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Lattice models of coupled dynamical systems lead to a variety of complex behaviors.
Between the individual motion of independent units and the collective behavior of mem-
bers of a population evolving synchronously, there exist more complicated attractors. In
some cases, these states are identified with self-organized critical phenomena. In other
situations, with clusterization or phase-locking. The conditions leading to such different
behaviors in models of integrate-and-fire oscillators and stick-slip processes are reviewed.
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1. Introduction

In nature, there are many examples of systems with complex collective behavior.

There is a big effort to identify and understand the underlying mechanisms leading

to such behavior, but it is difficult to find general rules which could give, a priori,

information about spatio-temporal complexity. The analysis of the time evolution of

the magnitudes which describe an isolated dynamical system is a first step. However,

the features of a big system consisting of a large number of individual units (where

each unit is a dynamical system itself) interacting according to a given criterion,

can be very difficult to determine, even if all the units are identical. The nature of

the interaction between units, the type of boundary conditions, and the absence or

existence of noise are some ingredients which can change completely the dynamic

behavior of a coupled dynamical system.
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One might think that complexity arises when the intrinsic dynamics that govern

the temporal behavior of each member of a population as well as the interaction be-

tween them follow complicated spatio-temporal rules. Not necessarily. It may arise

as a result of the continued local simple interactions between all parts in an extended

system. On the other hand, extended systems with complex local features may lead

to a ”simple” collective behavior. This is observed in some biological systems where

after some transient period a regime characterized by a perfect synchrony in the

temporal activity of all the members is achieved.

Between the trivial behavior of independent uncorrelated units, which can be

analyzed by considering the features of isolated elements, and ”simple” collective

behaviors such as units evolving in perfect synchrony, there is a wide spectrum of

situations. Some of them manifest a large degree of complexity such as systems dis-

playing spatial fractal structures and temporal fractal behavior. Fractal structures

appear in a variety of physical systems.1,2 They are geometrical objects, that look

alike on all length scales. The universe consists of clusters of galaxies, organized in

clusters of clusters of galaxies and so on. Earthquakes occur on structures of faults

ranging from thousands of kilometers to millimeters. Likewise, the coast of Norway

contains fjords of all sizes, from very small ones to very big ones. Temporal fractal

behavior occurs when the temporal fluctuations in a certain quantity look alike on

all time scales. In general, the power spectrum behaves like 1/fϕ. When ϕ ≈ 1

we talk about 1/f noise or flicker noise.3,4,5 The fluctuations in light intensity of

quasars, the flow of the river Nile, and the current flowing through a resistor are but

a few examples of systems displaying fluctuations without an intrinsic time scale.

During the last years there has been an increasing interest to understand the

mechanisms that lead to other complex behaviors closely related to fractals. In

particular, a lot of attention is paid on conservative and nonconservative systems

displaying self-organized criticality (SOC). Up to now, SOC has been observed in

models of cellular automata, coupled map lattices, and coupled dynamical systems

defined on a lattice. It is our purpose in this paper to review the mechanisms as

well as the conditions required to observe SOC and the corresponding transition to

other collective behaviors.

The paper is organized as follows. In Section II we review the mechanisms that

provoke the occurrence of SOC, in randomly driven as well as in deterministically

driven models. In Section III we analyze different models of oscillators focusing our

interest on the conditions required to observe a macroscopic degree of synchroniza-

tion. We will discuss the effect of both short- and long-range interactions. Section

IV is devoted to investigate the circumstances in which a system develops the be-

haviors mentioned above, their transitions, and their relations. Finally, in Sect. V

we present the conclusions of the present work along with the lines we think deserve

further investigation in order to deal with more realistic physical problems.

2. Self-Organized Criticality

The ubiquity of spatial fractal structures and temporal fractal behavior observed
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in physical systems suggests a common underlying dynamical origin. The lack of

a characteristic scale is the hallmark of a critical process. In equilibrium, critical

processes require a fine-tuning of a relevant physical control parameter such as the

temperature or the magnetic field to a critical point. However, nature does not, by

itself, provide any fine-tuning of control parameters, and with zero probability it sits

at the critical point by accident. Thus it is very unlikely that the wide occurrence

of scale-invariance is due to critical processes in equilibrium systems.

Recently, Bak, Tang, and Wiesenfeld (BTW) suggested that the frequently ob-

served scale-invariance in nature might be related to the spontaneous organization

(spatial complexity) and reorganization (temporal complexity) in slowly driven, dis-

sipative systems.6,7 Internal mechanisms lead to dissipation (heat generation) and

quasi-stationary states are reached in which the average fluxes of energy into and

out of the systems are equal. The avalanches that occur when grains are dropped

onto a pile have been used to illustrate this idea. When sprinkling grains of sand

onto a table, one after the other, a pile builds up. Eventually, the pile ceases to

grow and additional grains of sand will ultimately fall off the pile. The attractor of

the dynamics is a statistically stationary state with a fluctuating angle of repose.

If the slope is too steep, large system spanning avalanches would make the pile

to collapse to a more stable configuration. If, on the other hand, the slope is too

shallow, only small avalanches would be initiated. The sandpile settles into a state

in between with avalanches of all sizes, power-law distributed. This scale invariance

suggests that the system is critical in analogy with equilibrium critical phenomena.

However, one deals with dynamical nonequilibrium statistical properties and the

system evolves naturally to the critical state without any tuning of external control

parameters. The criticality is an intrinsic property of the dynamics of the system,

and the phenomenon of self-organized criticality may very well provide a connec-

tion between the occurrence of fractal structures and 1/f noise, as well as being

the physical origin of these two phenomena. The earth crust is another example

of a self-organized critical system: Along the boundary of tectonic plates, a slow

build-up of strain is relaxed through earthquakes of all sizes; the energy-frequency

relation of earthquake occurrence, which is related to the Gutenberg-Richter law,8

is a power-law distribution.

A cellular automaton model for sandpile dynamics6,7 and other numerical

models9,10,11,12 were shown numerically to display SOC. The dynamical rules in

the BTW model — also known as the sandpile model — at least intuitively re-

semble the dynamics of a sandpile. In the sandpile model, each site on a lattice

is characterized by an integer variable (local slope), and this variable changes in

time due to external perturbations (adding grains of sand) and to interaction be-

tween different sites when an avalanche propagates through the system. With very

simple rules, the system reaches a state which is characterized by the lack of any

characteristic length or time scale. The simplicity of the model suggests that the

phenomenon of SOC could be quite universal: Indeed, it has been scrutinized by

a host of researchers in fields spanning statistical mechanics,13 condensed matter
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physics,14,15 geophysics,10,16 biology,12 and economy.17,18

The notion of self-organized criticality has initiated much experimental work,

especially on granular systems. The main object has been to address the question

of SOC in real sandpiles. Essentially, two distinct types of experiments have been

performed: Rotating a semi-cylindrical drum partially filled with grains at a low,

constant velocity,19,20,21,22 or dropping single grains at a low rate on a conical

sandpile resting on a circular platform.23,24,25,26 In most of these studies, the flow

over the rim of the system (the drop number) was recorded. In a drum experiment,

this quantity was found to be nearly periodic in time.19 Similar behavior was seen

for large conical piles: they displayed relaxation oscillations when a system size of

30–40 particle diameters was exceeded.23 In some of the latter experiments, power-

law distributions has been reported for small conical piles. However, recently it has

been shown, that these distributions are more likely to be stretched exponentials,

that is, a characteristic size for the drop number appears.27,28 The observed behavior

may be attributed to inertial effects, which seem to play an important role in all

the experiments.25,27,29,30 Inertial effects lead to a nonlocal process, whereas in the

numerical models only the local geometry determines the dynamics. Furthermore,

we notice, that the relationship between the drop number measured in experiments

and the avalanche size measured in numerical models is unclear. For an alternative

view on the dynamics of granular material see the work by Mehta and Barker31

which reviews the progress that has been achieved experimentally and theoretically.

In a recent experiment, the internal dissipated energy due to avalanches in a

slowly driven one-dimensional (1D) rice pile, was recorded27 and it was shown that

the occurrence of SOC depends on details in the grain-level dissipation mechanism.

With spherical grains, a stretched-exponential distribution was observed implying

a characteristic scale which is inconsistent with SOC. The spherical grains typically

accumulated kinetic energy when moving down the slope. However, with more

elongated grains, the dynamics was dominated by sliding grains. This induced a

higher effective friction which suppressed the inertial effects, and a power-law dis-

tribution of avalanche sizes appeared. This provides the first experimental evidence

of self-organized critical behavior in slowly driven granular systems.

2.1. Randomly driven models

First, we briefly discuss the 1D BTW sandpile model. Although the behavior of the

1D model is trivial, it illustrates the basic concepts of the more complex behavior

displayed by the 2D BTW sandpile model.

