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ABSTRACT. The Bak, Tang, and Wiesenfeld cellular automaton [Phys. Rev. Lett. 59,
381, (1987)] is analysed with respect to the dynamical behavior. The scaling of the power
spectrum derives from the assumption that the instantaneous dissipation rate of the indi-
vidual avalanches obeys a simple scaling relation. Primarily, the results of our work show
that the flow of sand down the slope does not have a 1/f power spectrum in any dimension.
The power spectrum behaves as 1/f2 in all the dimensions considered.

1. Introduction

It has been a long-standing puzzle why 1/f power spectra are seen in a variety of physical
systems. Also, the occurrence of spatial fractal structures has been realized as an empirical
fact in many different systems, although a proper understanding of the physical origin is
still lacking. In a recent paper by Bak, Tang, and Wiesenfeld [1] (BTW), it was suggested
that the frequent occurrence of 1/f noise and fractal structures is the generic temporal
and spatial characteristic of a dynamical critical state into which dynamical systems with
many spatial degrees of freedom evolve naturally. Unlike phase transitions in a equilibrium
system, a driven dissipative dynamical many-body-system reaches the critical state without
the need to fine tune the system parameters, i.e., the critical state studied by BTW is an
attractor of the dynamics. This phenomena of self-organized criticality (SOC) may very
well provide a connection between the occurrence of 1/f noise and fractal structures, as
well as being the physical origin of these two intriguing phenomena.

In order to visualize the basic idea of self-organized criticality: Imagine a sunny day
at the beach and a square table. We begin sprinkling grains of sand on randomly chosen
places on the table, one grain at a time. Eventually, we end up with only one big sandpile.
At some point this pile ceases to grow. The pile has reached a statistically stationary state,
and additional grains of sand will ultimately fall off the pile by means of avalanches.

In order to examine the phenomenon of self-organized criticality, BTW [1] introduced
a cellular automaton (CA). A CA involves discrete space coordinates and discrete time
steps. Furthermore, the physical quantities, that are connected with the lattice sites, only
take on a finite set of discrete values. The state of the CA is completely specified by the
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values of the physical variables on each site. The dynamical rules for the physical variables
determine the evolution of the model. The dynamical rules in the BTW model, at least
intuitively, resemble the dynamics of a sandpile: A signal is transmitted from a local site
to its nearest neighbors when a dynamical integer variable exceeds a threshold value.

2. The Power Spectrum

Given a set of canonical basis vectors {e;},{ = 1,:--,d, let r; (an integer restricted to the
interval between 0 and N) denote the i-th coordinate of a point r. To each lattice site r we
assign an integer 2(r) which is to represent a discrete version of an appropriate dynamical
variabel (ex. slope, stress, energy) on site r of a spatially extended dynamical system.

A point in phase space of the d-dimensional dynamical system is completely specified
by the total set of dynamical variables {2(r)}, i.e., a trajectory in phase space corresponds
to a particular evolution of the dynamical system.

The dynamical rules of the d-dimensional model is defined as folows: We consider the
non-conservative perturbation mechanism

z(r) - z(r) + 1 (1

and whenever the local slope exceeds a certain critical slope 2, sand tumbles. The corre-
sponding changes in the z-values will be given according to the relazation algorithm:

If 2(r) > 2, then 2(r) — =z(r)-2d
2(rte) — z(rte)+1 fori=1,...,d. (2)

If several sites r are unstable, z(r) > z, the relaxations will take place simultaneously. We
impose closed boundary conditions, i.e.,

z2(r)=0 if there exists r; =0 or r; = N (3)
The algorithm of the temporal evolution of the sandpile cellular automaton follows:

1. Specify an initial configuration {z(r)}.
2. K any 2(r) > 2, then
relax the configuration simultaneously by use of Eq. (2)

taking into account the closed boundary conditions
until 2(r) < z, for all sites r.

3. Choose a position r at random.
Perturb the system and Return to step 2.

Since we want to analyse the response of the sandpile automaton (the flow of sand down
the slope of the sandpile) due to white-noise perturbations (adding sand randomly in space
and time) in the frequency domain we have to define the time concept and we define a unit
time-step as one update of the whole latice [2].
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First we concentrate on a member labelled by ¢ of an ensemble Introduce an indicator
function of unstable sites at time 7 on the lattice

file,r) = {1, if 2(r) > z; (4)

0, otherwise.

