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Abstract. – Taking the Bak-Sneppen evolution model as an example (Phys. Rev. Lett., 71
(1993) 4083), we study extremal dynamics where M > 1 smallest barriers are simultaneously
updated as opposed to models in the limit where only the smallest barrier is updated. We
investigate the scaling properties of the nearest-neighbour and the random-neighbour model.
We demonstrate that the behaviour of models with extremal dynamics in the limit of single
update per time step is irrelevant to physical observations.

Introduction. – Extremal dynamics is used to model the temporal evolution of many
different systems. Invasion percolation is one of the most prominent examples [1] but attempts
have been also made to catch some of the salient features of biological evolution in models
involving extremal dynamics [2, 3] as well as in some other models related to self-organised
criticality [4, 5]. In extremal models, the dynamics consist of a global search for the site in
the system with the smallest (or largest) value of the dynamical variable. This site and its
neighbours are then updated according to the specific algorithm of the model considered,
whereupon the procedure is repeated.

To be specific, let us consider the particular case of invasion percolation. As pointed out
by Wilkinson and Willemsen, the procedure of updating only the link with smallest resistance
corresponds to the limit of zero flux [1]. From this perspective it appears immediately relevant
to study the behaviour as one approaches the limit of slow but finite drive, that is, study the
system when the sites with the M smallest values of the dynamical variable are updated
simultaneously.

It has previously been tacitly assumed, that the smallest and the second smallest dynam-
ical variables are well separated, in which case the single update limit is appropriate. We
find, however, that the probability density of the separation between the smallest and second
smallest dynamical variables has its maximum at zero separation. Thus one will inevitably
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have to consider the evolution of the second smallest dynamical variable as well. Clearly, if
this is a relevant perturbation, then updating the M > 2 smallest barriers must lead to even
stronger effects than updating the M = 2 smallest barriers. Thus, for simplicity, we restrict
our discussion to the M = 2 case.

We study the scaling properties of the nearest-neighbour version of the Bak-Sneppen model
in one dimension as well as the random-neighbour version, and we pay special attention to
whether the data of the avalanche durations are described by simple or multifractal scaling.
For both models, we find that updating the two smallest (M = 2) rather than just the smallest
variable has surprisingly significant effects.

In the critical random neighbour model, the ultimate asymptotic scaling behaviour is
identical for the two cases M = 1 and M = 2. For the regime accessible in the simulations,
simple scaling works well for M = 1 while multifractal scaling seems more appropriate for
M = 2 when approaching the critical point. We attribute this finding to a dramatic decrease,
with increasing M , in the size of the scaling regime for which the asymptotic behaviour at
the critical point can be probed. It is quite alarming that with a reduced variable as small as
10−3, the asymptotic behaviour of the critical point cannot be probed. Thus the limit of single
update per time step of models with extremal dynamics is irrelevant to physical observations
even though the simple scaling would be recovered were it possible to approach the critical
point with unlimited resolution.

In the nearest-neighbour version, a similar scenario is observed. In addition, for M = 1
it is not possible to extract an unambiguous scaling exponent τ . The value τ ≈ 1.07 for
M = 1 [5,6] is observed only right at the critical point. We cannot exclude that the ultimate
asymptotic forms of the probability densities of avalanche durations at the critical point are
identical for M = 1 and M = 2.

However, from the simulations we conclude that the asymptotic limit of the M = 2 case is
of little relevance to experiments like invasion percolation of fluids into porous media [7]. We
expect that significant deviations from the asymptotic critical behaviour may be dominating
experimentally observed data for systems which are related to extremal models.

The model. – Let us recapitulate the definition of the Bak-Sneppen model of biological
evolution. Consider a lattice in d dimensions consisting of L sites with periodic boundary
conditions. To each lattice point (species) x is ascribed a random variable B(x) ∈ [0, 1) (the
fitness). A time step consists of locating the site xmin with the minimum value of B(x). The
site xmin and its nearest neighbours are updated by replacing the B-value on each of these
sites by a new random number drawn uniformly from the interval [0, 1). In the language
of biological evolution, the least fit species is most likely to undergo a mutation. However,
that will change the fitness landscape of the species with which it interacts, and they are
also assigned new (random) fitnesses. In the random-neighbour version of the model, the
site with the smallest B-value is refreshed together with K − 1 new distinct randomly chosen
“neighbour” sites, that is, the neighbourhood is annealed and chosen anew for every time
step.

We generalise the model by locating the sites with the M smallest B values and their
nearest-neighbour sites. The B-values on these sites are refreshed. In the random-neighbour
version we locate the M smallest B-values and refresh these together with K − M distinct
randomly chosen “neighbour” sites, that is, K sites are assigned new B-values.