The 1D sandpile model7 is a cellular automaton where an integer variable hi
gives the height of the pile at site i. We define the local slope zi at site i as

zi = hi − hi+1. (1)

The addition of a grain of sand on a randomly chosen site i (hi → hi +1) results in
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the following changes in the slopes

zi → zi + 1
zi−1 → zi−1 − 1.

(2)

We proceed by dropping grains at random sites until one site reaches a slope which

exceeds a critical value, zi > zc, and the site topples by transferring one grain to

its neighboring site on the right, that is,

zi → zi − 2
zi±1 → zi±1 + 1

(3)

unless at the rightmost site where the sand grains fall off the pile. The neighbors

that are affected by the toppling may topple in turn generating a chain reaction or

avalanche. During the avalanche, no grains are added to the pile thus separating

the two time scales involved in the dynamic evolution of the pile, a slow time scale

for the addition of the grains and a fast time scale for the relaxation processes.

The avalanche stops when the system reaches a stable state with zi ≤ zc ∀i and

another grain is added following (2) until a new avalanche is initiated and so on.

After a transient period, whose duration depends on the initial conditions, the

system reaches a critical state in which zi = zc ∀i. This state is a fixed point

of the dynamics, since after any perturbation the system relaxes returning to the

stable state; the added grain will tumble down the slope and simply fall off the pile.

The fixed point is an attractor for the dynamics, however, this state has no spatial

structure, and correlation functions are trivial.

In the 2D sandpile model (on a square lattice),6 an integer zi,j is assigned

to each lattice site (i, j), where i, j = 1, . . . , L. The integer zi,j represents an

appropriate dynamical variable (e.g. height of a column of sand, mechanical stress,

heat, pressure, or energy6,32) on site (i, j) in a spatially extended system.

We perturb the system (add sand to it) by choosing at random a position and

increasing the dynamical variable with one unit, that is, zi,j → zi,j + 1. Whenever

the dynamical variable on site (i, j) exceeds a threshold value zi,j > zc, the site

topples,

zi,j → zi,j − 4, (4)

znn → znn + 1 (5)

where znn denotes the height at nearest neighboring sites. As a result one or more

neighbors may exceed the threshold value in which case they have to relax and

an avalanche will propagate through the system. The toppling rule conserves the

amount of z-values whenever an interior site topples. Dissipation only occurs when

a boundary site topples assuming open boundary conditions (bc).

The 2D sandpile will evolve into a statistically stationary state where, on the

average, the rate of flow into the system equals the rate of flow out of the system

across the boundary. Whenever the average slope becomes too large, system span-

ning avalanches can occur, which transfer grains to the boundary. On the other
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hand, when the average slope is too small, avalanches tend to be small, and the pile

builds up. The stationary state is no longer a fixed point as in 1D but a complex

attractor. Dhar33 has calculated the exact number of states in the attractor. When

zc = 3, only (3.210 · · ·)L2

of the 4L
2

stable states are allowed. Furthermore, the

dynamics which takes the system from one allowed state to another is ergodic in

the sense that all the allowed states occur with equal probability.33

One way of characterizing the dynamics in a system of linear size L, is to measure

the distribution of avalanche sizes defined as the total number of topplings. Let

P (s, L) denote the probability of initiating an avalanche of size s in a system of size

L. In the stationary state, an added particle will eventually fall off the boundary

of the system. The average distance a particle has to flow in order to reach the

boundary is proportional to L due to the random deposit. The average avalanche

size 〈s〉 =
∫

sP (s, L) ds must be infinite in the thermodynamic limit L → ∞.

Indeed, averaged over a large number of perturbations (after the transient period),

the avalanche size distribution is a power law

P (s, L) ∝ s1−τ (6)

limited only by the size of the system, see Fig. 1(a). From these results the power-

law exponent τ is 2.15 ± 0.1. Since the cutoff is a finite size effect, the average

avalanche size tends to infinity when L → ∞. A data collapse for different system

sizes L is obtained when plotting Lβ P (s, L) or sτ−1 P (s, L) against the rescaled

variable s/Lν , see Figs. 1(b-c). Thus we can write

P (s, L) = L−βF (s/Lν), (7)

or, alternatively,

P (s, L) = s1−τG(s/Lν), (8)

with G(x) = xτ−1 F (x). The exponent β = ν(τ − 1), where τ is the power-law

exponent and ν a critical index expressing how the cutoff scales with system size.

The scaling function F approaches a power law (or, equivalently, G a constant)

when s/Lν → 0 since the avalanche size distribution becomes independent of the

system size when L→∞ and decays very quickly for s� Lν .

The BTW relaxation rules (4) and (5) conserve the dynamical variable z except

at the boundary. Introducing nonconservative dynamics in the interior of the system

will leave the BTW model noncritical. Changing rule (4) to, say, zi,j → zi,j − 5

while (5) remains unchanged, one grain of sand will dissipate for every toppling. In

the stationary state, the average rate of dissipation equals the average rate of flow

into the system. Thus 〈s〉 = 1/Pzc where Pzc is the probability of adding a grain to

a site with zc units, thereby initiating an avalanche. This probability will approach

a constant value when L → ∞, that is, 〈s〉 will approach a finite value. Such a

system cannot display SOC. The avalanche size distribution decays exponentially

with a characteristic avalanche size, that does not depend on the system size, and

the avalanches are ”localized”. However, a system with globally conservative but
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Fig. 1. The 2D Bak, Tang, and Wiesenfeld sandpile model for system sizes L = 50, 100, and
200 with open bc. (a) The probability of initiating an avalanche of size s in a system of size L,
P (s,L) decreases algebraically with s. The cutoff is a finite-size effect. The displayed distribution
functions are averaged over exponentially increasing bins. (b) Using Eq. (7), a reasonable data
collapse is obtained with τ = 2.15 ± 0.1 and ν = 2.7 ± 0.1. (c) However, the alternative data
collapse suggested by Eq. (8) shows the bad scaling of the model for ”small” system sizes.
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Fig. 1. (continued)

locally nonconservative dynamical rules (changing rule (4) to zi,j → zi,j − 4 + θ,

where θ ∈ {−3, ..., 3} is an annealed random variable) displays SOC.34

Memory effects can be introduced into the BTW model in the sense that a site

which has relaxed cannot receive any amount from neighboring sites during the on-

going avalanche. This kind of memory effects makes the dynamics nonconservative

and hence destroys the SOC behavior.

In order to model the early experiments on SOC in slowly driven granu-

lar piles, inertia effects were included in a BTW-like model.30 It was observed

that when the system size exceeded a certain size, characteristic system spanning

avalanches appeared due to the inertia effects in agreement with experiments on

real sandpiles.19,25,29,30 Thus the presence of inertia effects also destroy the SOC

behavior.

An apparently different stochastically driven continuous-energy model was in-

troduced by Zhang.35 In this model, a real number Ei,j is assigned to each site (i, j)

on a square lattice. The system is perturbed randomly by adding an amount δE to

a randomly chosen site, that is, Ei,j → Ei,j + δE. If the value at any site exceeds

the threshold value Ei,j > Ec, the system relaxes according to

Enn → Enn + εEi,j
Ei,j → 0,

(9)

with ε = 0.25. The system is conservative and dissipation occurs only at the

boundary, where the number of nearest neighbors is less than 4. The model was
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studied with Ec = 1 and δE chosen uniformly in the interval [0, 0.5],32,35 in which

case it is believed to be in the same universality class as the 2D BTW model, that

is, the values of critical exponents, such as the power-law exponent τ and scaling

index ν, are identical.36,37

With ε < 0.25, the dynamics in the Zhang model is nonconservative. When

δE is chosen in the range [0.1, 1], the nonconservative relaxation rule introduces a

characteristic avalanche size. In this case, the Zhang model is also noncritical in the

presence of nonconservation. Furthermore, the introduction of the memory effects

mentioned above leads to a characteristic avalanche size inconsistent with the hy-

pothesis of SOC. Similar models have been considered in the context of fracturing.38

However, additional rules where introduced in order to make the dynamics globally

conservative which introduces a kind of inertia effects. Indeed, the general behavior

of such systems is the periodic generation of system spanning avalanches coexisting

with power-law distributed small avalanches.

The microscopic rules of the lattice models can be written in the form of a set of

coupled equations, one for each site. For a continuous version of the stochastically

driven BTW model we have39

Ei,j(t + 1) = Ei,j(t)−Θ(Ei,j(t)−Ec) Ec +
∑

nn

Θ(Enn(t)−Ec) Ec/4 + ηi,j(t), (10)

where Θ(x) = 0 when x ≤ 0 and Θ(x) = 1 when x > 0 is the Heaviside function.

The variable t refers to lattice updates. However, in a slowly driven system, the

physical time between lattice updates is very short when avalanches are propagating

and very long when perturbing the system.40 The sum takes into account a possible

increase in the dynamical variable due to toppling of nearest neighboring sites nn.

