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The concept of self-organized criticality

statistics of earthquakes, including

provides a natural, robust explanation of the
the Gutenberg-Richter law for the distribution of earthquake

magnitudes. The dynamics is "at the edge of chaos” with algebraic, not exponential,

divergence of small uncertainties.

Temporal clustering of big earthquakes arises because of an

underlying fractal structure of correlated regions. Scaling laws suggest that the statistics of
large events can be inferred from the statistics of the much more numerous small events.

INTRODUCTION

The frequency of earthquakes versus magnitude exhibits a
logarithmic dependence over many decades, known as the
Gutenberg-Richter law [Gutenberg and Richter, 1956]. Figure 1
shows data for earthquakes in the New Madrid zone collected by
Johnston and Nava [1985]. The magnitude is proportional to the
logarithm of the energy release, or the seismic moment, so the G-R
law indicates that these quantities obey a power law distribution,
with exponent 1+f, and B = 0.8. Measurements of the exponent B
vary from place to place, so the exponent appears to be non-
universal. The spatial distribution of earthquake occurrence seems
to be fractal. The distribution of aftershocks follows Omori's law,
another power law. Of course, such power laws can not extend to
infinite energies; there has to be a cutoff somewhere: if for no other
reason, then because of the finite size of the earth. From
measurements over a finite period, say the last 60 years, all we can
say is that this cut-off exceeds earthquakes of size 9.

These facts seem to imply that we are dealing with a kind of
critical phenomenon, because power laws for temporal and spatial
correlation functions are the hallmark of systems at a critical point’
for a continuous phase transifion. Indeed, the mathematician Vere-
Jones [1977] demonstrated that in principle a power law (with an
exponent B=0.5) could be formally explained by thinking of an
earthquake as a critical chain reaction, starting from a single
rupture event. At each branching point the probability of doubling
the activity must be precisely balanced by the probability of death
of the activity (Figure 2). But why should the chain reaction be
exactly critical, since with unit probability chain reactions are
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either sub-critical, in which case large events would be
exponentially unlikely, or super-critical, in which case the activity
would explode exponentially? ‘

A few years ago one of the authors, in collaboration with Chao
Tang and Kurt Wiesenfeld [Bak, Tang, and Wiesenfeld, 1987,
1988a,b; Wiesenfeld, Bak, and Tang, 1989; for a review see Bak
and Chen, 1991] demonstrated that slowly driven dynamical
systems, with many degrees of freedom, naturally self-organize
into a critical state, with avalanches of all sizes obeying power law
statistics. The critical state is an attractor for the dynamics. The
phenomenon is deterministic and robust with respect to noise and
inhomogeneities. Large catastrophic events are intrinsic,
unavoidable properties of those large interactive systems, and no
external or internal cataclysmic force is necessary. Thus, in
contrast to equilibrium physics where criticality is the exceptional
case, in non-equilibrium physics criticality could be the typical
state of matter,

This opens up for an entirely new view on many sciences,
including Biology [Raup, 1986], where catastrophic events have
occurred intermittently in the past, most notable the extinction of

_the dinosaurs 50 million years ago, Economics, with power law

~tails for the fluctuations on Wall Street and the distribution of price

variations [Mandelbrot, 1963}, and Geophysics, not only in relation
to earthquakes but also for volcanic eruptions [Diodati,
Marchesoni, and Piazzo, 1991]. .
. The obvious applicability of self-organized criticality to
“earthquakes was immediately and independently pointed out by
several authors [Bak and Tang, 1989; Ito and Matsuzaki, 1989;
Somette and Sonette, 1989; Carlson and Langer, 1989]. The initial
models were quite crude local sand-pile type models, but
nevertheless served to illustrate the viability and the robustness of
the idea. Subsequent rupture models [Chen, Bak, and Obukhov,
1991; Xu, Bergersen, and Chen, 1991] included the long-range
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Fig. 1. Cumulative distribution of earthquakes in the New Madrid

zone during the period 1974-1983. The data were collected by

Johnston and Nava [1985].