Theminimum B value in each time step is called Bmin(t). Avalanches —also called forward
avalanches— are defined with respect to a threshold B0 [2]. An avalanche starts at time t = 1
if Bmin(t = 0) > B0 and Bmin(t = 1) < B0. The avalanche is of duration T if Bmin(t) goes
above B0 for the first time when t = T .
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Results. Random-neighbour model. – The random-neighbour model is used as a reference
in order to discuss extremal models with multiple updates per time step. The mean-field theory
of the probability density p(B) of the site variables, which is exact for the random-neighbour
model, is given in sect. 5.2.5 in ref. [8] for the general case K > M ≥ 1 and ref. [9] for the
M = 1 case. The important point is that p(B) in the limit L → ∞ is a step function:

p(B) =

{
0, for 0 ≤ B < Bc = M/K,

1/(1− Bc), for Bc < B ≤ 1.
(1)

This allows us to simulate the L =∞ limit, thus eliminating finite system size effects and
highlighting the effect of changing M = 1 to M = 2. We note that the dynamics of the process
is controlled by the instantaneous number of active sites nact(t). The temporal evolution of
the number of active sites in an avalanche is represented in the following procedure:

1. To initiate an avalanche, nact(t = 0) = M

2. nact(t+ 1) = Max{nact(t)− M, 0}
3. Do i = 1,K

nact(t+ 1) = nact(t+ 1) + 1 with probability B0

End Do

4. If nact(t+ 1) > 0 Then
t = t+ 1
Goto 2

Else
Avalanche has terminated.

End If

Thus we create K new sites, each of them is active with probability B0. Hence, on average,
we create KB0 new active sites. Accordingly, the average branching ratio is KB0/M . As
B0 → Bc = M/K, the branching ratio tends to the critical value 1. In this limit, the
probability density of avalanche durations is given by the simple scaling ansatz [10,11]

PB0(T ) = T−τf(T (Bc − B0)1/σ), (2)

where τ = 3/2 and σ = 1/2 are critical scaling indices, and f the scaling function.
We concentrated here on the two cases (M,K) = (1, 2), the single update limit, and

(M,K) = (2, 3) representing a system with multiple updates per time step. Figure 1(a)
displays the probability density of the avalanche durations using the simple scaling ansatz in
eq. (2). With the proper values τ = 3/2 and σ = 1/2, the simple scaling ansatz produces a
data collapse for M = 1 but not for M = 2. In fig. 1(b), we have used a multifractal scaling
ansatz of the form

log(PB0(T ))/ log((Bc − B0)−1/t�) =

g(log(T/T �)/ log((Bc − B0)−1/t�)), (3)

where t� and T � are constants [12]. The argument is often denoted α = log(T/T �)/ log((Bc −
B0)−1/t�), and the local slope dg/dα determines the spectrum of scaling indices. If g is a
linear function, the local slope is constant, and the multifractal scaling ansatz would reduce
to a simple scaling ansatz. This is what happens when M = 1. In the case M = 2, both the
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Fig. 1 – The measured probability density of avalanche durations in the random-neighbour version
of the generalised Bak-Sneppen model for M = 1 and M = 2 with the reduced avalanche threshold
b = (Bc − B0)/Bc ∈ [10−3, 10−1]. (a) Simple scaling ansatz eq. (2) using τ = 3/2 and σ = 1/2.
M = 1 (dotted lines) with Bc = 1/2. M = 2 (solid lines, data shifted upwards by a factor 100) with
Bc = 2/3. (b) Multifractal scaling ansatz eq. (3). M = 1 (dotted lines) with T � = 0.5, t� = 1.0, and
Bc = 1/2. M = 2 (solid lines, data shifted downwards by subtracting 0.5) with T � = 0.7, t� = 0.5,
and Bc = 2/3.

simple and multifractal scaling forms exhibit no clear collapse of the data. Rather, the plotted
data appears to be tending towards an asymptotic scaling form. Hence, although a scaling
collapse may occur in the limit b = (Bc − B0)/Bc → 0, this regime is clearly not reached for
M = 2. Note that the reduced avalanche threshold b ∈ [10−3, 10−1] for the data shown. Thus,
for M = 2, the true scaling regime is not accessible.

Results. Nearest-neighbour model. – The difference between M = 1 and M = 2 is
even greater in the nearest-neighbour model. We are, however, not able to solve this model
analytically and have to rely on simulations. All the reported results are obtained with 1010

time steps and L = 105. No single avalanche ever covered the whole system. Figure 2(a)
contains a simple scaling plot of the probability density PB0(T ) for M = 1 and M = 2. Note
that different τ exponents have been used in order to obtain a constant scaling function for
small arguments. We find that the avalanche exponent has apparently changed from the value
τ around 1 for the M = 1 case to τ ≈ 0.8 for the M = 2 case. The fact that τ(M = 2) < 1
and also τ(M = 1) ≈ 0.98 < 1 makes it important to include the normalisation factor in
the simple scaling plots of PB0(T ). Figure 2(b) uses the multifractal scaling ansatz in eq. (3)
which is more suited to fitting our data, especially for the M = 2 case.