When an avalanche has come to a halt, a random site is perturbed. The random

drive is represented by

ηi,j(t) = η δi,nδj,m
∏

k,l

[1−Θ(Ek,l(t)−Ec)] , (11)

n, m being two random integers between 1 and L chosen once for each lattice up-

date, and k, l two index running over all the lattice sites. In the original BTW-model

η = 1. The Heaviside function Θ that appears in the noise terms represents the sepa-

ration of time scales. The models are driven slowly in the sense that no perturbation

takes place while avalanches evolve. On the other hand, for the conservative Zhang

model, where the toppling variable is reset to zero, the corresponding equations are

Ei,j(t+1) = [1−Θ(Ei,j(t)−Ec)] Ei,j(t)+
∑

nn

Θ(Enn(t)−Ec) Enn(t)/4+ηi,j(t). (12)

The noise ηi,j(t) is again given by (11). In the original Zhang model, η is chosen

uniformly in the interval [0, 0.5]. In order to deal analytically with these equations,

one usually neglects the Heaviside function in the noise term. This fact creates

some difficulties, since the notion of avalanches in such models is not well-defined.41
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Equations (10) and (12) can be coarse-grained in order to obtain a continuum

equation for the effective E(~r, t). Using the prescriptions for the temporal derivative

and the Laplace operator one gets, after a rescaling of the energy E −Ec → E42

∂E(~r, t)

∂t
= α∇2[(ZE(~r, t) + Ec)Θ(E(~r, t))] + η(~r, t), (13)

where Z = 1 for the Zhang model and 0 for the continuous BTW model. The noise

η(~r, t) takes into account the effective external noise as well as the internal noise

that appears due to the elimination of internal degrees of freedom.

On the other hand the Θ-function representing the threshold dynamics is mod-

eled as the limit of a smooth function, whereupon dynamical renormalization group

calculations can be applied.36,40 This fact also changes the problem intrinsically.

Left to itself, without adding noise, the model would relax to a unique flat ground

state with E(~r, t) = 0. The concept of stable states (or memory) is removed. Some

other authors have built nonlinear stochastic differential equations according to the

symmetries of the discrete models.43,44,45 One should distinguish, however, between

these approaches, in which the main goal is to study the ”generic scale invariance”

by means of dynamical renormalization group theory, and the lattice models.

2.2. Continuously driven models

A continuously driven dynamical system was introduced by Olami, Feder, and Chris-

tensen (OFC) in the context of earthquake modeling.10 Though the dynamics of

earthquakes is very complex there are two basic components which have to enter a

model: (a) earthquakes are generated by the very slow relative motion of tectonic

plates, (b) they occur as abrupt rupture events when the fault can no longer sus-

tain the stress, that is, the occurrence is intermittent. Hence, there are two time

scales involved in the process; one is related to the stress accumulation while the

other, which is orders of magnitude smaller, is associated to the duration of the

abrupt releases of stress. A simplified spring-block model introduced by Burridge

and Knopoff46 includes the basic components mentioned above. The model consists

of a 2D network of blocks interconnected by springs. (For a review on the work of

1D Burridge-Knopoff models of earthquake faults, see the work by Carlson, Langer,

and Shaw.16). Each block is connected to the four nearest neighbors. Additionally,

each block is connected to a single rigid driving (tectonic) plate by another set of

springs as well as connected frictionally to a fixed rigid (tectonic) plate, see Fig. 2.

Strain is accumulated uniformly across the system as the rigid plates move with

a constant relative velocity. When the strain on one of the blocks exceeds the static

friction force, the block slips. The released stress is transferred to the neighboring

blocks, which in turn may slip, and an earthquake can evolve. This simple picture

can be mapped to a coupled map lattice model.47 A uniformly increasing stress is

assigned to each lattice site (i, j). When a block exceeds the threshold stress Ec

it slips. Simple arguments lead to the relaxation rules identical to Eq. (9) with

ε = K/(4K + KL), K and KL denoting the spring constants in the model, see Fig.
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fixed plate

K

K K

L

moving plate

Fig. 2. The 2D spring-block model of an earthquake fault. All the blocks are connected to a
moving plate by springs with spring constant KL. The blocks are also connected to the four
nearest neighbors through springs of strength K. (After Olami, Feder, and Christensen10)

2. The earthquakes are considered to be instantaneous, that is, the loading of the

system stops during an earthquake and the driving recommences when the evolving

earthquake has come to a halt. The size of an earthquake is defined as the total

number of relaxations.

When ε = 0.25, the model is a continuously driven version of the Zhang model.a

Apparently, this model has the same power-law exponent τ as the stochastically

driven models. However, since KL 6= 0, the generic situation corresponds to the

nonconservative case where ε < 0.25.

In Fig. 3(a) we plot the results of a simulation with ε = 0.20 for different system

sizes. A reasonably good data collapse is obtained using the finite-size scaling ansatz

Eq. (7), see Fig. 3(b). Thus the system is scale invariant; it displays SOC behavior

even in the nonconservative case.

When introducing nonconservative relaxation rules into the stochastically driven

BTW and Zhang models, the distribution of avalanche sizes decay exponentially

with a characteristic avalanche size. The systems are subcritical. Thus the occur-

rence of criticality in the nonconservative OFC model is very intriguing since it

suggests a different mechanism for the generation of the scale invariance. Since the

majority of natural phenomena are inherently nonconservative, the SOC behavior

of nonconservative systems is probably much more generic than the corresponding

behavior of conservative systems.

aThere is also a uniformly driven continuous version of the 2D BTW sandpile model.7 Choosing
random initial conditions, this model will be in the same universality class as the stochastically
driven integer model. In the continuous model, the fractional part of the dynamical variable takes,
in some sense, the role of the random number generator. Note that this model and the OFC model
are deterministic. The inherent randomness enters via the initial conditions.



12 C. J. Pérez, A. Corral, A. Dı́az-Guilera, K. Christensen, and A. Arenas

���������
�������	�
�������	

�������	�
�������	�
�������	

��� �	�	���
��� �����
��� ���
��� �
�

� ��� ���	� ���	��� �����	��� �����	���	�

������
��

�

�����

�! #"%$�! '&($%$

)�* +

+�)

+�)�)	)

+�)�)	)�)	)

+�,�-.)	/

+�,�-.)	0

+1,123)�4 )�* )�)	)�+ )�* )	)�+ )�* )�+ )�* + +

56 7
8�9�:
5;

<>=@?BA

C�D@E

F!G#H%IF!G'J(I%I

Fig. 3. (a) The probability density P (s,L) of having an earthquake of size s when ε = 0.20, for
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in energy distribution increases with system size L. (b) A finite-size scaling plot using Eq. (7)
with τ = 2.9± 0.1 and ν = 2.15± 0.1.48,49
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The microscopic rules for the continuously driven OFC model are given by39

Ei,j(t+1) = [1−Θ(Ei,j(t)−Ec)] Ei,j(t)+ ε
∑

nn

Θ(Enn(t)−Ec) Enn(t)+ η(t) (14)

where

η(t) = η
∏

k,l

[1−Θ(Ek,l(t)−Ec)] (15)

is a global perturbation. In simulations, one uses η = Ec −Emax(t) where Emax(t)

is the maximal value of all the dynamical variables in the lattice after the avalanche

has come to a halt. To simulate this model a very efficient algorithm has been

proposed by Grassberger.50

The only difference between the Zhang model and the OFC model is the way of

driving. The uniform (global) driving must be a crucial element in driving noncon-

servative models to criticality.51 To move continuously between stochastically and

uniformly driven systems, one can perturb the system randomly by adding a fixed

amount δE to a randomly chosen site (i, j), that is, Ei,j → Ei,j+δE. If the value at

any site exceeds the threshold value Ei,j > Ec, the system relaxes according to Eq.

(9). The limit of small δE is the limit of continuous drive. Figure 4 shows the dis-

tribution function of avalanche sizes P (s, L) for ε = 0.20 and various values of δE.

The avalanches are localized for “large” values of δE. The distribution function is

essentially an exponentially decreasing function and no scale invariance is observed

when changing the system size. Apparently a phase transition from a localized into

a critical system occurs between Fig. 4(c) and 4(d). For “small” values of δE the

distribution function approaches a power-law behavior and the cutoff scales with

system size, implying that the avalanches are no more localized.

The random drive represents an effective noise given by
√

Ec−Emax(t)
δE δE ∝

√
δE.

Obviously, large noise can destroy spatial correlations in a coupled dynamical

system,b but the δE → 0 represents the weak noise limit where long-range cor-

relations can appear.51 Analytically, the nonconservation introduces a length scale

which in principle one expects to break the scale invariance. Additionally, the con-

tinuous driving is difficult to handle analytically. However, an appealing approach

would be to treat the OFC model in the limit of random weak noise driving since

this is conceptually equivalent to a continuous driving.

