results for the rescaled second moment 〈s2〉L/L5/2 for α = 1 (a) as a
function of β for L = 256 (∗), 1024 (◦), 4096 (�), 16 385 (�), 65 536 (�) and 131 072 (×). (b)
Rescaled second moment 〈s2〉L/L5/2 for β = 0.95 versus inverse system size. The dashed line is
the theoretical value. The measurements appear to converge towards the theoretical line large L,
supporting our claim that the deviation is a finite size effect.

on either only odd or only even sites. Hence, it will take longer times (larger system sizes)
for the statistics to reach the asymptotic values and so we expect very strong corrections to
scaling for α, β → 1. When α = β = 1, we no longer have a unique stationary state and so
scaling is not observed.

Appendix B. Calculating the amplitudes Cn

The amplitudes an and bn appearing in 6 can be calculated using the methods outlined in
[12, 17]. For an we define

an = (
√

2)−n �(1/2)n!

�
(

3n+1
2

) Rn, (B.1)

where Rn are constructed through the following recursion relations:

Rn = βn −
n∑

j=1

γjRn−j (B.2)

βn ≡ γn +
3

4
(2n − 1)βn−1 (B.3)
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Table B1. Tabulated values of Cn and gn.

n Cn gn

1 1 1
2 32

15
√

π
1

3 15
8

3375
8192 π

4 4096
693

√
π

47 625
78 848 π

5 2875
448

145 546 875
469 762 048 π2

6 1 219 336
51 051

√
π

38 580 553 125
71 374 471 168 π2

7 745 039
24 576

2 828 819 953 125
8796 093 022 208 π3

8 25 796 624 240
200 783 583

√
π

10 202 766 423 046 875
15 969 609 677 012 992 π3

9 214 422 265
1171 456

549 540 812 759 765 625
1288 029 493 427 961 856 π4

10 15 033 906 553 126
17 468 171 721

√
π

3 567 616 496 493 767 578 125
3793 868 231 748 622 483 456 π4

γn ≡ �(3n + 1/2)

�(n + 1/2)

1

(36)nn!
. (B.4)

Similarly, for bn

bn = 4(
√

2)−n �(1/2)n!

�
(

3n−1
2

) Kn (B.5)

Kn ≡ 3n − 4

4
Kn−1 +

n−1∑
j=1

KjKn−j . (B.6)

Putting these together and rearranging slightly, we find that the amplitudes Cn are given by

Cn = n!

�
(

3n+1
2

) (Rn + 2Kn). (B.7)

We tabulate the first ten values of Cn, along with the universal amplitude ratios gn = Cn

/
Cn−1

2
in table B1.
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