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Abstract. We introduce a minimalistic model based on dynamic node deletion
and node duplication with heterodimerization. The model is intended to capture
the essential features of the evolution of protein interaction networks. We derive
an exact two-step rate equation to describe the evolution of the degree distribution.
We present results for the case of a fixed-size network. The results are based on
the exact numerical solution to the rate equation which are consistent with Monte
Carlo simulations of the model’s dynamics. Power-law degree distributions with
apparent exponents <1 were observed for generic parameter choices. However,
a proper finite-size scaling analysis revealed that the actual critical exponent in
such cases is equal to one. We present a mean-field argument to determine the
asymptotic value of the average degree, illustrating the existence of an attractive
fixed point, and corroborate this result with numerical simulations of the first
moment of the degree distribution as described by the two-step rate equation.
Using the above results, we show that the apparent exponent is determined by
the heterodimerization probability. Our preliminary results are consistent with
empirical data for a wide range of organisms, and we believe that through
implementing some of the suggested modifications, the model could be well-
suited to other types of biological and non-biological networks.
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1. Introduction

In recent years, models of networks growing via single-node duplication, divergence and
mutation of links, considered in isolation and combination, have assumed prominence in the
literature on complex networks. In a series of independent studies, it was suggested that these
duplication–divergence–mutation models (hereafter called ‘duplication models’ for brevity)
are good candidates to describe the evolution and large-scale topological features of real
protein–protein interaction networks (PINs) in several organisms such as S. cerevisiae and
H. pylori [1]–[6].

In duplication models, proteins are represented by nodes, and a pairwise interaction between
any two proteins is represented by an undirected link between the associated nodes, assumed
to be fully operative at all times. In a duplication event, a mother node is chosen uniformly at
random (u.a.r.) and each of its links are copied to a newly created daughter node. Divergence
refers to the subsequent loss of links from the daughter node [2], [4]–[7], and/or the mother
node [8], or a shared neighbour of both the daughter and mother node [3]. Often, for simplicity,
it is assumed that only the daughter node diverges. In a mutation event, new links are added
between the daughter node and all other nodes in the network which are not already connected
to the mother node. Typically, one duplication–divergence event occurs at each update step, and
mutations, when considered, are modelled at a rate much less than the divergence rate—typically,
one new link per update step is added [4]–[6].

The idea of evolution through gene duplication is taken from biology [9]–[12], where it
was popularized in the 1970s by Ohno [13] who conjectured that single and whole genome
duplications could provide the raw material for evolutionary diversification. While there is
mounting evidence that duplicate genes do occur in genomes [1, 12], [14]–[17], it is widely
acknowledged that little is known about the details of the process of duplication itself, such as
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the frequency of duplication events, the fate of duplicate genes, and the frequency with which
duplicate genes acquire novel functions [1, 9, 11, 18]. In fact, while the microscopic parameters
are not yet known exactly, it has been suggested by Berg et al [19] that the rate of gain and loss
of interactions through mutations is at least an order of magnitude higher than the growth rate
due to duplications; as a result, the link dynamics act as the dominant evolutionary force shaping
the large-scale statistical structure of the network, and not the gene duplications; the slower gene
duplication events only really affect the size of the network. Thus, it is still unclear if, and to
what extent, gene duplication is the dominant mechanism responsible for the observed statistical
features of PINs. Moreover, gene deletion and rearrangement are known to play important roles
in the long-term evolution of genomes [10, 17, 20] but have received comparatively little attention
in the literature on networks addressing PINs [20, 21].

In this paper, in a move to go beyond the duplication models and to expand upon the emerging
literature on network models of PINs including gene deletion, we present a four parameter model
addressing the scenario of network evolution through dynamic total node removal in conjunction
with growth by node duplication and heterodimerization. We refer to our network model as a
deletion–duplication–divergence–heterodimerization (DDDH) model (we differentiate between
total node removal from the network and removal via the merging of nodes which has been
considered elsewhere, see for example [22, 23]). Although the model is primarily aimed at
describing the evolution of PINs, its description is kept general enough so as to be applicable to
a diverse range of complex systems where components are added and removed throughout the
system’s evolution.

In the wider literature on complex networks, previous studies which have considered node
deletion have generally regarded it as a perturbation effect, used to test the tolerance of a network
to random and targeted attack [3], [24]–[26]. More recently, the mechanism of dynamic node
removal in conjunction with growth by preferential attachment has been explored in independent
studies by Chung and Lu [27], Cooper et al [28], and Wang [29]. They refer to such models as
growth-deletion models. Since we consider growth by duplication as opposed to growth by
preferential attachment, our model therefore also contributes to the literature on growth-deletion
models.

We focus our analysis on the degree distribution, P(k), characterizing the probability for a
node to have exactly k links [30]–[32]. The degree distribution is the simplest topological feature
to measure and as a result, it has attracted and received the most attention in the literature on
complex networks. It has been shown [2]–[4], [6]–[8] that the degree distribution of networks
generated by duplication models exhibits a power-law tail, P(k) ∼ k−γ , for k � 1, where the
critical exponent γ can be tuned such that it is in agreement with observed exponents which are
found to be in the range 1 < γ < 3 [2, 33]. Importantly, it has also been shown that the degree
distribution is a robust and generic property of PINs common across different data sets—an
important consideration given that current experimental techniques are notorious for suffering
from a high rate of false positives and false negatives [19, 33].