3. Synchronization

Synchronization is a fascinating phenomenon observed in biological, chemical, and

physical systems that has captivated the attention of many scientists in the last

century. The paradigmatic example is observed in some forests of South Asia where,

bThis is seen for example in the model discussed by Manna, Kiss, and Kertész,34 where the
dynamical rule destroys the spatial correlations in the BTW model by letting the toppling site
zi,j → zi,j − 4 + θ, where θ ∈ {−3, . . . , 3} is an annealed random variable. They obtain τs =
2.515 ± 0.02 in perfect agreement with the analytical result τs = 5/2 for models without spatial
correlations.51,52
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at night, myriads of fireflies are sitting in the trees. At the beginning, the members

of the population emit flashes of light incoherently but after a short period of

time the whole swarm is flashing in unison creating one of the most striking visual

effects ever seen. But mutual coherence in the temporal activity of a group of

units has been observed in other contexts. Some examples are the cell mitotic

cycle, heart pacemaker cells, circadian pacemakers (biological clocks), neurons in

the visual cortex, menstrual period of women, Josephson junctions, or some chemical

reactions, just to cite a few. Winfree’s book53 is an excellent reference to read about

these systems.

The relevance of synchronization has been stressed frequently although not al-

ways fully understood. In the case of fireflies it may help the courtship between male

and female.54,55 In the heart, the impulses coming through the vagus nerve trigger

the contraction of the heart only if they are properly synchronized.56 In other cases

the relevance is still a matter of discussion. There are some evidences which support

that coherent oscillations play an important role in sensory processing. It has been

suggested that the discrimination and segmentation of objects, so often performed

by living systems, can be explained by analyzing the temporal firing patterns of

different neurons in the visual cortex.57,58,59,60

Which mechanisms are capable of generating a collective synchronous behav-

ior? It is accepted that in order to observe a global coherent activity, oscillatory

interacting units are required. The rhythmic activity of each element is provoked

either by some internal processes or by external sources (external stimuli or forc-

ing). The internal processes may have a physical or biochemical origin of great

complexity, which probably is different for any of the systems considered above,

but the essence of the phenomenon can be explained in terms of basic principles

which allow to create a common framework. Within this environment, a simple and

general mathematical description can be formulated.

Suppose that the rhythmic activity of each element can be described in terms

of a magnitude which evolves regularly in time. When such variable reaches a cer-

tain threshold value the unit emits a pulse (action potential for neurons) which

is transmitted to all the members of the population connected to it. Moreover, a

resetting mechanism initialize the state of the unit that has fired. Then, a new

cycle recommences. Essentially the behavior is analog to an oscillator. Assuming

that the period of the rhythm is T , it is convenient to define the concept of phase,

without loss of generality defined in [0, 1], which is a periodic measure of the elapsed

time. In general, the phase is a nontrivial function of the state of the considered ele-

ment. These features define the so-called relaxation or integrate-and-fire oscillators

(IFO’s).

Essentially, the effect of the emitted pulse is to alter the current state of the

neighbors by modifying their periods. This change is not uniform, sometimes the

period is lengthened and sometimes it is shortened. The perturbation depends

on the current state of the oscillator which receives the external impulse. The

modification induced by such a pulse can also be studied in terms of a phase-shift,
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what has been called phase response curve (PRC). Several different PRC’s have been

reported in the literature depending on the particular system under study.61,62,63 In

general, the analysis of the collective behavior of the system can be done in terms

of a PRC if the phase-shift provoked by an impulse is independent of the number of

impulses arriving within an interspike interval and if the arrival of such an impulse

affects the period of the current interval but does not modify future intervals. This

fact fostered a bunch of papers published in the seventies and the beginning of the

eighties devoted to analyze the different patterns of entrainment between pairs of

pacemakers. However, a systematic treatment of the whole population was still

missing.

There is another type of models where synchronization effects have been stud-

ied extensively. In these models each member of the population is modeled as a

nonlinear oscillator moving in a globally attracting limit cycle of constant ampli-

tude. These are the phase, or limit cycle, oscillators. The units interact weakly to

ensure that any perturbation does not move any of them away from the limit cycle.

Then, only one degree of freedom is necessary to describe the dynamic evolution of

the model. Perhaps, the best known example is the Kuramoto model,64 where the

phase ϕi of each oscillator obeys the following Langevin equation

ϕ̇i = ωi +

N∑

j=1

Jij sin(ϕj − ϕi) + ηi(t), (16)

where ωi is the intrinsic frequency of each member, and ηi denotes a gaussian white

noise of zero mean and correlation given by

< ηi(t)ηj(t
′) >= 2Dδijδ(t− t′). (17)

When there is no dispersion in the values of ωi this model can be transformed

into the planar XY model, well known in statistical mechanics. However, in the

context of oscillators ωi is picked up from a random distribution. Note that the

main difference between these phase-coupled oscillators and the pulse-coupled IFO’s

explained before is that now the coupling in not pulsatile but it acts continuously

in time, depending only on the phase difference between units.

For ferromagnetic all-to-all interactions (Jij = J/N, J > 0), there is a critical

value of the coupling strength J for which a phase transition occurs between a state

where all the oscillators run incoherently with its own frequency to another state

where a certain degree of synchronization appears spontaneously.65,66 The nature

of such transition depends on the distribution of frequencies,67,68 on the features

of the coupling,69,70,71,72 and on the strength of the noise D.73,74 In this review

our interest will be focussed in the pulse-coupled model although under certain

conditions it is possible to convert a model of IFO’s into a model of phase-coupled

oscillators as has been shown by several authors.75,76,77

In general, three different levels of synchronization can be observed when con-

sidering populations. The strongest implies that all the oscillators have the same
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phase. When the members of a group do not fire in unison but keep a fixed phase

difference between them, a ”phase locking” regime is achieved. Finally, the weakest

situation appears when several oscillators run with the same average frequency but

without keeping any fixed phase difference. This is called ”frequency locking”.

A particularly interesting task was developed by Winfree who was one of the first

authors who considered the population as a whole and who gave mathematical tools

to tackle this problem.78 His ideas were picked up by other scientists who developed

them more deeply or proposed alternative mathematical techniques to solve prob-

lems which remained open for decades.79 Mean-field models are sufficiently simple

to be solved exactly and analyze under which conditions any of the three levels of

synchronization defined above can be observed.

3.1. Mean-field models

We will consider systems formed by an assembly of N identical IFO’s with all-to-all

couplings. Each member of the population is described in terms of a phase variable

ϕ and a state variable E which evolve in time according to the following equations

dϕi
dt

= 1 (18)

and
dEi
dt

= f(Ei) + g(Ei, t), (19)

where f(Ei) is the driving rate, which gives the natural evolution of the oscillator,

and g(Ei, t) is a function that accounts for the effect of the coupling between unit i

and the rest. It may have a complicated dependence on time. In this description self-

interaction is not considered but an explicit dependence of g(Ei, t) on the current

state of the oscillator which receives the incoming input. The dynamics follows the

essential trends mentioned in the introduction for relaxation oscillators. When an

oscillator reaches the threshold it is reset (E → 0, ϕ→ 0) and the rest of oscillators

suffer a perturbation of their internal state. The features of this perturbation depend

on g(Ei, t). This description is quite general and includes the majority of models of

integrate-and-fire oscillators studied so far. Moreover, it allows a straightforward

generalization to models with nonidentical periods. We can see in this dynamics a

first contact point with models which display SOC behavior.

A particularly interesting case was considered by Mirollo and Strogatz (MS).80

Their work was inspired in the analysis developed by Peskin81 for the cardiac pace-

maker, though the main outcomes are general enough to be applied to a wide range

of models. MS consider systems whose intrinsic dynamics is given by a driving rate

f(E) that satisfies

f(E) > 0 and f ′(E) =
df(E)

dE
< 0, ∀E, (20)

that is, the state variable E and the phase ϕ are related through a convex function

E(ϕ), hereafter called the driving (see Fig. 5).
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Fig. 5. Functional relation between the state of a unit E, and its phase ϕ, for different driving
rates corresponding to a convex driving (f ′(E) < 0), linear driving (f ′(E) = 0), and concave
driving (f ′(E) > 0), respectively.