We define the tnstanteneous dissipation rate of an avalanche a in the i-th member by
fa.-(T) = Zf.'(l‘,'r), (5)
r

In other words, we assign to each avalanche (outcome) a function of time, whose value at
time 7 equals the total number of relaxations at that instant.

We consider a system in the stationary state and perturb it by adding sand, on randomly
chosen lattice sites, with a constant probability v per time. For a sufficiently large system
we can neglect the interference between different avalanches. Hence, the total dissipation
rate, j(r), at a given time 7, equals the linear superposition of the individual dissipation
rates produced by the individual avalanches operating at time 7. Introduce a family of
discrete (indicator) functions {p*(r)},. With a fixed a the function p*(r) is equal to unity
if an avalanche of type « has been triggered off in the time segment 7,7+ dr, zero otherwise.
If we divide the time axis into intervals of length 6, then

[+ o]
ir) = 30 Y. falr—nb)p*(ns) (6)
a n=-0o
where we have used the convention f,(r) =0 when 7 < 0.

Introducing an ensemble of critical systems where each ensemble member is perturbed
by adding sand (on randomly chosen sites) with a constant probability rate v is leading to
a transformation of the function p*(né) into a stochastic process P*(né).

It turns out that the power spectrum of the stochastic process J(r) can be expressed
in terms of a weighted average of the power spectra of individual f(r) signals:

Ss(w) = v P(a)|falw)l. 4

P(a) denotes the probability for an avalanche of type a to occur. From this expression we
derive the scaling properties of Sy(w). First, we assume that it is possible to characterize
the individual avalanche signals by the size and lifetime, i.e., @ = (s,t). Furthermore, the
identity

t ¢
/0 for(r)dr = s = /o 2 hal3)dr ®)

suggests the scaling relation s ;
for(r) = $11a(3)- (9)

Substituting the corresponding result in the frequency domain into Eq. (7) we obtain the
fundamental equation for the analysis of the dynamical aspects of the sandpile

Siw)=v)_>" [F11(wt)|?8?P(S = 5, T = ¢). (10)
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Three different frequency regions have to be considered: A low, an intermediate and a
high frequency region. For w — 0 the power spectrum becomes white, since the linear
superimposed signal J(r) cannot contain correlations for times longer than the longest
possible lifetime tmq; of an avalanche, ie., S(w) — constant when w < 1/tmgz. In the
high frequency region Sy(w) ~ w*= . The value of the exponent a, depends on the
specific form of f;1(r). The behavior of S;(w) for intermediate frequencies is determined
by P(S = s,T =t). We introduce a weighted lifetime distribution A(t) by

At)=)_8’P(S = s,T =t) = E[S}T = t|P(T = 1t). (11)
8
Assuming that A(t) exhibits a scaling behavior in an interval 0 < t; <t < t; < 00
A(t) ~t# (12)
and is negligible outside an analysis of the scaling behavior of Eq. (10) leads to the result
1, O<—pu-—-1;
Sjw) ~{ w1 @< —-pu—-1<0; (13)
w*e, —p—1< a.
For f1,1() equal to a square box function , @, = —2, whereas, in the case of a triangular

shape of f1,1(r), the exponent ae, = —4. We can prove that ao, < —2. Thus, the only
way to obtain a 1/f power spectrum is by having a weighted lifetime distribution with
an exponent u = 0, irrespective of the specific form of the superposed signals! Since our
simulations results in u > 1.5 (at least up to 5 dimensions) the power spectrum behaves as
1/f? if the elementary signals are charucterized by @, = —2. This is also confirmed by a
directly numerical measurement of the power spectrum.

3. Conclusion

The connection between the distribution of weighted lifetimes and the corresponding power
spectrum for linearly superimposed avalanches was derived. It was shown that the weighted
lifetime distribution must be independent of the avalanche lifetime in order to obtain a 1 /f
power spectrum. Furthermore, we examined the temporal behavior of flow of sand down
the slope. The power spectrum of the flow were found to behave as 1/f2 in all dimensions.
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