The paper is organized as follows. In section 2, we present the formulation of the dynamics
which describe the rules of evolution of the network, defining the parameters and interpreting
the rates. In section 3, we present and discuss the exact two-step rate equation for the evolution
of the degree distribution. In section 4, we present results obtained from Monte Carlo (MC)
simulations of the model and the exact numerical solution of the rate equation for a generic
choice of parameter values. We discuss our results in section 5 and end with a conclusion in
section 6.
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2. DDDH model

We consider undirected networks where loops and multiple links are forbidden. We start with a
network of known size, N, and degree distribution, P(k, t = 0), and allow it to evolve under the
following rules (see figure 1):

Figure 1. A schematic representation of a network evolving through deletion and
duplication. (a) A node is chosen u.a.r. and deleted with probability pdel (grey).
(b) A mother node is chosen u.a.r. and duplicated with probability pdupl (green
→ red). The links are retained with probability p (dashed red line), and a further
link (c) is established between the daughter and mother node with probability θ

(dotted blue line).

1. Deletion. With probability pdel, a node is chosen u.a.r. This node and all of its links are
deleted from the network.

2. Duplication–Divergence–Heterodimerization. With probability pdupl, a mother node is
chosen u.a.r. and duplicated. This entails a new daughter node being added to the
network and linking to each of the neighbours of the mother node with probability p.
A further link is established between the daughter and mother node with heterodimerization
probability θ.

The evolution of the network is thus governed by four parameters: pdel, pdupl, p, θ. In
section 3, we cast these rules into a concrete mathematical framework. First, however, it is
instructive to discuss the motivation behind the choice of dynamics and its implications.

The mechanism of growth by duplication is preferred to the mechanism of growth by
preferential attachment in PIN network models as well as many other network models since it
reproduces the effects of preferential attachment without having to artificially put the mechanism
in. In other words, it arises naturally from the dynamics: nodes that have a large number of links
are more likely to be neighbours of a duplicating node, and hence are more likely to gain a link
to the newly created node. The DDDH model preserves this effect and introduces another one:
implicit preferential detachment. Nodes that have a large number of links are more likely to be
the neighbour of a node chosen for deletion, and therefore will be more likely to lose a link each
time a node is deleted. It is interesting to note that these two effects do not cancel out each other,
as one might intuitively expect. The inclusion of heterodimerization, θ > 0, means that we do not
consider mutations in the traditional sense (as described above), but rather we restrict the addition
of new links to only occur between the mother and the daughter node. Heterodimerization is
preferred over mutations as it has been noted that the former increases the likelihood of clique-
formation—a feature observed in real PINs—while the latter, in order to form the observed
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number of triads and higher cliques, would require a prohibitively/physically unrealistic high
rate [8]. Moreover, in duplication models, whilst a lack of random linking (mutations) has been
found to destroy fine structure such as the self-averaging and existence of a smooth degree
distribution [4], the large-scale statistical features of the final network do not depend on the
existence of mutations [3]–[5].

From the general definition of the model’s dynamics given above, one can already determine
specific features of the network, namely its overall size, by focusing on particular choices of
the model’s parameter values. For example, for a network that remains, on average, fixed in
size, pdel = pdupl. We will refer to this case as a ‘fixed-size’ network. For a network that is
monotonically growing, on average, pdupl > pdel; if pdel = 0 no nodes are removed from the
network. Moreover, if we fix θ = 0 and 0 < p < 1 and pdupl = 1 for this case, the DDDH model
is equivalent to the duplication–divergence model [5, 6, 8, 34]. For pdel = 0, pdupl = 1, θ = 0
and p = 1 the duplication–divergence model is equivalent to Polya’s Urn [2, 8, 35]. For an on
average monotonically shrinking network, pdupl < pdel; if pdupl = 0 no new nodes or links are
added to the network (for an appropriately chosen initial network size one could imagine that
this regime could be used to compare the results of perturbation effects with the results of gene
knock-out experiments). For a network fluctuating in size the values of pdel and pdupl would
be stochastic variables chosen anew at each update step from a suitably chosen distribution (a
similar mechanism has been considered by Slanina et al [36]). If p = 1, the daughter node
inherits all of the links; this is the case of perfect, or full duplication. If 0 < p < 1, the
daughter node inherits only some of the links; this represents imperfect, or partial duplication.
If p = 0, the daughter node inherits none of the links, that is, an isolated node is added to
the network.

In this paper, we study the case of fixed-size networks, pdel = pdupl = 1, with hetero-
dimerization θ > 0 and perfect duplication p = 1, unless otherwise stated (in which case, similar
to [2, 4, 6] we assume that only the daughter node diverges) (it is worth pointing out that originally,
we set out to present the case of a growing network, evolving under dynamic node deletion and
node duplication with heterodimerization, and compare these results to those obtained from
duplication models. However, since we found the results for a fixed size network particularly
striking and unusual, we have restricted our results in this paper to this special case; we defer
the results for the case of a growing network to a further publication).

In section 3, we apply the rate equation approach [4, 37] to study the evolution of the
expected number of nodes with k links at time t, f(k, t) = NtP(k, t) where Nt is the total number
of nodes at time t.

3. DDDH model: rate equation

In this section, we present a two-step rate equation for the general DDDH model, and then explain
in detail the origin of each term.