As an example, for the Peskin model81

f(E) = γ(C −E), (21)

where γ is a constant that gives information about the convexity of the driving

and C = 1
1−e−γ ensures that the period is one when the threshold is one. This

simplified model accounts for the variation of the membrane potential E (voltage

difference between the internal and external part of a cell), as a consequence of the

transport of Na, K and other ions across the membrane channels. The system is

simply represented as an RC circuit, which implies γ > 0.82,83

On the other hand, in the MS model, the coupling between the oscillators is

given by

g(Ei, t) = ε
∑

j

δ(t− tj), (22)

where the sum involves all the oscillators which have fired at a given moment (tj
denotes the time at which the j-th oscillator fires). An equivalent description can

be made in terms of the state variable E

g(Ei, t) ∝ ε
∑

j

δ(Ec −Ej), (23)

where now the sum runs over all the oscillators and Ec is the threshold. The

coupling is instantaneous, excitatory (ε > 0), and constant since there is no depen-

dence on Ei, which means that when a cluster of m members reaches the threshold
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simultaneously, the state of the other units is changed immediately according to

E → E + mε. (24)

One of the effects of such pulse-like interaction is that when one oscillator fires

other members can also reach the threshold. These oscillators may in turn push

other elements up triggering an avalanche. In this case all the units which have

fired merge in a group which does not break up anymore. This effect is called

absorption. The concept of absorption implies the existence of a refractory time, a

period where the oscillator which has fired is not sensitive to new incoming inputs.

It has a crucial effect when the interaction is modeled in terms of a delta function,

as we will see later. Notice that a coupling given by (22) implies the existence of

two time scales, a slow scale for the intrinsic dynamics of the units and a fast one,

indeed infinitely rapid when compared with the other, for the interaction between

IFO’s. Once again we can establish a connection with models displaying SOC. In

terms of this time scale separation we can say that the refractory time only acts in

the fast time scale.

MS were able to prove that for any ε > 0 the population of oscillators will be

firing in synchrony in the stationary state for almost any initial condition (except

in a set of Lebesgue measure zero) provided the driving is convex, i.e., when Eq.

(20) holds. In fact, this result can be derived even with more restrictive conditions

given by

g(Ei, t) = εδ(t− tj). (25)

According to this description the strength of the pulse emitted by a group of oscil-

lators is independent of its size, that is, there is no additivity in the coupling and

therefore m = 1 in Eq. (24). This result is very powerful because (25) does not

favor synchronization, just the opposite. When additivity is taken into account,

the process of entrainment is accelerated and perfect synchrony can be found under

broader conditions than the given by the MS theorem.51,84

Note that there is no contradiction in these results because the theorem only

gives sufficient but not necessary conditions to synchronization (Eq. (20)). Figure

6 illustrates this situation.

The MS model has been generalized to other situations. It has been studied

in presence of weak noise85 and with a random distribution of thresholds.86 Some

studies have emphasized the necessity to overcome some unrealistic features of the

model. For instance, the instantaneous character of the coupling does not take into

account neither the finite time of the synaptic response nor the finite time associated

with the transmission of information propagating along the axons (delays). Both

are relevant in models of spiking neurons and make the collective behavior much

richer.87,88,89 As an example, recent studies have shown that under certain condi-

tions inhibitory couplings rather than excitatory lead to synchronization90,91,92 in

agreement with some experimental observations.93 These results contrast with the

MS model for inhibitory coupling (ε < 0). A straightforward revision of their proof
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Fig. 6. Time evolution of the size of the ”avalanches” for the Peskin model with all-to-all coupling,
ε = 0.1, and N = 100. (a) A convex driving, γ = 0.1, leads to synchronization, and (b) with a
concave driving, γ = −0.1, the system settles in a periodic state which is very sensitive to initial
conditions. In these simulations we have considered the extreme situation given by Eq. (25). Time
is measured in number of avalanches.
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shows that the sufficient conditions to find synchronization in this case are f(E) > 0

but f ′(E) > 0, ∀E.

Another underlying hypothesis that restricts the range of interest of the MS

model concerns the strength of the coupling ε which does not depend on the state

of the oscillator which receives the pulse. As we have mentioned above, in many

studies of biological pacemakers it is assumed that the response of a cell due to

an external stimulus is a phase shift (given by the PRC) which induces an energy-

shift ε(E) in Eqs. (22) or (25), hereafter called the energy response curve (ERC),

that, in general, is a nonconstant function of E. It is possible to generalize the MS

theorem by considering a general ERC as well as an arbitrary driving rate, with the

only restriction of having f(E) > 0. Then, a sufficient condition to find a stable

synchronous regime is given by94

f ′(E)ε(E)

f(E)
< ε′(E), ∀E. (26)

This means that, in general, the knowledge of the intrinsic dynamics (i.e. the

driving) of an individual oscillator is not enough to predict the final state of the

population. Information about the response of a given unit in presence of a external

stimulus is also required.

3.2. Short range models

The question whether the conclusions extracted from the MS theorem can also

be applied to lattice models with short-range connectivity is of great importance.

First, notice that in mean-field models synchronization emerges in an absorption

process, where clusters of oscillators of increasing size merge with each other and

never break up. However, in a lattice model, big assemblies of oscillators with the

same phase, which eventually may break up, are generated by means of avalanches

that start at a given point and propagate through the lattice. When they sweep the

whole system we call them relaxation oscillations. Therefore, due to the different

nature of both mechanisms one would expect that the conditions required to find

synchronization/relaxation oscillations are different. In general, it is not easy to get

analytical results for short-range models. Only for very special bc and for systems

of low dimensionality (essentially 1D) exact results have been derived.95 Therefore,

in the majority of situations the main outcomes rely on computer simulations. As

we will see later, they show that under certain conditions mean-field arguments can

be extrapolated to systems with finite connectivity.

Let us consider a lattice model of IFO’s with local rules given by (19) and (22)

(but now the sum runs only over nearest neighbors). An important point concerns

the way in which an avalanche is propagated through the lattice. Suppose that a

given unit, the seed, has fired and as a consequence some of its neighbors reach the

threshold. In turn, these oscillators will fire, interacting with their neighbors being

the seed among them. The question is what happens with the seed. According to

the strategy applied in the mean-field version of the MS model such unit should
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remain at the reset point during the whole avalanche. This is important because

such effect implies the existence of a refractory time which persists until all the

oscillators are below the threshold. Furthermore, all the members which have fired

will have zero phase when the avalanche is over. We can describe this refractory

time by an ERC that verifies ε(0) = 0. Under such conditions computer simulations

show that relaxation oscillations appear when f ′(E) < 0 and ε is a definite positive

constant, in agreement with a conjecture proposed by MS.80 For a more general

function ε(E) (but ε(0) = 0), it has been shown94 that (26) is a sufficient condition

to observe relaxation oscillations. Moreover, in this case relaxation oscillations lead

to a perfect synchronous regime.c Figure 7 gives numerical evidence of this fact.

Fig. 7. Number of avalanches (filled) and time in period units (hollow) required for a 32 × 32
lattice of Peskin’s oscillators with open bc to observe complete synchronization as a function of
γ in a log− log scale. The straight line shows the γ−1 behavior. The value of ε is constant and
equal to 0.1. Similar results are obtained for periodic bc and other driving rates.

The most appealing consequence of the previous results is that for coupled dy-

namical systems like those considered before, for open or periodic bc, mean-field

results seem to be still valid and represent sufficient conditions to ensure the exis-

tence of the synchronized regime, provided one considers the refractory time.

When the driving is linear, the phase and the energy become identical. In this

case, for a constant ERC, it is very simple to show that starting from a random

initial configuration the system evolves towards a periodic state formed by clusters

of oscillators with the same phase. The phase difference, after a cycle, remains

constant in time once all the units have fired, and consequently the system does

cNote that for open bc and ε(0) 6= 0, after a relaxation oscillation of the size of the system not
all the units have the same phase. For instance, the cells located at the boundaries remain at a
different state with respect to those located in the bulk because the number of neighbors in each
case is different.
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not synchronize in agreement with Fig. 7. On the other hand, a concave driving

may give rise to the appearance of stable complex phase-locked spatio-temporal

structures94,96,97 as, for instance, a chessboard-like configuration. This sort of ”an-

tisynchronized” states are exclusive of the short-range models since there is no

counterpart in the mean-field case.

On the other hand, we could suppose in the previous discussion that the seed

was updated as any other neighboring cell, that is, ε(0) 6= 0, so the refractory time is

removed. In that case the coupling between neighbors is governed, when Eij ≥ Ec,

by
Enn → Enn + ε
Ei,j → 0.

(27)

These rules are not new. They were introduced in a stick-slip model by Feder and

Feder (FF)98 in the context of earthquake dynamics, with the restriction of having

a constant driving rate and open bc.

As in all the models of IFO’s discussed so far, since the relaxing site is reset

to zero and a fixed amount is transferred to the neighbors, the FF model does not

have any memory of the initial configuration. After an avalanche, all the sites that

have fired have an energy which is a multiple of ε. When the threshold Ec and ε

are commensurable, that is Ec/ε is an integer M , the system eventually reaches a

state with M distinct values of the dynamical variables. Hence, after an avalanche,

Ei,j = nε, n = 0 . . .M − 1, and since the driving is uniform, Ei,j = nε, n = 1 . . .M

when initiating an avalanche. When Ec is incommensurable with ε, that is, when

Ec/ε is not an integer, the system is not able to reach a ”partially synchronized”

state. Figure 8(a) displays the average number of totally synchronized sites as a

function of time for Ec/ε = 4, 100/22, and 5. When Ec is commensurable with ε,

the time the system needs to settle down into such a state increases as ε decreases.