redistribution of elastic forces following rupture. A thorough

- analysis of two-dimensional models derived from Burridge-
Knopoff models [1967] of blocks connected with springs has been
carried out by two of us, -in collaboration with Hans Jacob Feder
[Olami, Feder, and Christensen, 1992; Christensen and Olami,
1992a,b]. In contrast to the original models, these latter models do
not invoke any conservation laws for force redistribution, thus
removing one artificial artifact. The striking picture which emerges
from the SOC theories is that the crust of the earth on which we are
living operates at a perpetually critical state, always at the verge of
collapse. . ]

In the following we shall discuss results based on the study of
SOC models of earthquakes, and point out the consequences for
our ability of predicting earthquakes, in particular their statistical
properties. Results for model calculations are discussed in the
context of observations. Bear in mind that a more or less complete
understanding of a physical phenomenon does not necessarily allow
us to predict the future, as is the case in quantum mechanics, and
for chaotic systems. Our motivation is a desire to understand,
rather than to predict or prevent specific events. We find, however,
that earthquakes is not a chaotic phenomenon, so at least there are
no fundamental dynamical principles preventing us from predicting
earthquakes. o

We suggest that scaling laws be exploited to deduce the statistics

" for the few large earthquakes from the statistics of the much more
numerous small earthquakes. Specifically, it will be argued that
large. earthquakes are clustered rather than periodic, contrary to
popular belief (but in agreement with observations), and that the
occurrence of large characteristic events are illusions based on
some peculiar features of power law distributions. The danger of
such mirages in fractal phenomena has been pointed out by
Mandelbrot [1963, 1982]. -

SOC SPRING-BLOCK MODELS OF EARTHQUAKES
“The idea of self-organized criticality, as applied to earthquakes,

may be visualized as follows: Think of the crust of the earth as a

collection of tectonic plates, being squeezed very, very slowly into
each other. In the beginning of our geological history, maybe the
stresses were small, and there would be no large ruptures or
earthquakes. During millions of years, however, the system
evolved into a stationary state where the build-up of stress is
balanced in average by the release of stress during earthquakes.
Because of the long evolutionary process, the crust has "learned",
by suitably arranging the building blocks at hand into a very
balanced network of faults, valleys, mountains, oceans and other
geological structures, to respond critically to any initial rupture.
The result of this self-organization process is in sharp contrast to
any network of faults that one might set up by construction or
engineering, which would certainly not be critical. We do not know
how it all started, but that is not important for our arguments: the
self-organized critical state is an attractor of the dynamics which
will be reached eventually irrespectively of the initial conditions.

It makes no sense to separate the dynamics from the statics. It is
not productive to think of earthquakes as being generated by "pre-
existing faults”. One can trivially explain the G-R law by assuming
a fractal distribution of faults with a power-law distribution of
characteristic fault sizes, but that leaves us with the equally
difficult problem of explaining the dynamical origin of that
distribution. Popularly phrased, one must take a holistic view of the
situation. What appears to be a static configuration of large faults
in a human lifetime merely constitute a snapshot of a slow ongoing
geological process that has been hundreds of millions of years
underway. During that period, faults have come and gone. The
dynamics of the fault structure and the Gutenberg Richter law must
be produced within a unified picture. The SOC models simulate the
long term dynamics of the crust. In order to represent a realistic
view of geophysics, the models must be robust, or adaptive, in the
sense that if the physical properties were changed, or if noise were
added, the system would reorganize during a transient period and
become critical again. This is indeed the case for SOC models of
earthquakes. :

We want to study the simplest possible models which contain the
essential physics of earthquakes. While there has been studies of
three-dimensional crack-propagation models with slightly more
realistic long-range redistribution of elastic forces following
rupture, simple local models are probably more instructive, and
certainly much more amenable to numerical and analytical study.
We stress that we don't think of the Gutenberg-Richter law as
originating from a single fault, which must necessarily have a
characteristic energy depending on the size of that fault: our models

Fig. 2. Rooted tree generated by a critical branching process. Each
branch indicates a rupture event, and the complete tree represents a
single earthquake.



are "toy” models supposed to illustrate .the principle of global
organization of the crust of the earth.