The two-step rate equation for the DDDH model is given by,

f(k, t + 1) = f(k, t) − pdel
f(k, t)

Nt

− pdel
kf(k, t)

Nt

+ pdel
(k + 1)f(k + 1, t)

Nt

, (1a)
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f(k, t + 2) = f(k, t + 1) − pduplp
kf(k, t + 1)

Nt+1
− pduplθ

f(k, t + 1)

Nt+1
+ pduplp

(k − 1)f(k − 1, t + 1)

Nt+1

+pduplθ
f(k − 1, t + 1)

Nt+1
+ pduplθ

∑
j�(k−1)

(
j

k − 1

)
p(k−1)

× (1 − p)j−(k−1) f(j, t + 1)

Nt+1
+ pdupl(1 − θ)

∑
j�k

(
j

k

)
pk(1 − p)j−k f(j, t + 1)

Nt+1
.

(1b)

Equation (1) is exact and there are no approximations in its derivation. It describes the
DDDH process for all parameters, pdel, pdupl, p, θ. It holds for all k � 0, with f(−1, t) = 0 and
f(k > kmax, t) = 0 for all t. Moreover, f(k, t) satisfies the following normalization conditions:

∞∑
k=0

f(k, t) = Nt, (2a)

∞∑
k=0

kf(k, t) = 2Lt, (2b)

where Lt is the total number of links at time t in the network.
The distinct feature of the DDDH rate equation compared to rate equations for duplication

models is that it is defined in two steps, and not one, reflecting the fact that we now include a
node deletion in addition to node duplication. To keep the notation simple, we have written t + 1
and t + 2 in equation (1) but one might have equally well written t + 1/2 and t + 1 to indicate
that we only observe the network after both the deletion and the duplication steps have been
completed.

Moreover, each of these actions is executed sequentially, highlighting the fact that we
clearly also make the distinction between this process and the process of adding nodes at an
‘effective’ duplication rate, pdupl − pdel, or merging nodes as is [22, 23], or substituting nodes
where the duplication of a node automatically implies the deletion of some other node as in [20].
We note that the exact correspondence between time, t, and real biological timescales is unclear,
however, at this stage.

In equation (1a) we consider the effects on the network of the deletion of a node and the
removal of its links. The probability a deletion event occurs is given by pdel. The terms on the
right-hand side (RHS) are interpreted as follows. A loss in the number of nodes with degree k

at time t + 1 from deletion will occur either if the node deleted is of degree k at time t, or if a
neighbour (of arbitrary degree) of a k-node is chosen for deletion, as the k-node will lose a link
and become a node of degree k − 1. Since every node has an equal probability of being deleted
in a given time step, a node of degree k is chosen with probability f(k, t)/Nt (second term); the
probability that a neighbour of a k-node is chosen for deletion is kf(k, t)/Nt (third term). The
final term on the RHS represents a gain in the number of nodes with degree k at time t. This can
occur if the neighbour of a node with degree k + 1 is deleted. Given that a node of degree k + 1
has k + 1 neighbours, the probability a neighbour is chosen for deletion is (k + 1)f(k + 1, t)/Nt.

In equation (1b), we consider the effects of node duplication and subsequent hetero-
dimerization. The probability a duplication event occurs is given by pdupl, and the probability
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that subsequent heterodimerization occurs is given by θ. All but the two final terms on the
RHS represent changes a duplication–heterodimerization event has on the existing nodes in the
network; the last two terms represent the daughter node’s contribution.

A loss in the number of nodes with degree k at time t + 2 from duplication and hetero-
dimerization can occur in one of two ways. If one of the neighbours (of arbitrary degree) of a
node of degree k at time t + 1 is duplicated, the k-node will, with probability p gain a link from
duplication thus becoming a k + 1 node at time t + 2 (second term). Alternatively, if the mother
node to be duplicated is already of degree k at time t + 1, it will become a node with degree
k + 1 at time t + 2 by gaining a link to the daughter node via heterodimerization. The probability
a node of degree k is chosen for duplication is given by f(k, t + 1)/Nt+1, and the probability of
heterodimerization is θ (third term).

We arrive at the fourth and fifth terms which describe the gain in the number of nodes with
degree k at time t + 2 by similar considerations. If one of the neighbours of a node of degree
k − 1 at time t + 1 is chosen for duplication, the k − 1 node will, with probability p, gain a link
from duplication, thus becoming a k node at time t + 2 (fourth term). Alternatively, if the mother
node to be duplicated is of degree k − 1 at time t + 1, it will become a node with degree k at time
t + 2 by gaining a link to the daughter node via heterodimerization (fifth term).

The final two terms on the RHS of equation (1b) account for the daughter node’s
contribution. The sixth term is to account for the contribution of the daughter node in the event
it does establish a link, with probability θ, to the mother node. The seventh term is to account
for the case where it does not, which happens with probability (1 − θ). Note the lower limits on
these sums are not identical. This is because if a link is established via heterodimerization, in
order to become a node of degree k, the daughter node is restricted to copying k − 1 out of j

links, each with probability p. However, if such a link is not established, the daughter node is
restricted to copying k out of j links of the mother node.