Note that the case of M = 4, was originally studied by Feder and Feder.98 Their

results are quite different. This will be explained in detail in the next section. Figure

8(b) displays the corresponding distributions of avalanche sizes. When M = 4 and

5 only large avalanches are seen. For M = 100/22, avalanches of all sizes occur, but

they are not power-law distributed.

4. Synchronization and Self-Organized Criticality

Up to now, we have seen the strong similarities between some models displaying

SOC and lattice models of IFO’s showing different levels of synchronization. In

both types of systems, each unit has an intrinsic dynamics leading to a threshold

value. When this threshold is reached, the unit interacts with its neighbors and it

is reset. This process is developed in a time scale much faster than that associated

to the natural driving of each unit. The features of the couplings, the natural

dynamics, and the reset mechanism define each particular situation. In view of

this analogy it is reasonable to think that a general framework may be developed.

We have shown that by an appropriate choice of the relevant parameters of these

models a wide spectrum of collective behaviors can be observed. However, up to
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now our attention has been focussed on systems which display either SOC or any

sort of phase locking. The goal of this final section is to give a step forward by

showing that there is an interesting group of models, with quite different origins,

which display both behaviors.

4.1. Integrate-and-fire oscillators

Let us start the discussion with a model studied in the previous section. We have

seen that the FF model tends to develop, in the stationary state, either assemblies

of cells with the same phase (when the ratio Ec/ε is an integer) in which case the

big avalanches take place because a lot of units reach the threshold simultaneously

or a more complex behavior (when Ec/ε is not an integer) where avalanches of

all sizes take place, but they are not power-law distributed. These behaviors are

not robust to noise.51 In principle, the effect of the noise is to prevent that two

sites become critical simultaneously due to the uniform driving. The nature of such

noise can be based on the existence of fluctuations: on the dynamic variables, on

the thresholds, or on the reset energy.51,99 This source of dynamical noise has to be

distinguished from a quenched source of noise, as for instance, a random distribution

of frequencies.100

The dramatic effect of noise on the features of the stationary state of the model

is observed in Fig. 9. When altering the relaxation rule (27) slightly by adding a

small random number in the range [0, 0.001] to the reset oscillator,51 the system no

longer settles into a state with a few groups of oscillators with the same phase, but

it goes towards a new state in which the avalanche distribution follows a power-law

decay characteristic of SOC.

Keeping in mind the results given in the previous section for the MS model, it is

not difficult to imagine that by increasing the convexity of the driving (in the original

FF model it is linear) SOC fades out, even in the presence of a dynamical noise,d

and for a certain degree of convexity a spatial structure formed by large groups

of oscillators with the same phase appears spontaneously.101 In fact, the features

of the model allow to derive analytically an explicit condition, written in terms of

a critical convexity γc, which ensures that a state characterized by the existence

of relaxation oscillations of the size of the system is a fixed point. However, this

argument cannot ensure that such fixed point is an attractor. We will show, by

numerical simulations, that it has a large basin of attraction.

Let us assume that there is an avalanche sweeping the whole lattice (for an arbi-

trary geometry). The idea is to derive a condition that could ensure that the next

event will reach the whole population as well. Let n denote the lattice coordination

number and m the number of neighbors of the most unfavorable site (the cell or

group of cells with the smallest number of neighbors). These sites have zero energy

dCorral et al.101 introduced the noise by choosing at random one of the cells that become critical
simultaneously due to the driving and making it the starting point of the avalanche, while the
energy of the rest of critical cells was decreased by a small random amount. However, different
sources of dynamical noise give similar results.
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when the avalanche is over, and in order to fire in the next avalanche, they have to

satisfy101 (for excitatory coupling),

E (1− ϕ(nε)) + mε ≥ Ec. (28)

In the case of the Peskin model the relations between the phase and the energy are

E(ϕ) = C
(
1− e−γϕ

)
(29)

and

ϕ(E) =
1

γ
ln

C

C −E
, (30)

where C was already defined in (21). A simple calculation yields, when Ec = 1,

ε ≤ C(m− n) + n

mn
(31)

which is the relation between ε and γ that must be satisfied for model (21) with in-

teraction rules (27) in order to show relaxation oscillations involving all the cells. In

the particular case of a regular 2D square lattice with open bc, the most unfavorable

sites are the corners. Hence

ε ≤ 2− C

4
. (32)

This relation has been checked through simulations finding an excellent agreement as

can be seen in Fig. 10. In region A, the condition (32) is satisfied and therefore, the

system settles in a state where a macroscopic group of oscillators whose size scales

with the size of the lattice remain at the same phase. In region B, the condition is

not satisfied and relaxation oscillations involving all the cells are not stable. The

systems goes towards an attractor of difficult classification whose characteristics

will be discussed later. In the limit of γ = 0 we recover the features of the noisy FF

model. Notice that a convex driving is not enough to find relaxation oscillations.

It is necessary to go beyond γc. In fact, γc tends to ln 2 in the limit of ε→ 0.

When considering periodic bc in a 2D square lattice, Eq. (31) reads

ε < 0.25 (33)

thus favoring the appearance of relaxation oscillations in the sense discussed above:

it is a stable fixed point but, in principle, we cannot ensure it is an attractor for the

dynamics of the system.e Indeed, numerical simulations show that this synchronized

state can be an attractor of the dynamics in some cases. This model has been also

analyzed by Hopfield and Herz102,103 in the context of computation by networks of

integrate-and-fire neurons. These authors study a general model with interaction

rules102

Enn → Enn + ε,
Ei,j → Γ(Ei,j − 1),

(34)

eFor ε ≥ 0.25 the model with periodic bc has no dissipation and finally enters into a never-ending
avalanche.
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Fig. 10. Schematic phase diagram in terms of γ (the convexity of the driving) and ε (the strength
of the coupling) for model (27) and units driven by (21). The symbols correspond to the phase
transition observed in the simulations and the error bars are given by the standard deviation over
ten measures. The solid line corresponds to the analytical result (32).

and a linear driving. This model is equivalent to the FF model in the Γ = 0 limit

and to the uniformly driven BTW when Γ = 1. As soon as every element has

fired once, the system reaches a limit cycle in which each oscillator fires exactly

once during one period of the oscillation, no matter the value of Γ. For the BTW

model it is possible to construct a Lyapunov function that show this convergence.

However, for Γ < 1, the volume of the attractor is greatly reduced. From numerical

simulations on 2D square lattices they construct a diagram in terms of the initial

distribution of energies and the coupling strength ε. The behavior ranges from a

trivial fully synchronized state, when the initial distribution of the oscillators is

very narrow, to an exponential distribution of events, when the initial distribution

is broad enough. In the border line between both regions a power-law distribution of

events is reported. The same authors103 have also studied the limiting cases of the

BTW and FF models with units being driven nonlinearly. Within the computational

aspects of this work they perform simulations from which one can conclude that all

the models exhibit rapid convergence to periodic solutions with locally synchronized

clusters. However, in the large time scale the behavior is quite different. In this

case, the BTW interaction rules lead to a global synchronization whereas FF’s show

a partially synchronized behavior. The existence of this nonglobal synchronized

periodic state for the FF model confirms that Eq. (33) gives the existence of a

synchronized state (in the sense of a simultaneous firing of all the units) that,

however, it is not necessarily a global attractor for the dynamics. These authors
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give conditions which show that if the strength of the coupling is strong enough, a

simple spatially nonuniform periodic solution is also possible.

4.2. Spring-block models

Now, we are going to analyze the effect of a nonlinear convex driving in deter-

ministic spring-block models, such as those discussed in the context of earthquake

dynamics, which display SOC with a linear driving.10,47,104 As in models of IFO’s,

these nonlinearities tend to break SOC in favor of more complex dynamical states.

However, there are several differences that must be remarked. In the OFC model (7)

two cells very seldom reach the threshold simultaneously and trigger an avalanche

in two different points of the lattice. There is no need to introduce a dynamical

noise in contrast with the FF model where the existence of the noise is required

to observe SOC. Therefore, concerning the SOC behavior, one might conclude that

the existence of some kind of noise, either in the way the system is driven or in

the initial conditions, is necessary. On the other hand, some authors have reported

power-law distributions for completely deterministic automata.105,106,107 However,

for all these deterministic models there is a single site with a special behavior; this

inhomogeneity, either in the initial conditions or in the external loading, is what

gives rise in these cases to the complex behavior characteristic of SOC.