Consider a two-dimensional lattice of interacting blocks. The
initial block structure merely represents a discretization of the space
in much the same way as the lattice in lattice gauge theories of
“particle physics. The block size does not represent an intrinsic
length scale in the problem. On each block, at sites (i,j), acts a
force Fj j in the general direction of motion. In the beginning Fj
may assume some random, small value. The initial state is not
important for the long term dynamics. Let the force increase
uniformly by a very small amount per unit time; this simulates the
slow driving by the tectonic plate motion, or whatever force is
driving the system. Eventually, the force at some site (i,j) must
exceed a critical threshold value Fg for rupture. The critical force
may either assume the same value at all sites, or be randomly
distributed. The initial rupture is simulated by updating the forces
at the critical site and the sites of the neighbors at (i,j£1) and
(i+1,j). There are several possibilities for defining those rules:

a)

Fi,j _)Fi,j —-FC
| Fon = Fan + @F¢
or b)

F.. -0

(N

Fin=Fan* ozFC

or ¢)

F.. -0
L}

Fon—= Fan+ ozFi'j

NN

These equations represent the transfer of force to the neighbors.
The updating of all sites is done in parallel. The transfer may cause
the neighbors to be unstable and a chain reaction to take place. This
chain reaction is the earthquake. The equations are completely
deterministic. We are not dealing with a noise-driven phenomenon;
on the contrary the physics turns out to be stable with respect to a
small noise, i. e. noise is irrelevant. After a finite number of
updatings, the forces on all sites will become sub-critical, and the
earthquake stops. The system is then quiet until the force at some
other location exceeds the critical value and a new event is
initiated. The process is repeated again and again. One observes
that the earthquakes become bigger and bigger for a’long transient
period. Eventually the growth stops: the crust has self-organized
into a stationary state. At this point one may start measuring the
seismic moment of earthquakes as defined by the total number of
rupture events following a single initial rupture. A histogram

similar to that in figuré 1 for real earthquakes can be constructed. .

The difference between the definitions &), b) and c) may seem
subtle and irrelevant since one might expect F; j to be not far from
F at rupture, and certainly, by definition, is identical to Fc at the
initial triggering instability. Actually, this difference tumns out to be
essential. In the continuous version of the BTW model for self-
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organized criticality (Bak, Tang, and Wiesenfeld, 1988b; Bak and
Chen, 1991a) the equations a) were applied, with a=1/4, so the
force was conserved. However, as soon as o deviates from 1/4, the
criticality gradually disappears, with a decreasing cut-off for large
earthquakes. It turns out that there is no reason that the force be
conserved for real earthquakes, so the model is not robust enough.

Recently, it was accidentally discovered by Feder and Feder
[1991] that the situation b) with a = 1/4 allowed for some
criticality. Note that this model is non-conservative because
sometimes the value at the critical site is larger than the threshold
value Fe so the reduction of force at that site exceeds the amount
transferred to the neighbors. Olami, Christensen and Feder realized
that model c) could be directly related to earlier spring models
studied for example by Burridge and Knopoff {1967}, with the
value of a directly related to the elastic parameters. The criticality
in this case prevails for values of o down to 0.05, with only 20%
conservation. This came as a surprise since there was at that time a
widespread belief that the lack of conservation would
spontaneously generate a length scale, i. e. a "characteristic
earthquake size". It turns.out that criticality occurs generically: it is
almost independent of the details of the toppling rule. In fact, the
situation a) is the one which is special in the sense that its rules do
not induce correlation between toppling sites.

Figure 3 shows the distribution of earthquakes for o = 0.20. The
straight line on the log-log plot indicates a power law: the system
has self-organized into the critical state. The slope of the line
corresponds to a B value of 0.8. The slope turns out to depend on
the degree of dissipation, (1-4a), so there is no universality of the
exponent P in the non-conservative case. One should not look for

unique b-values in nature. Indeed different b-values are observed in
different regions of the world. '
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Fig. 3. The distribution function for the energy of earthquakes in
our model. This graph represent a total of half a million

earthquakes on-&-square lattice of linear size 100, with a=0.20.
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Note the single scattered events for values of E greater than the
one where n(E)=1, i. e. the point where the straight line crosses the
line n=1 (2x10'6 in the plot). This is due to the fact that the power
law distribution function has the peculiar property that the average
size of earthquakes diverges, so that a sampling from the
distribution function never converges to the distribution function
itself. The difference amounts to almost one full order of
magnitude, and can not, even in principle, be eliminated by better
statistics which would simply shift the problem to larger
earthquakes. We are condemned to accept the fact that the statistics
is poor precisely for the events that we are most interested in,
namely the large events responsible for the highest energy release,
and the most damage.