Since the exact analytical solution to the rate equation in equation (1) is not tractable at
present, in section 4, we present results obtained from the numerical solution of the exact two-
step rate equation and compare them to MC simulations of the model. Unless otherwise stated,
our analysis is based on the case of a fixed-size network, pdel = pdupl = 1, evolving through
perfect duplication, p = 1, with heterodimerization, θ > 0.

4. DDDH model: results

4.1. Comparison between exact numerical solution of the rate equation and MC simulations

Figure 2 displays the evolution of the degree distribution obtained from the exact numerical
solution of the rate equation compared to MC simulations of the model. The stationary regime
is defined by P(k, t) = P(k, t + 2).

We start with an initial network of N = 400 nodes, with a random degree distribution centred
around kinit = 100, and iterate the rules with the following parameter settings: pdel = pdupl = 1
(fixed-size network), p = 1 (perfect duplication), with heterodimerization θ = 0.1. The value
for θ was chosen as such as it is believed that heterodimerization occurs at a rate not greater
than 0.1 [8]. In figure 2, we show two snapshots of the network in the transient regime when
t = 1000, 5000, respectively, and one in the stationary regime for t = 106. The MC simulations
are averaged over 105 realizations for t = 1000, 5000 and 3 × 103 realizations for t = 106.
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Figure 2. Exact numerical (—) and MC (◦) results of the degree distribution
of a fixed-size network, pdel = pdupl = 1, with N = 400 nodes, evolving under
perfect duplication, p = 1, with heterodimerization θ = 0.1. Snapshots were
taken at times t = 1000, 5000 (transient regime) and t = 106 (stationary regime).
The MC simulations are averaged over 105 realizations for t = 1000, 5000, and
3 × 103 realizations for t = 106. The exact numerical results show excellent
agreement with the MC simulations. The distribution in the stationary regime is
well approximated by a power-law decay, P(k) ∼ k−γ with an apparent exponent
γ = 0.8 and sharp cutoff at kcutoff = 399. Note that the maximum degree a node
can attain in networks of the type we consider is N − 1.

There is excellent agreement between the exact numerical solution and MC results, lending
support to our statement earlier that there are no approximations involved in our derivation of
the rate equation. We have verified through extensive simulations that the agreement holds true
over a range of pdel, pdupl, p, and θ values. Hence, all remaining figures are generated using data
obtained from the exact numerical solution of the rate equation only, hereafter referred to as
‘exact numerical results’. The interesting feature to note is that even for the simplest realization
of the DDDH model which we have presented in figure 2, fat-tailed degree distributions are
obtained in the stationary regime (t = 106 curve). This is in stark contrast to the duplication
models where only the case of imperfect duplication leads to a power law [2]. In the following
section, we describe quantitatively the exact form of the stationary degree distribution.

4.2. Scaling for pdel = pdupl = p = 1, 0 < θ � 1/2

We are interested in quantifying the form of the degree distribution, in the stationary regime, as
a function of the model’s parameters. Given that we are, for the moment, investigating fixed-size
networks evolving under perfect duplication, pdel, pdupl and p are all fixed. This reduces the
number of variables to just one: θ. However, given that we are observing the degree distribution
for specific fixed network sizes, we have N as another variable in the problem. Hence, we would
like to know how P(k) depends on θ and N. In order to investigate this, we have performed
numerical simulations for the following two cases: (i) fixed θ, varying N, and (ii) fixed N,
varying θ. We discuss (i) in this subsection, and (ii) in subsection 4.3.

New Journal of Physics 8 (2006) 212 (http://www.njp.org/)

http://www.njp.org/


9 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

10–3

10–2

10

(b)

–1

10–3 10–2 10–1 100

kP
(k

;N
)

k/N

(a)

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100 101 102 103

P
(k

;N
)

k

Figure 3. (a) Exact numerical results of the degree distribution in the
stationary regime for fixed-size networks, pdel = pdupl = 1, where N = 50, 100,

200, 400, 1000 (marked with lines of increasing dash-length) each having
evolved through perfect duplication p = 1 with heterodimerization θ = 0.1.
There is no typical node-degree. For large node-degrees, the degree distribution
is well-approximated by a power-law decay, P(k; N) ∼ k−γ , with an apparent
exponent γ = 0.8. The power-law is characterized by a sharp cutoff at kmax =
N − 1, which increases with increasing system size. Note that the maximum
degree a node can attain in networks of the type we consider is N − 1. (b) Data
collapse of the exact numerical results of the degree distribution is obtained
by plotting the transformed probability density kP(k; N) versus the rescaled
degree k/N. The curves collapse on to the graph of the scaling function,
G̃(k/N) = 1

�(1−γ)�(1+γ)
(k/N)1−γ(1 − k/N)γ , see equation (10).