For the OFC model it is also possible to deduce analytical results giving in-

formation about the conditions required to observe a transition between a regime

where relaxation oscillations rule the long time behavior and other dynamical states.

However, the situation here is more difficult and two equations are necessary. One

ensures that the avalanches will reach all the cells of the lattice, and the other is

based on the assumption that the configuration after a big event always will be the

same. The main difference with respect to the FF model is that we have to replace

ε by an effective value ε since the energy of a given site can be larger than Ec = 1

when the avalanche propagates through the lattice.f Within a mean-field approx-

imation we will assume that this energy is the same for all cells, except the seed

(the unit that triggers the avalanche), its neighbors and the boundaries. Assuming

that any site fires at most once during an avalancheg the seed has a phase ϕ(4ε)

when the avalanche has finished, and to fire again it has to increment by an amount

1−ϕ(4ε). Since its neighbors are at ϕ(3ε) the condition to repeat permanently this

situation is

4ε = 4ε [E (ϕ(3ε) + 1− ϕ(4ε)) + ε] . (35)

This equality, in addition with (31), with ε replaced by ε, gives the following rela-

tionship between ε and γ

ε ≤ 1

16

[√
C2 − 52C + 164− (C + 6)

]
. (36)

fActually, for a regular 2D square lattice ε is bounded between ε and 2ε since the energy at any
site cannot exceed the value of 2.
gThis can only be ensured when ε < 0.22.49
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When this condition is fulfilled, only relaxation oscillations of the size of the system

can survive in the stationary state. The curve corresponding to the equality has

been plotted in Fig. 11 (solid line). It has been corroborated through simulations

performed in a system of size 64× 64 with a fixed value of γ and increasing ε from

below. For 10 different realizations of the initial random conditions we look at the

final state after 3 · 106 avalanches. The average value of ε where the transition is

observed corresponds to the circles in Fig. 11 and the error bars correspond to the

standard deviation.

Fig. 11. Schematic phase diagram in terms of γ (the convexity of the driving) and ε (the strength of
the coupling) for the OFC interaction rules with a driving given by (21). The symbols correspond
to the phase transitions observed in the simulations. For the B-C transition the error bars denote
that above them we have always found SOC while below them there is no power-law behavior.
For the A-B transition the error bars are given by the standard deviation over ten measures. The
solid line corresponds to the analytical result (36) and the dashed line is an exponential fit to the
numerical data.

Furthermore, to complement and illustrate the features of the dynamical states

observed in the phase diagram of the model, we have plotted in Fig. 12 the time

evolution of the avalanche size as well as its return map, for a particular run. Thus,

we can clearly see that, in region A (Fig. 12(a)) large avalanches appear frequently

until an avalanche sweeps the whole system and this state is maintained. On the

other hand, the return map shows the evolution of the system at the fixed point. Let

us remind that in the theoretical approach we made the assumption that a whole

system avalanche does exist. In the simulations one observes that this hypothesis is

indeed true. The synchronization of the cells is not global but the number of cells

with the same phase is of the order of the size of the system.

Slightly above the curve given by Eq. (36) an avalanche sweeping all the lattice
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cannot repeat any more since the next one will be unable to reach some of the cells

in the boundaries and these cells will be the starting point of future avalanches

(region B). This fact gives rise to a periodic behavior with a discrete distribution

of a few avalanche sizes that can eventually be broken only by the effect of the

dynamical noise. This is indeed what we have observed in the simulations; only

some values of avalanche sizes are present. The exact location is very sensitive to

the initial random configuration but they are always of order 1, L, and L2. In

Fig. 12(b) we show the time evolution of the avalanche size in a typical run in this

region after a transient time. Here we can notice the appearance of the periodic

state and a small number of points in the return map.

By increasing ε we observe that the distribution of avalanche sizes, P (s), be-

comes continuous in the sense that all bins of exponentially increasing width have

at least one event, up to some system size dependent cutoff. The transition from

a sparse distribution to a ”continuous” one would require a careful investigation.

When P (s) has this continuous appearance there are peaks at some characteristic

lengths, roughly at L, 2L, 3L, . . ., as can be seen in Fig. 13, and no finite-size

scaling is possible.

By increasing ε again we observe that the intensity of the peaks decreases. Up to

the system sizes and number of avalanches we have studied, there exists a transition

to a stationary state with a power law, followed by an exponential decay of P (s).

We have identified the transition from regions B to C (squares in Fig. 11) by fixing

γ and increasing ε up to the appearance of a finite-size scaling in the distribution

of avalanche sizes. The dashed line is an exponential fit of the numerical results

that we extrapolate to the linear driving case (γ = 0) and for large values of the

convexity of the driving.

The criticality of the SOC state stems from the lack of characteristic time and

length scales and for the apparent unpredictability of the size of the next event. This

can be visualized in Fig. 12(c) where no simple correlation can be extracted from

the time sequence. Just at the conservation line, ε = 0.25, where the interaction

between units is stronger, we find SOC for a wide range of values of γ with a

power-law decay over more than three orders of magnitude and the corresponding

finite-size scaling as shown in Fig. 14.

Up to now we have studied a population of identical oscillators, with intrinsic

period T = 1, but in a real system it is usual to find it randomly distributed.

We have consider a uniform distribution, centered at T = 1.100 For model (9)

and a convex driving the results remain qualitatively the same for a width in the

distribution as large as 0.1T . However, if the width is equal to the mean period

T the region where synchronization is observed almost disappears as well as SOC

which is constrained to a narrow region near the line ε = 0.25. The effect of a

quenched distribution of thresholds has been also analyzed by Janosi and Kertész

(uniform distribution)108 and by Torvund and Frøyland (gaussian distribution)109

for the linearly driven OFC model, where it has been shown that the distribution

of avalanche sizes has an exponential decay for a sufficiently large spread.
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Fig. 12. Left column: Time evolution of the avalanche size. Right column: return map of the
avalanche size. Top) in region A of Fig. 11 for L = 8, middle) for region B (close to region A),
and bottom) for region C. Each time step corresponds to an avalanche.
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A slightly different model with a uniform driving was analyzed by Socolar, Grin-

stein, and Jayaprakash.104 In this case when a site reaches a critical value the in-

teraction rules are
Enn → ΛEnn + εEi,j
Ei,j → 0.

(37)

In this model, Λ 6= 1 is a simple way to remove degeneracy, though it does not

model the elastic nonlinearities of the blocks and springs model in detail. Rules

(37) can be seen as a kind of a state dependent transfer (ERC), which can be

transformed into a uniform transfer model with a nonlinear driving by means of the

appropriate transformation.90,94 When open bc are considered, Λ = 1 corresponds

to the original OFC model and in an interval around this value there are indications

of SOC behavior. Nevertheless, for Λ < 1, the authors suggest the observed behavior

might correspond to a periodic state with either a long transient or a long period.

For Λ ≥ 1, the power law decay in the avalanche size distribution observed is related

to apparently chaotic oscillations in the average energy

< E >=
1

L2

∑

i,j

Ei,j . (38)

It is suggested that the boundary sites, which have a different cycle than interior

sites, might be the source of the criticality observed. This issue has been analyzed

in detail by Middleton and Tang99 in a simple directed model; they show that the

slower growth rate of the boundary sites favors the creation of synchronized clusters

of all sizes. At a fixed time, the number of clusters of size d has a power-law tail

that is independent of ε, n(d) ≈ d−σ . An avalanche can then eventually cross a

cluster boundary whenever both clusters have close enough values of the energy,

and this makes the avalanche size distribution to be also a power law.

As we noticed for the FF model, also for the OFC model a very important role

is played by the bc. In particular, periodic bc break completely the SOC behav-

ior and can provide some hints on its origin in the nonconservative continuously

driven models.99,104,50 For instance, Socolar, Grinstein, and Jayaprakash obtain 104

different behaviors, depending on the values of Λ in (37). Thus, for Λ < 1, the

system always settles in a periodic state, with transients that become longer as Λ

approaches one. On the other hand, for Λ > 1 the most common states are peri-

odic with a cycle consisting of single avalanches that sweep the whole lattice. A

simple picture can be obtained by analyzing the return map of a two-site model:

for Λ > 1 both sites fire in the same avalanche, whereas for Λ < 1 there is a stable

fixed point. These results are in agreement with the ones obtained for a nonlinear

driving by means of the above mentioned transformation.94 Finally, the special case

of Λ = 1, shows a completely different behavior from what is expected from the

limits of the previous cases: the system rapidly settles into a periodic state with

avalanches of size one which are marginally stable as those described previously for

the FF model.102,103 Grassberger,50 by means of very large-scale simulations, real-

ized that there exists a close relation between temporal and spatial ordering; while
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time ordering is associated with the periodic behavior and becomes stronger as ε

decreases, spatial order is related to the synchronization of neighboring sites which,

in principle, seems to be favored by a large interaction between units. Concerning

the SOC behavior, one can conclude that open boundaries create an inhomogeneity

which prevents time ordering but spatial local ordering is still maintained. Along

this line Middleton and Tang99 have observed that by including some source of dy-

namical noise the system with periodic bc is periodic in time, after a brief transient

time, and that these states are neutrally stable.