From the simple scaling ansatz with M = 1, we also notice that the critical exponent
changes systematically as the critical point is approached. Assuming a “correction to the
scaling exponent” of the form

τ(B0) = τ(Bc)− a(Bc − B0)ε, (4)

when B → Bc, the value τ(Bc) = 1.074 can be extracted from the forward avalanche data,
see fig. 3.

The elegant scaling relation τall
b = 3−τ [5,13] between the exponent τall

b for the probability
density of all backward avalanches (for a definition, see, e.g., ref. [13]) and the (forward)
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Fig. 2 – The probability density of avalanche durations in the nearest-neighbour version of the gener-
alised Bak-Sneppen model for M = 1 with the reduced avalanche threshold b ∈ [1.5 · 10−3, 1.5 · 10−2]
and M = 2 with b ∈ [2.7 · 10−3, 1.5 · 10−2]. (a) Simple scaling ansatz, M = 1 (dotted lines) with
τ = 0.98, 1/σ = 3.0, and Bc = 0.66702. M = 2 (solid lines, data shifted upwards by a factor 25)
with τ = 0.8, 1/σ = 3.2, and Bc = 0.6347. (b) Multifractal scaling ansatz, M = 1 (dotted lines) with
T � = 0.3, t� = 0.3 and Bc = 0.66702. M = 2 (solid lines, data shifted upwards by adding 0.25) with
T � = 0.3, t� = 0.3 and Bc = 0.6347.

avalanches exponent τ only holds when the following two conditions are satisfied: a) τ must
be greater than 1, and b) the conditional backward avalanche exponent τb must be less than
1. As we have seen, it is not possible from the probability density of (forward) avalanches to
directly establish τ > 1 even for M = 1. This makes it problematic to determine τ by use of
the relation τ = 3− τall

b , since for all accessible B0, the effective τ(B0) < 1. The asymptotic
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Fig. 3 – Correction to the scaling exponent applied to extract the avalanche size exponent τ(Bc) in
the nearest-neighbour model with M = 1, Bc = 0.66702. A similar procedure for the M = 2 case
could not be implemented.
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Fig. 4 – A simple scaling plot of the probability density of the linear distance d(t = 0) between the
positions of the two smallest sites when a B0 avalanche is initiated in the nearest-neighbour model
with M = 2, τd = 0.1, 1/σd = 1.1, and Bc = 0.6347. The inset displays the probability density of the
linear distance d(t).

value of τ(Bc) > 1 can, however, be extracted by the indirect procedure described in relation
to fig. 3.

It is important to mention that the update of the two smallest B-values is correlated. Let
d(t) =| xmin1(t)−xmin2(t) | denote the linear distance between the positions of the two smallest
sites at time t. The probability density of the distance between the two smallest sites d(t = 0)
when a B0 avalanche is initiated is flat with a crossover to a power law decay with exponent
2.7, see fig. 4. In the double limit L → ∞ and B0 → Bc, the probability density of the distance
d(t = 0) between the two smallest sites is uniform. However, that is experimentally irrelevant.
The relevant case L < ∞ and B0 → B−

c will always exhibit correlations between the two
initial updates, as displayed in fig. 4. The reason for these correlations is that the two initial
updates of a B0 < Bc avalanche can, due to the hierarchical structure of the avalanches, be
considered as an ordinary update of a B∗

0 avalanche with B0 < B∗
0 < Bc. This also explains

why the power law at large value of d(t = 0) is the same as the power law for probability
density of the linear distance d(t) =| xmin1(t)−xmin2(t) | between the positions of the smallest
and the second smallest B-value, see insert in fig. 4.

The above discussion makes it clear that, in a finite system, one cannot just consider the
avalanches produced in the M = 2 case as a linear random superposition of simultaneously
evolving M = 1 avalanches. The reason is that updates of the second smallest B-value may
involve a site with a value of B > B0. That happens whenever the number of active sites
equals one. Such an update can produce new active sites disconnected from the sites hitherto
touched by the present avalanche.

Conclusion. – The physical relevant case, M > 1, is unrelated to the asymptotic be-
haviour of the M = 1 case, even in the limit L → ∞, rendering the single update completely
irrelevant for physical realisations. Generalising, we have shown that the asymptotic critical
behaviour of extremal models is inaccessible as soon as more than the absolute extremal site
is allowed to evolve in each time step. Hence, experiments will not be able to see the scaling
exponents of the critical point but rather some effective noncritical behaviour. Concretely, we
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expect that experiments on invasion percolation will measure an effective avalanche exponent
that will deviate significantly from the value of the ideal theoretical extremal model.
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