Figure 3(a) shows the exact numerical results of the degree distribution, P(k; N) versus k

on a double logarithmic plot in the stationary regime for θ = 0.1 and networks of increasing N,
specifically, N = 50, 100, 200, 400, 1000 nodes. There are clear power-law fluctuations in the
node degrees present in the network, implying an appreciable probability of finding a node with
degree, 1 � k � kmax in the network. kmax marks the cross-over between a power-law decay and
a rapid decay in P(k; N). In particular, kmax represents a characteristic scale in the node degree
resulting from the finite size of the networks we can study numerically. Hence, we can say that
P(k; N) decays as a power-law for 1 � k � kmax and has a sharp cutoff for k � kmax, which can
be expressed informally as,

P(k; N) ∝
{

k−γ 1 � k � kmax

sharp cutoff, k � kmax.
(3)

From simulations, we find that kmax = N − 1 which is equivalent to the maximum possible degree
that a node in the network can acquire. This implies that kmax increases linearly with increasing
network size, N, hence, in the limit of N → ∞, the characteristic scale diverges and a pure
power-law is recovered, as expected. In the region, 1 � k � kmax, we find that the gradient of
the lines in figure 3(a) are well-approximated by an ‘apparent’ exponent, γ = 0.8 and we will
shortly demonstrate that γ = 1 − 2θ. Generally speaking, an exponent less than 1 is unusual,
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and seems to contradict certain known results about scaling functions. However, we will be able
to resolve this apparent contradiction in subsection 4.3.

With the above discussion in mind, we propose the following general ansatz for P(k; N),

P(k; N) = a(N)k−γG(k/N), (4)

and, assuming for simplicity that kmax is approximated by N, the equation is valid for 1 � k � N,
where N � 1 and γ < 1. In equation (4), a(N) is a prefactor, dependent on the network size, and
G(x) is the cutoff function, dependent on the rescaled variable k/N. G(x) is required to fall-off
fast enough to ensure P(k; N) is finite and integrable. From figure 3(a), it seems reasonable to
assume that G(x) is constant for x � 1 and decays abruptly for x � 1.

Note that equation (4) is not a finite-size scaling (FSS) ansatz since the prefactor, rather
than being a constant (as is typical), is N-dependent. This difference turns out to be important
as it leads to an interesting result about the critical exponent which we demonstrate below.

In theory, we can use the fact that the probability density function must be properly
normalized, ∫ ∞

1
P(k; N) dk ≡ 1, (5)

to derive an expression for a(N). However, without knowing a priori the correct scaling for
P(k; N), we can only guess at the form of G(x). For simplicity, we assume that the cutoff
function, G(x), is of the form,

G(x) =
{

(1 − k/N)γ for 1 � k � N

0 otherwise
(6)

(which is in-keeping with our stated requirements for the form of G(x) and is an excellent fit to
the numerics). Substituting this into equation (4), we find that normalization requires,

∫ N

1
a(N)k−γ(1 − k/N)γ dk ≡ 1. (7)

Evaluating the left-hand side (LHS) of equation (7) we find for N � 1,

a(N)N1−γ�(1 − γ)�(1 + γ) = 1, (8)

and it immediately follows that,

a(N) = Nγ−1

�(1 − γ)�(1 + γ)
. (9)

Using this result for a(N), we can recast equation (4) into a scaling ansatz such that an actual
critical exponent equal to 1 is obtained, as follows,

P(k; N) = Nγ−1

�(1 − γ)�(1 + γ)
k−γG(k/N)

= k−1 1

�(1 − γ)�(1 + γ)

k1−γ

N1−γ
G(k/N)

= k−1G̃(k/N), (10)
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where G̃(x) = 1
�(1−γ)�(1+γ)

x1−γG(x). Equation (10) is our ‘proper’ FSS ansatz. We have shown
using consistent arguments that equation (4) can be recast into equation (10) assuming the cutoff
function, G(x) is of the form given in equation (6), and using the requirement that the probability
density function must be properly normalized to derive an expression for the N-dependent
prefactor, a(N). The point of interest is that on the LHS of equation (10) the leading power-law
term has attained a fixed value equal to 1, independent of γ . Thus, even if the apparent measured
exponent, γ , is in the range (0, 1) the actual critical exponent is always equal to 1.

To test the validity of the scaling ansatz given in equation (10), we have, in figure 3(b),
plotted the transformed probability density kP(k; N) versus the rescaled variable k/N using the
same data as in figure 3(a). Multiplying both sides of equation (10) by k we get,

kP(k; N) = G̃(k/N). (11)

Therefore, we expect the curves to collapse on to the curve G̃(k/N) = 1
�(1−γ)�(1+γ)

(k/N)1−γ(1 −
k/N)γ , with the gradient of the slope to be equal to 1 − γ . As shown in figure 3(b), a convincing
data collapse is obtained, with all curves collapsing on to the scaling function described by
G̃(x) with γ = 1 − 2θ = 0.8. We have repeated the data collapse for different values of θ, and
observed a convincing data collapse in all cases, with all curves collapsing on to the scaling
function described by, G̃(x) with γ = 1 − 2θ.

Together, equation (4) and the success of the data collapse in figure 3(b) demonstrate that
the degree distribution for any network size, N, is determined by the scaling function G̃(x). This
means that we can deduce the degree distribution for any network size, N, without having to
actually perform the numerical simulation itself. Hence, our results are applicable to networks
larger than those which we have demonstrated directly, that is for N > 103. This is in contrast to
the duplication models considered in [8] where the networks generated do not attain power-law
degree distributions even for very large networks.

Thus far, we have not yet justified the relation given between the apparent exponent and
the parameter θ. In the following section, we derive a result for the average degree, 〈k〉. We then
demonstrate how we can use this result to find an expression for the apparent exponent γ in terms
of the parameter, θ.