The observation of such single, seemingly atypically large
earthquakes, has led to the concept of "characteristic earthquakes”
not given by the G-R distribution (see Scholz, 1991) The size of
these characteristic earthquakes is merely a consequence of the
finite duration of the observation, typically something like a human
lifetime. The slow logarithmic dependence of the "typical largest
earthquake” on the observation period might lead to the belief that
the time-scale, and the magnitude of those events are significant.
Common sense, however, indicates that a human life time can play
no role in a geophysical phenomenon such as earthquakes. Were
we to live a million years, we would probably observe
"characteristic" earthquakes of magnitude 13. Kagan [1992] has
pointed out from analyzing actual earthquake catalogs that
characteristic earthquakes indeed seem to be statistical artifacts. We
shall see that those observations may actually be related to
earthquake clustering.

Figure 4 illustrates the slow nature of the self-organization
process. The running average of earthquake sizes vs. time is shown
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Fig. 4. Average size of earthquékes as a function of time during the
self-organization process for a system of size L=70, conservation

level a=0.20, The lower graph represents the slow growth of the
average for an initial random lattice. The growth rate is a measure
of the correlation length in the system. Notice that the initial rise is
linear. The saturation is an effect of the finite system size. The
upper graph is data for an initially correlated lattice.
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Fig. 5. A Sequence of earthquakes for a 35x35 system with

0=0.20. The upper sequence shown is the occurrence of
earthquakes with energy greater than or equal to 20. The lower
sequence is for the occurrence of earthquakes with energy larger
than 450. The time intervals are scaled so that the densities of
events are the same. Note the clusters of "characteristic
earthquakes”. The life-time of the clusters may represent the active
lifetime of an individual fault or fault structure.

in the lower curve, starting from a random uncorrelated
configuration of forces. The growth will continue indefinitely,
limited only by the size of the system. During the self organization
process a time dependent cutoff will be seen in the size of the
earthquake distribution. The upper curve shows the running
average starting from a state which has already had time to reach
the steady state. The initial fluctuations in the curves can be shown
to be due to the fact that the exponent of the power law distribution
is less then 2.

When comparing with real earthquake statistics, we assume that
the crust of the earth has had sufficient time to complete the self-
organization process. The power law distribution of earthquakes
stems from the fractal nature of the SOC state, with correlated
regions ranging over all length scales; those correlated regions,
generated by the long term dynamics, are the equivalent of the
active faults, or fault segments, in real earthquakes. The fault
structure changes on large geological time-scales. The long range
SOC models (Chen et al [1989] and Xu et al [1991]) produce a
geometry which looks much more like a real fractal-like
arrangement of two-dimensional faults in a three dimensional
matrix.

Temporal Correlations :

A very intriguing question of earthquakes is the temporal
correlations between earthquakes. In figure 5 we show two
temporal sequences of earthquakes derived from model c) with
a=0.20 for earthquakes with energy larger than 20 and 450,

. respectively, for a 35x35 system. It is evident that the two time

sequences are dramatically different. The sequence for small
earthquakes seems to be random, while for the large earthquakes
the distribution is highly clustered. Also, the centers of the
clustered earthquakes are generally correlated in space.

A possible measure for the observed temporal clustering is the
coefficient of variation, Cy(E). It is defined as the ratio between
the square root of the variance of the temporal intervals, Var()g,
and the average interval between earthquakes with energy larger
than E, <t>g. For a random signal the distribution function is
simply an exponential function yielding Cy(E) = 1. For a periodic
signal Cy(E) = 0 while clustered earthquakes will produce Cy(E) >



1. We have measured the coefficient of variation for the
conservative model with 0=0.25 and for a non-conservative model
with a=0.20. No correlations are seen between earthquakes in the
_conservative model, Cy(E) = 1. In the non-conservative model we

see a clustering effect for large earthquakes, see figure 6, while

random behavior is observed for small earthquakes in accordance
with figure 5. The decrease in the coefficient of variation for very
large earthquakes is a finite-size effect, related to the cutoff in the
energy distribution. The same kind of temporal correlations is seen
in real earthquakes. Small earthquakes seem to be uncorrelated [see
figure 6 in Johnston and Nava, 1985). Large earthquakes display
strong clustering [Kagan and Jackson, 1991]. If one were to
perform the same types of calculation for small subsystems,
correlations between smaller events should eventually appear. This
implies that it might be very useful to study smaller events in order
to get more understanding of the larger events: one might predict
the statistics of large earthquakes in large regions by scaling
properly the statistics of smaller earthquakes in small regions.