A different way to introduce the inhomogeneity that is responsible for the SOC

behavior has been followed by Torvund and Frøyland.109 They have considered a

single site to have a threshold larger than the threshold of the remaining sites,

in a system with periodic boundary conditions. These authors have found some

evidence for a SOC behavior when the larger threshold is above a critical value.

Nevertheless, also a non-simple periodic behavior can be observed. This means

that a more careful analysis would have to be performed along this line.

4.3. Other models

Forest-fire models are other systems where typical SOC behavior has been

observed.11 The model is defined in a D-dimensional lattice (usually D = 2). Each

site of the lattice is either occupied by a tree or empty. Trees grow according to

a certain function that depends on the age of the empty site. A tree burns if it

is struck by lightning with a small probability f . In this case, the fire propagates

through the neighbors burning the whole cluster that immediately becomes empty.

In this system the features of the stationary state depend strongly on the specific

form of the tree growth. Drossel110 has shown analytically (for a 1D system) and

through simulations that if the life-time distribution of empty sites has a long-time

tail a SOC state with non-universal exponents is observed. On the other hand,

for deterministic tree growth a coherent temporal activity between trees in the

same cluster comes up. Therefore, we see again the relevance of the driving in the

collective properties of the model.

Inspired by a forest-fire model, Clar, Drossel, and Schwabl111 have studied a

nonequilibrium percolation system which displays several behaviors ranging from

SOC to clusterization. The authors consider a population of objects (trees, animals

or others) distributed randomly over a lattice. The density of occupied sites is ρ.

Then, a given site is chosen. If it is not empty an ”explosion” occurs affecting

all the neighbors within the same cluster, whose spatial position on the lattice is

redistributed (a group of animals dispersed by the action of a predator could be

another example). In these terms the density of the system is a conserved quantity.

In the stationary state the model shows different regimes depending on the

density of occupied sites of the lattice. For diluted networks (ρ < ρ1 = 0.41) only

small clusters of units are developed. As a consequence, the average number of

units affected by an explosion and the size of the largest cluster smax is small.

For ρ1 < ρ < ρ2 = 0.435 the size of the explosions diverge but more slowly than
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the size of the system. They show that the relevant quantities diverge as a power

law, with an exponent that depends on the density ρ. This critical behavior is

characteristic of SOC. Finally, for larger values of the density there is a region where

the explosions have infinite size (they scale with the size of the system) which is

repeated periodically in time.

Related to this model we can notice the work of Csilling et al.112 about dynamics

of populations. Each site on a lattice denotes a population that evolves according

to

Ni,j(t + 1) = λNi,j(t) [1 + aNi,j(t)]
−β

(39)

until a critical population density is reached (overcrowding). In this case a dispersal

movement (migration) is triggered through nearest neighbor local habitats

Nnn → Nnn + ∆
Ni,j−Nsc

4
Ni,j → Nsc.

(40)

Notice that these rules are identical to OFC rules with Nsc = 0 and ∆ = 4ε. This

process may lead to a migration avalanche, typical of the lattice models discussed

so far. Without interaction, a simple site behaves chaotically. However, by increas-

ing the interaction it reaches a noisy fixed point. Concerning the lattice average,

by lowering the threshold level, the collective behavior becomes more pronounced,

reflected by the appearance of discrete frequencies on the power spectra; more-

over, the time evolution either becomes strictly periodic or it reaches a stable fixed

point. Finally, the distribution of avalanche sizes is computed; whereas for a weak

interaction the distribution is exponential, for a stronger interaction a power law,

characteristic of SOC, was observed.

5. Conclusions

In this paper we have reviewed the collective behavior of a large group of low di-

mensional systems characterized by two essential features: a dynamical process to

update the state of each member of the system and a threshold condition which

defines an interactive process between members of the population. The coupling

between units is defined in terms of very simple local rules. Within this broad frame-

work we have considered different models ranging from cellular automata where the

state of each unit, described in terms of discrete variables, is updated through a

random process, to coupled dynamical systems where the internal state is governed

by differential equations. In spite of the simplicity of the considered models, the

majority displays a complex behavior. In some cases they settle down in stationary

states without characteristic time or length scales typical of self-organized critical-

ity (SOC). In other cases, the attractors are synchronized states with a partial or

complete coherence in the temporal activity of the members of a given population.

Most interestingly, a few of them display both attractors (and others) depending

on the value of the parameters which define the model.

There are several reasons which foster the study of these models. Perhaps, the

most relevant is to understand the origin of SOC and identify the underlying mech-
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anisms. Unfortunately, there is no clear answer to this question and the problem

remains open. SOC behavior is very sensitive to the action of external factors, it

can be destroyed (and created) in many different ways and, a priori, it is difficult to

find the proper combination of ingredients that may make a system to display it. It

is well known that boundary conditions play a relevant role. Big events (avalanches)

are usually generated near the boundaries and propagated towards the bulk, but

only under suitable conditions which, in general, imply open boundaries. But apart

from this important factor, there are other components which also have a crucial

effect on the features of the stationary state. For some cellular automata such as

the BTW model conservation is the key. For the Zhang model either conserva-

tion or a very tiny perturbation of the internal state of the cells. Some continuous

driven models display SOC even without conservation such as the OFC model but

additionally, in others such as the FF model a dynamical noise is required. In the

last two models the role of memory effects (a trace of the initial state) can give the

answer.

We have seen that in the continuous driven models the features of the driv-

ing are also relevant. The original OFC and the noisy FF models display SOC

with constant or quasiconstant driving rate. However, a non-constant driving rate,

which implies a convex (concave) relation between the state of each unit and time,

leads to new behaviors. In some cases the duality convexity/concavity lead to full

synchronization/anti-synchronization (phase locked state where neighbors remain

at a fixed phase difference). Then SOC might be understood as an intermediate

behavior, balanced between these two extreme situations. In other situations, local

synchronization can be responsible for a global SOC behavior. For these reasons,

the analysis of systems displaying a rich variety of attractor such as those mentioned

in the last section of the paper is of great interest.

Another important feature of the systems considered in this review is the sep-

aration of time scales associated to the natural dynamics of each unit and the

interaction between them. This separation, quite natural in some situations, seems

to be mandatory to observe SOC behavior. If this is true, systems where the trans-

mission of information between neighbors could take a finite time might not display

SOC. It would be interesting to pay more attention at this point in the future and

see whether it is possible to observe power-law behavior in systems where both time

scales are overlapped.

Finally, there are other aspects of interest not sufficiently analyzed so far. The

effect of different sources of noise (for instance, the coupling with a thermal bath),

the role played by inhibitory rather than excitatory couplings, a careful analysis of

the role of memory effects are some of the topics that deserve further research in

the future.
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Structures in a Lattice Model of Pulse-Coupled Oscillators”, preprint.
98. H. J. S. Feder and J. Feder, Phys. Rev. Lett. 66, 2669 (1991).
99. A. A. Middleton and C. Tang, Phys. Rev. Lett. 74, 742 (1995).
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101. A. Corral, C. J. Pérez, A. D́ıaz-Guilera, and A. Arenas, Phys. Rev. Lett. 74, 118

(1995).
102. A. V. M. Herz and J. J. Hopfield, Phys. Rev. Lett. 75, 1222 (1995).
103. J. J. Hopfield and A. V. M. Herz, Proc. Natl. Acad. Sci. USA 92, 6655 (1995).
104. J. E. S. Socolar, G. Grinstein, and C. Jayaprakash, Phys. Rev. E47, 2366 (1993).
105. K. Wiesenfeld, J. Theiler, and B. McNamara, Phys. Rev. Lett. 65, 949 (1990).
106. M. S. Vieira, Phys. Rev. A46, 6288 (1992).
107. K. Nagel and H. J. Herrmann, Physica 199A, 254 (1993).
108. I. M. Janosi and J. Kertesz, Physica 200A, 179 (1992).
109. F. Torvund and J. Frøyland, ”Strong Ordering by Non-Uniformity of Thresholds in

a Coupled Map Lattice”, Phys. Scripta (in press).
110. B. Drossel, ”Self-Organized Criticality and Synchronization in the Forest-Fire

Model”, preprint.
111. S. Clar, B. Drossel, and F. Schwabl, Phys. Rev. Lett. 75, 2722 (1995).
112. A. Csilling, I. M. Janosi, G. Pasztor, and I. Scheuring, Phys. Rev. E50, 1083 (1994).