4.3. Mean-field equation for the average degree

The average degree, 〈k〉, can be determined in various different ways. Ideally, one would be able
to calculate it directly from the two-step rate equation for the evolution of the degree distribution
in equation (1a). This would be achieved by taking the first moment of the normalized degree
distribution, P(k, t) = f(k, t)/Nt, according to,

〈k〉t =
∫ ∞

1
kP(k, t) dk. (12)

Strictly speaking, where we write integration signs we should have sums, as we are dealing with a
discrete probability distribution. Either way, the solution we are interested in is limt→∞〈k〉t = 〈k〉,
which is analytically intractable. In order to get around this problem we have calculated this
quantity numerically, and compared this result to the asymptotic value of 〈k〉 obtained as a
solution to a mean-field rate equation approach (described below).

Figure 4 illustrates the exact numerical results for the time-evolution of 〈k〉 for θ ∈
[0.01, 0.5] and clearly illustrates the existence of a stationary asymptotic 〈k〉. We now describe
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Figure 4. Exact numerical results for the average degree, 〈k〉t, versus time for a
fixed-size network, pdel = pdupl = 1, with N = 200 nodes, and kinitial = 50.
The network evolved through perfect duplication and increasing θ = 0.01,

0.025, 0.05, 0.075, 0.1, 0.3, 0.5 (marked with lines of decreasing dash-length).
In each case, 〈k〉t reaches a stationary value whose value is identical to that
predicted analytically (‘◦’), 〈k〉MF = θ(N − 1), see equation (13).

our mean-field argument to determine the asymptotic value of the average degree, 〈k〉. At
each time step, for each node we delete we lose on average, 〈k〉t links, and for each node
we duplicate we gain on average, p〈k〉t+1 + θ links. Therefore, the net change in the number
of links, �L = −〈k〉t + p〈k〉t+1 + θ. For the case of p = 1, we can rewrite this as, �L =
−2Lt/Nt + 2Lt+1/Nt+1 + θ, where we have used the standard relation, 〈k〉 = 2L/N. Imposing
the condition �L = 0, which is valid in the stationary regime, t → ∞, we find,

〈k〉MF = θ(N − 1) (13)

for a fixed-size network evolving under perfect duplication for arbitrary θ. So, for a network
of size N = 200, for example, we predict, using equation (13), 〈k〉 = 1.99, 19.9, 99.5 for
θ = 0.01, 0.1, 0.5 respectively. We can compare this prediction with the exact numerical results
for the first moment of the degree distribution. As shown in figure 4, there is exact agreement
between the asymptotic value of the average degree determined from the mean-field calculation
and the exact numerical results (for t > 105). Thus, both the mean-field calculation and the
exact numerical results, as illustrated in figure 4, demonstrate the existence of an attractive fixed
point in the average degree, 〈k〉. This is clearly related to the existence of a stationary degree
distribution, that is, P(k, t) = P(k, t + 2).

Equation (13) highlights the importance of accounting for the mechanism of hetero-
dimerization for finite-sized networks, as it shows that the network self-organizes to a stationary
state where the average degree 〈k〉 is constant, and determined by the system size, N and the
probability for heterodimerization, θ. Since real PINs are of finite size, typically with no more
than 104 nodes (see table 1), the point of information regarding the role of θ in finite-sized
networks is of significance.

We have also verified through further simulations varying p such that p < 1 for constant θ

and N clearly dramatically reduces 〈k〉, as one would expect, although the precise nature of this
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Table 1. Comparison between empirical data [8, 38] and the fixed-size, perfect
duplication DDDH model. Values of θ and γ are quoted to two decimal places.

Data N 〈k〉 θ γ

Yeast (I) 4873 6.6 0.0014 1.0
Yeast (II) 5397 29.2 0.0054 1.0
Fly 6954 5.9 0.00085 1.0
Human 5275 5.7 0.0011 1.0
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Figure 5. Exact numerical results for the degree distribution in the stationary
regime for a fixed-size network, pdel = pdupl = 1, with N = 200 nodes, and
kinitial = 50. The network evolved through perfect duplication and increasing
θ = 0.01, 0.025, 0.05, 0.07, 0.1, 0.3, 0.5 (marked with lines of decreasing dash-
length). The value θ = 0.5 marks a change in behaviour from a power-law decay
with a negative exponent to a uniform distribution.

effect has not yet been quantified and seems to be non-trivial. Thus, equation (13) actually gives
an upper bound for 〈k〉.

An alternative method for calculating 〈k〉 analytically, is to calculate the first moment of the
degree distribution as expressed in equation (10), 〈k〉SF. This turns out to be very useful as far as
determining an expression for the apparent exponent, γ , in terms of θ. We find that,

〈k〉SF =
∫ N

1
kP(k; N) dk

=
∫ N

1

1

�(1 − γ)�(1 + γ)

(
k

N

)1−γ (
1 − k

N

)γ

dk

= N

2

�(2 − γ)

�(1 − γ)
for N → ∞

= N

2
(1 − γ). (14)
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Since we already know that 〈k〉MF = θ(N − 1) from equation (13), the RHS of equation (14)
must be equivalent to equation (13), hence,

γ = 1 − 2θ. (15)

This justifies our previous finding in subsection 4.2 that the apparent exponent is γ = 1 − 2θ.
In the following section, we investigate the effect on the degree distribution of varying θ ∈
(0, 0.5) for fixed N, completing the analysis of the two scenarios outlined at the beginning of
subsection 4.2.