The self-organization process of earthquakes creates big
correlated strain structures which are responsible for the occurrence
of large earthquakes. Usually those correlated structures do not
disappear after a shock has occurred. Because of strain dissipation
during the shock the strain in a correlated areas drops to a lower
value. The same correlated areas have a relatively large probability
to be activated again after a short loading time which is defined by
the degree of non-conservation. The system remembers its past.
This is the basic explanation for the spatio-temperal clustering of
large earthquakes. It should be noted that the average time interval

between large earthquakes is very large (proportional to EB) while

the characteristic time between clustered earthquakes is simply the
loading time of the strain. Those two time scales are very different.
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“Fig. 6. The coefficient of variation Cy(E) as a function of the

—energy released during an earthquake. The results are for a=0.20,
L=35 and open boundary conditions. For the smaller earthquakes
Cy(E)<l. The larger earthquakes are characterized by clustering,
Cy(E)>1.
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Thus, locally one observes a clustering of earthquakes of a
certain magnitude related to a "pre-existing” correlated Tegion,
which might take the shape of a "fault”. The system's memory is
encoded into the fault structure. However, the cluster survives only
for a certain time, i. e. the time scale for which the fault remains
active; that is the interval between clusters in figure 5; this is long
compared with the interval between large earthquakes, but short on
a geological time scale. If one averages over long time, or over a
large enough geographical area, the correlations disappear and the
Gutenberg-Richter law is recovered. This was actually observed by
Scholz in his study of earthquakes in Alaska (Scholz, 1991): data
from individual “rupture zones" appear to include characteristic
earthquakes, but when averaged over the whole zone the
earthquakes obeyed the Gutenberg-Richter law.

ARE EARTHQUAKES CHAOTIC?
There has been a good deal of speculations that many complex
phenomena in Nature are chaotic. In chaotic systems, a small
uncertainty 8 of the initial state of the system grows exponentially

with time, 8 = e*M where A is known as the Lyapunov exponent.
This exponential growth makes the behavior of the system
unpredictable at times larger than a characteristic time 1/A. But
critical systems have no characteristic time scale so how can they
be chaotic?

Within the simple uncorrelated chain reaction picture the
question has a simple answer. Compare the system with another
critical system which initially is slightly different, for instance by
starting with slightly different values of the forces. This causes a
number of “mistakes" in the branching process illustrated in figure
2. Some sites which branch in the original model die, and vice
versa. The number of mistakes grows linearly in time. The
difference in the state of the two systems is simply the accumulated
number of mistakes, which grows quadratically with time, = at2,
not exponentially. In the more general case, where the branchings
are correlated, one expects the divergence to be given by a different
power law. Indeed, this is what is found in numerical studies of
earthquake models [Bak and Chen, 1992; Chen, Bak, and
Obukhov, 1991] and other self organized critical phenomena. Our
conclusion based on the criticality indicated by the Gutenberg-
Richter law and numerical simulations must be that earthquakes are
not chaotic, so the structure of the dynamical equations does not in
itself prevent earthquake prediction. Actually, the concept of self-
organized criticality complements the concept of chaos wherein
simple systems with a small number of degrees of freedom can
display quite complex behavior. .

The idea of self-organized criticality applies not only to
earthquakes, but probably to most phenomena in Geophysics where
power laws such as those characterizing spatial fractality have been
observed. In particular, the intermittent nature of volcanic eruptions
share many of the statistical features of earthquakes. Very recently
Diodati et al., [1991] analyzed emissionfrom the Italian volcano
Stromboli and argued that it is indeed a self-organized critical
phenomenon. .
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