4.4. Effects of varying θ

Figure 5 illustrates the topological effect of varying the probability to heterodimerize in the range
0 < θ � 0.5, in a fixed-size network (N = 200), evolving through perfect duplication.

We find that the degree distribution exhibits a power-law with a slope that varies with θ

according to γ = 1–2θ, reaching a uniform distribution at a value of θ = 0.5. We have repeated
the above simulations for a range of network sizes, up to N = 1000, and confirmed this behaviour.
Hence, the result for γ is consistent with our previous findings in subsection 4.2.

Current estimates from empirical data for yeast, fly and human PINs indicate that θ never
exceeds 0.1 [8]. Since we observe power-law degree distributions in the range 0 < θ < 0.5, a
value of θ < 0.1 in our model is consistent with empirical data. The fact that γ = 1 − 2θ might
go some way towards explaining why in the duplication model considered in [8], for realistic
values of θ < 0.1 their results were not affected.

4.5. Effects of varying p

Up until now, we have been investigating the effects of varying θ and N, for fixed pdel = pdupl =
p = 1, on the degree distribution. We now report our findings for a third possible scenario: the
effect of varying p, for fixed θ and N (keeping pdel = pdupl = 1, as before).

Figure 6 illustrates the topological effect of varying p in a fixed-size network with
heterodimerization θ = 0.1. There is clearly a marked difference between the curve for p = 1
and the family of curves for p < 1. We established in subsections 4.2–4.4 that for p = 1 and
θ ∈ (0, 0.5), the degree distribution is well approximated by a power-law decay. We now see that
for p < 1, the power-law behaviour is no longer observed and a characteristic degree is present.
We have confirmed this result for a range of network sizes, specifically, N = 50, 100, 400, 1000.
Moreover, we have found that the second moment 〈k2〉 does not diverge with increasing network
size as one would expect if, in the limit of N → ∞, the degree distribution were indeed described
by a power-law decay.

We can offer a simple heuristic argument to account for the difference between the casep = 1
and p < 1. We believe that it is directly related to the choices we have made for the remaining
parameters of the model, namely pdel = pdupl = 1 and θ > 0. For p < 1 at each duplication event
only some of the links of the mother node are copied by the daughter node, whereas for p = 1,
all of the mother node’s links are copied. Given that pdel = 1 we delete a node and all of its links
at each time step, and thus at each duplication event, if p < 1, we do not compensate for the loss
of links incurred through the deletion process. Hence, the repeated application of duplication
events with p < 1, given that pdel = 1 accounts for the fact that the observed degree distribution
does not follow a power-law decay but rather has a characteristic degree present.
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Figure 6. Exact numerical results for the degree distribution in the stationary
regime for a fixed-size network, pdel = pdupl = 1, with N = 200 nodes, for
increasing duplication probabilities p = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.975,

0.99, 1 (marked with lines of decreasing dash-length) and heterodimerization
θ = 0.1. There is a marked difference between the curves generated with p<1
and with p = 1. Whereas the latter is described by a power-law decay, the former
are not and a characteristic degree is present.

4.6. Comment on relation to biological data

We can test the suitability of the DDDH model as a representation of the evolution of PINs by
comparing our results against empirical data. Using data cited in [8], we can obtain values of
the number of proteins in the network and estimates of the average degree of the PINs for yeast,
fly, and human. From these, we can derive estimates for θ using equation (13) and the apparent
scaling exponent, γ = 1 − 2θ. The results are tabulated in table 1.

For all data sets, the calculated value of θ is of the order of 10−3 which agrees well with the
fact that it is believed heterodimerization occurs at a rate not greater than 0.1 [8]. Moreover, the
corresponding apparent scaling exponent extracted in all cases is found to be γ = 1.0. This is
consistent with our FSS analysis and corroborates [8] where a power-law with degree exponent
γ ≈ 1.1 is given for the data for yeast derived from [38].

5. Discussion

The results in section 4 indicate that the degree distribution of fixed-size networks where the
rate of node deletion is equal to the rate of node duplication, pdel = pdupl = 1, is dependent on
several features. We summarize these as follows. (i) In order to observe a power-law degree
distribution it is necessary to have p = 1, that is, perfect duplication, and 0 < θ < 0.5. (ii) No
power-law is observed in the degree distribution for p < 1, or for p = 1 and θ � 0.5. (iii) In all
cases, it is necessary for θ to be non-zero in order for a positive average degree to be obtained
in the stationary regime since for θ = 0, 〈k〉 = 0. (iv) In cases where a positive average degree
is obtained, it is notable that the network self-organizes into a stationary state. We see this as an
advantageous feature of this model and comment that this is in contrast to some other network
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models, such as in [19], where the average degree is a fixed parameter in the model, or the
duplication models where the average degree scales with the network size. (v) Our FSS analysis
indicates that for fixed θ ∈ (0, 0.5), the scaling exponent of the associated (proper) FSS ansatz
is fixed and equal to one. The new result is obtained through the inclusion of a system-size
dependency in the prefactor, a(N), necessary when the apparent exponent γ < 1, which results
in the scaling function being recast in such a way that the only relevant scale parameterizing
the system is determined by the cutoff, given by N in our case. This example illustrates that it
is necessary to be cautious when doing a FSS ansatz in systems where the apparent exponent
appears to be less than 1 [39]. (vi) Estimates of θ and γ for networks for yeast, fly and human
are consistent with estimates from empirical data and our FSS analysis.

If we accept the fact that the fixed-size version of the DDDH model in spite of its simplicity
is able to reproduce certain observed topological features of PINs, this in turn would require
us to revise the idea that the protein repertoire has evolved over millions of years from a small
set of genes to the genomes we observed today in multi-cellular organisms which are typically
composed of tens of thousands of genes since the two are not compatible. Clearly, this is a rather
drastic measure. Rather than accept such a state of affairs, perhaps all that the results of the
fixed-size DDDH model indicate thus far is that we should exercise caution when interpreting
minimalistic network models, as attractive as they are. Since we can conjure up many varied and
simple network models, with and without growth, which are capable of reproducing observed
features of complex systems perhaps the only recourse when trying to pick one network model
over the other is to carefully use our knowledge of the essence of the original real system [40].

5.1. Extensions

As a first step in investigating the behaviour of the DDDH model, it seems reasonable to keep
things as simple as possible, as we have done here. We have reported on the case of fixed-size
networks, and are currently investigating how the topology is affected by varying the relative
rates of node deletion and duplication. Moreover, sensitivity to initial conditions is being probed
further; we believe that for the fixed-size case, the network features are independent of initial
conditions.

However, beyond the steps we have mentioned, there are obvious extension of this model
which further investigations could benefit from including. For example, the model is based on
an undirected network—it would be interesting to see how best to incorporate dynamics based
on directed links and what affect this would have on the in-degree distribution and out-degree
distribution. Incorporating this feature would make the model well-suited to describing genetic
regulatory networks, for example.

Moreover, the model assumes that the rate of node deletion and duplication are independent
of one other, and independent of any feature of the network such as the size; one could imagine the
scenario where this is not the case. Moreover, we consider single-node deletion and single-node
duplication—an interesting variation would be to consider multiple-node deletion or duplication,
or even duplication of whole modules (motifs) as in [41], for example.

Finally, the only cause of an increase or decrease in the number of links is either due to a node
deletion or node duplication event: links are not added or deleted through any other mechanism.
The scenario where (directed) links are stochastically added or removed between already existing
nodes would be an interesting amendment to investigate, particularly with regards to the resulting
effect on the degree distribution and its corresponding exponent [27, 29, 42].

New Journal of Physics 8 (2006) 212 (http://www.njp.org/)

http://www.njp.org/


17 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

A final example is that there is no fitness parameter in the model, nor any rule based on
selection—our results are independent of both of these features at the gene/protein level, and at
the network level, yet it is widely believed that both features are driving forces in the evolution
of most, if not all, biological systems. Including these features in a meaningful way would be
a highly relevant step towards understanding some of the thornier questions in modern biology
today.

6. Conclusions

We have introduced and discussed a minimalistic model governed by four parameters, based on
dynamic node deletion and node duplication with heterodimerization. The model is intended to
capture some basic features in the evolution of PINs but we believe that it is also suited to other
types of networks in light of the suggested modifications.

Power-law degree distributions were observed for generic parameter values, and a novel FSS
effect was observed for the case of fixed-size networks evolving through perfect duplication and
θ ∈ (0, 0.5). The existence of an attractive fixed point in the average degree was derived based
on mean-field arguments, and corroborated with numerical simulations of the first moment of
the degree distribution as described by the two-step rate equation. The above results were then
used to derive a relation for the apparent exponent, γ = 1 − 2θ.

Our results thus far indicate consistency with empirical data. Further investigations are
required to fully explore and understand the wider phase-space inhabited by this model, and
several suggestions have been made to this end.
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[42] Tadić B 2001 Physica A 293 273

New Journal of Physics 8 (2006) 212 (http://www.njp.org/)

http://dx.doi.org/10.1101/gr.155801
http://dx.doi.org/10.1038/ng1088
http://dx.doi.org/10.1038/nature02424
http://dx.doi.org/10.1038/nrg928
http://dx.doi.org/10.1186/1471-2148-4-51
http://dx.doi.org/10.1038/sj.embor.7400090
http://dx.doi.org/10.1016/j.physa.2004.05.019
http://dx.doi.org/10.1209/epl/i2002-00465-1
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/nature01198
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1080/00018730110112519
http://dx.doi.org/10.1002/pmic.200300636
http://dx.doi.org/10.1007/s00026-003-0178-y
http://dx.doi.org/10.1103/PhysRevLett.83.5587
http://dx.doi.org/10.1103/PhysRevE.62.6170
http://dx.doi.org/10.1209/epl/i2002-00311-6
http://dx.doi.org/10.1103/PhysRevE.63.066123
http://dx.doi.org/10.1038/nature750
http://dx.doi.org/10.1103/PhysRevE.67.026112
http://dx.doi.org/10.1016/S0378-4371(01)00014-0
http://www.njp.org/

	1. Introduction
	2. DDDH model
	3. DDDH model: rate equation
	4. DDDH model: results
	4.1. Comparison between exact numerical solution of the rate
equation and MC simulations
	4.2. Scaling for p_{del} = p_{dupl} = p = 1, 0 < theta \leaslant 1/2
	4.3. Mean-field equation for the average degree
	4.4. Effects of varying theta
	4.5. Effects of varying p
	4.6. Comment on relation to biological data

	5. Discussion
	5.1. Extensions

	6. Conclusions
	Acknowledgments
	References

